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Abstract

We propose the abstractions of Functional Encryption (FE) and Indistinguishability Obfuscation (iO) for pseudoran-
dom functionalities which are strictly weaker than their general counterparts. Intuitively, a pseudorandom functionality
means that the output of the circuit is indistinguishable from uniform for every input seen by the adversary. We then
leverage weak indistinguishability style security of these tools to obtain the following applications:

1. Attribute Based Encryption for Unbounded Depth Circuits. Assuming IND-secure FE for pseudorandom
functionalities and LWE, we construct Attribute Based Encryption (ABE) for circuits of unbounded depth.
Previously, such ABE required the circular Evasive LWE assumption (Hseih, Lin and Luo, Focs 2023) which has
recently been subject to zeroizing attacks.

2. Attribute Based Encryption for Turing Machines. Assuming IND-secure FE for pseudorandom functionalities
and circular small-secret LWE, we construct Attribute Based Encryption (ABE) for Turing machines. Previously,
such ABE required either private coin Evasive LWE (Agrawal, Kumari and Yamada, Crypto 2024) or circular
Evasive LWE (Cini and Wee, Eurocrypt 2025), both of which admit attacks in the general case.

3. Multi Input Predicate Encryption for Polynomial Arity. Assuming IND-secure multi-input FE for pseudorandom
functionalities, we construct Multi Input Predicate Encryption (MIPE) for P for polynomial arity. Previously,
MIPE for P was known only for constant arity, using private coin evasive LWE (Agrawal, Rossi, Yadav and
Yamada, Crypto 2023).

4. Instantiating the Random Oracle. We use our IND-secure iO for pseudorandom functionalities to instantiate the
random oracle in several applications that previously used iO (Hohenberger, Sahai and Waters, Eurocrypt 2014)
such as full-domain hash signature based on trapdoor permutations and more.

We provide heuristic constructions of FE and MIFE for pseudorandom functionalities from private coin evasive LWE
and plain LWE, where private coin evasive LWE is suitably parametrized to avoid all know attacks for the functionalities
we consider in this work. This implies iO for pseudorandom functionalities from the same assumptions.
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1 Introduction

Attribute based encryption. Attribute based encryption (ABE) is a generalization of public key encryption which
enables fine grained access control on encrypted data. In ABE, the ciphertext encodes a public attribute x together with
a secret message 11, the secret key is generated for a public function f, and decryption outputs m if and only if f(x) = 1.
Security is formalized in an indistinguishability style game which asks that an adversary should be unable to distinguish
between an encryption of (1, x) and (m7,x), even given secret keys for functions f; so long as f;(x) = 0 for all i.
ABE comes in two avatars — “key-policy” where the function f is encoded in the secret key, or “ciphertext-policy” where
it is encoded in the ciphertext. These are denoted by kpABE and cpABE respectively. An interesting strengthening of
ABE is the so-called “Predicate Encryption” (PE) [KSWO08] where the attribute x is also hidden but only against an
adversary that does not receive any decrypting key, namely f;(x) = 0 for all f; queried by the adversary.

There has been significant progress in constructing ABE for circuits over the last several years [GPSW06, GVW 13,
BGG™' 14, AY20, Wee22, HLL23] from well-understood assumptions. However, for circuits of unbounded depth,
the only known solutions rely on full fledged compact FE [JLL23] or a new assumption called circular evasive LWE
[HLL23]. The elegant construction by [HLL23] (HLL) provides a pathway to ABE for unbounded depth from plausibly
weaker assumptions than required for full fledged FE in the lattice regime, but their technique is very specific to algebraic
structure of the underlying building blocks and does not lend itself to generalization. Moreover, the circular evasive
LWE assumption has recently been shown to have attacks [AMY Y25]. Thus, it is important to ask:

Can we construct ABE for unbounded depth circuits from a broader class of assumptions?

ABE for Turing Machines. Another important line of ABE research is to support uniform models of computation
[Wat12, GKP 13, AS16, AM18, KNTY19, GWW19, GW20, AMY 19a, AMY 19b, LL20, AKY24, CW25]. This is
because, though powerful, circuits force the size of the input to be fixed ahead of time and also incur worst case running
time on every input. However, so far the only solutions we have rely on private coin evasive or circular evasive LWE
[AKY?24, CW25], which have recently been shown to have counter-examples [HIL.25, AMYY25, DIM ™25, BUW24].
Again, we ask:

Can we construct ABE for Turing machines from a broader class of assumptions?

Multi-Input Setting. A multi-input predicate encryption (miPE) scheme [AYY?22] for n-ary functions miPE =
(Setup, KeyGen, Ency, . .., Ency, Dec) generalizes single input predicate encryption [GVW 15b] to support multiple
encryptors, who each encrypt their data with independently chosen randomness. In miPE, the setup algorithm on
input 11, arity 1 and parameter prm, specifying the parameters of the function class, outputs (mpk, msk). The key
generation algorithm on input msk and a function f : (Xprm)" — Yprm outputs a functional secret key sk - The i-th
encryption algorithm on input msk, an attribute x; € Xprm and a message y; € {0,1} outputs a ciphertext ct;. The
decryption algorithm on input secret key sk s and 1 ciphertexts cty, . . ., ct, (corresponding to inputs (x1,11) -, (Xn, pin)
respectively) outputs a string ¢/ € {0,1}" U L.

Previously, the works of [AY Y22, FFMV24] provided the first constructions of multi-input predicate encryption for
specific functionalities. The follow-up work of Agrawal et al. [ARY Y23] supported the most general functionality — it
allowed to compute arbitrary predicates in P on vector (xq, ..., X, ) where X; is encrypted by party i € [n] and k is a
constant. However, the limitation for a constant k seems inherent to their techniques, and they also rely on private coin
evasive LWE and a strengthening of Tensor LWE in addition to LWE. Thus, for polynomial arity and function class
P, we do not have any constructions of MIPE, even from the evasive LWE family of assumptions. This leads to the
question:

Can we construct MIPE for P supporting polynomial arity (without using iO)?

In this work, we answer the above questions in the affirmative by leveraging a general new tool — FE for pseudorandom
functionalities — which we describe next.



1.1 New Tool: Functional Encryption for Pseudorandom Functionalities

We begin by recalling the standard notions of Functional Encryption and Indistinguishability Obfuscation.

FE, MIFE and iO. Functional encryption (FE) [SW05, BSW11] generalizes ABE — in FE, a ciphertext is associated
with a vector x, a secret key is associated with a circuit f and decryption enables recovery of f(x) and nothing else.
Goldwasser et al. [GGG™ 14] generalized FE to the multi-input setting — in MIFE, multiple parties can independently
encrypt their data and the key generator can provide a function key that jointly decrypts all the ciphertexts. In more detail,
now we have n parties, each of who independently computes the ciphertext for its data x;, for i € [n], the key generator
provides a key for an n-ary function f and decryption allows to recover f(xq,...,Xy). As discussed in the original work
of MIFE, the notion is more meaningful in the symmetric rather than public key setting, since the latter allows for too
much leakage on the challenge message by dint of legitimate combinations with messages chosen by the adversary. In
two concurrent, influential works [AJ15, BV 18] it was shown that single input FE, if it supports sufficiently expressive
functionality and satisfies an efficiency property called compactness, is enough to generically imply multi-input FE.
Moreover, multi-input FE is shown [AJ15, BV 18] to imply the powerful notion of Indistinguishability Obfuscation (iO)
[BGIT01], which seeks to garble circuits while preserving their input-output behaviour. In more detail, given a circuit
C, an obfuscation C preserves the correctness of C so that C(x) = C(x) for every input x, but hides everything else
about C.

Following a long line of work [JLMS19, JLS21, Agr19, APM20, WW21, GP21, DQV*t21], FE was constructed
using standard assumptions in the breakthrough work of Jain, Lin and Sahai [JLS21] and improved by [JLS22, RVV24].
However, all these works rely quite crucially on pairings which is dissatisfying. In the realm of conjectured quantum
safety, there exist several candidates from lattices but their security is based on non-standard assumptions, many of
which have been broken [Agr19, APM20, WW21, GP21, DQV 21, HJL21, AJS23, HIL25].

Evasive LWE. Evasive LWE is a popular new lattice assumption, introduced by Wee and (independently) Tsabary
[Wee22, Tsa22]. At a very high level, evasive LWE can be seen as a lattice analog of the generic group model, which is
popular in the pairings world, in that it restricts the class of attacks that an adversary can mount. Below, we let X denote
a noisy version of X where the exact value of noise is not important and B~!(P) denote a short preimage K (say) such
that BK = P mod 4. The evasive LWE assumption roughly says that if

(A/ B/ P/ sTA/ ST4B/ ﬂ/ aux ) %C (A/ B/ I:'/ $/ $/ $/ aUX)

where A, B, P are matrices of appropriate dimensions, s is a secret vector, aux is some auxiliary information and $
represents random, then

(A, B, P,s"A, s"B, B''(P), aux) ~ (A, B, P, $ $ B '(P), aux)

Evasive LWE has proven to be a very meaningful strengthening of LWE in that it has provided several strong
new applications that had been elusive from plain LWE, despite significant research effort over decades — optimal
broadcast encryption [Wee22], witness encryption [VWW?22], multi-input attribute based encryption [ARYY23],
optimal broadcast and trace [AKYY23], attribute based encryption (ABE) for unbounded depth circuits [HLLL.23] and
ABE for Turing machines [AKY?24], to name a few.

Evasive LWE has been studied in two main regimes, namely “public-coin” and “private-coin”, where the former
means that the randomness used to sample P and auxiliary information aux, is made available to the adversary, and the
latter means that this information needs to be hidden. The original work of [VWW22] which defined private coin evasive
LWE showed contrived counterexamples against the assumption (later formalized and improved in [BUW24, HHY25)).
However, this was not considered too problematic as it relied on highly unnatural auxiliary information which contained
obfuscations that would output secrets given B~1(P) but not otherwise. No attacks were known in the public-coin
setting used by Wee’s original formulation or its extensions, such as the circular evasive LWE by Hseih, Lin and Luo
[HLL23]. Thus, evasive LWE has been seen as a meaningful “middle point” in the land between LWE on one hand, and
lattice assumptions used for iO on the other.



Recent Developments. Recently, there have been several new counter-examples against private coin Evasive LWE
[BUW24, BDJT25, AMYY25, HHY25, DIM ' 25], which broaden the class of attacks. Moreover, in some cases, there
are also attacks in the public coin setting — for instance, the circular evasive LWE assumption which has been considered
to be in the public coin [HLL23, CW25] category is now known to broken for arbitrary samplers [AMY Y25]. While it
is possible to avoid all the counter-examples by suitably restricting the sampler, these attacks have severely shaken the
faith of the community on this family of assumptions. Please see Section 1.3 for a detailed discussion.

1.2 Our Results

In this work, we develop a new tool and leverage it in a simple, black box way, to yield new constructions for ABE for
unbounded depth circuits, ABE for Turing machines and Multi-Input ABE schemes, from weaker assumptions. We
summarize our results below.

1.2.1 New Tools: FE, MIFE and iO for Pseudorandom Functionalities.

We introduce the tools of FE, MIFE and iO for pseudorandom functionalities, denoted by prFE, prMIFE, prlO respectively,
which are strictly weaker than their counterparts for general circuits. Intuitively, a pseudorandom functionality means
that the output of the circuit is indistinguishable from uniform for every input seen by the adversary. We define both
simulation style as well as indistinguishability style security for our new tools.

Useful Abstraction. 'We believe these tools provide a clean and useful new abstraction on which to base applications.
These tools can already be instantiated using standard assumptions by using constructions of full-fledged compact FE,
MIFE and iO [JLS21, JLS22, RVV24]. Additionally, we show that they can be constructed using a suitably restrained
version of private coin Evasive LWE, which avoids all known attacks. Note that similar restrictions are required to
recover every application of private coin evasive or circular evasive LWE to the best of our understanding. Also note that
private coin Evasive LWE is currently required even for the weaker “all or nothing” primitive of Witness Encryption in
the lattice regime [VWW22] — we show that a similar assumption suffices to build a nontrivial compact Functional
Encryption. This significantly expands the capabilities of private coin Evasive LWE.

It is currently unclear how the restricted evasive LWE assumption used here compares with lattice assumptions that
have been used to construct iO — we hope that weaker assumptions than both evasive LWE as well as those used for
lattice based iO can eventually be used to construct our tools. However, regardless of instantiations, our new tools can
be used in a clean, black-box way for applications which previously required full-fledged FE/iO and we are optimistic
they will find further applications.

Constructions from (suitably restricted) Evasive LWE. Our constructions are summarized in the following theorems.

Theorem 1.1 (Compact prFE). Assuming LWE and (suitably parametrized) private coin evasive LWE, there exists a
secure prFE scheme for function class J () ¢(1)dep(r) = 1f * {0, 1} = {0, 1}} satisfying

|mpk| = L - poly(dep,A), |[sk¢| = £-poly(dep,A), |ct| =L-poly(dep,A)
where dep = poly(A) is the depth bound on the functions supported by the scheme.

We show how to compile a bounded-depth prFE scheme into an unbounded depth scheme but with slightly worse
parameters.

Theorem 1.2 (Compact Unbounded-Depth prFE.). Assuming LWE and (suitably parametrized) private coin evasive
LWE, there exists a secure prFE scheme for function class 7 = {f : {0,1}~ — {0,1}} of unbounded depth satisfying

Impk| = L-poly(A), [sk¢[ =L-|[f|-poly(A), [ct|=L-poly(A).

We then show how to bootstrap our single input prFE to support multiple inputs. We denote this primitive by
prMIFE. Our construction follows the template of [AJ15, BV 18], although the proof is significantly different.



Theorem 1.3 (prMIFE for polynomial arity). Assume (suitably parametrized) evasive LWE, non-uniform sub-
exponential PRF, and non-uniform sub-exponential LWE. Then there exists a prMIFE scheme for arity n = poly(A),
supporting functions with bounded polynomial depth.

We bootstrap our prMIFE to obtain the first iO for pseudorandom functionalities, similar to [GGG ™ 14]. We denote
this by prlO. In more detail:

Theorem 1.4 (prlO). Assuming IND-secure prMIFE, there exists a prlO scheme for all polynomial sized circuits.

In light of the new attacks, we treat our constructions as lattice based heuristics, and from these heuristics, we
demand only a weak indistinguishability style security [BSW11] which is known to be achievable even for general
functions [JLS21]. We justify the heuristic in more detail in Section 2.2.

Comparison with Circular Evasive LWE. Recall that private coin Evasive LWE is a large family of assumptions,
parametrized by the choice of matrices, errors, auxiliary information and such. Therefore, we compare our specific
version of private coin Evasive LWE with circular evasive LWE, on which the only previous ABE for unbounded depth
has been based (from purely lattice assumptions) and which has been widely categorized as a “public-coin” assumption
(please see [HLL23] as well as follow-ups, such as [BDJ 25, CW25]).

At a very high level, both assumptions essentially provide an FHE encoding on top of the usual terms provided in
Evasive LWE (please see Section 2 for details). The essential difference between circular evasive LWE and the version
of evasive LWE used in the present work is that in the former, the value to be hidden within the FHE encoding is the
FHE secret key s (resulting in circularity), while in the latter, it is an arbitrary string x chosen by the sampler. Moreover,
in both constructions, the FHE secret is chosen to be the same as the LWE secret s in the assumption. Hence, in HLL, s
can be chosen outside the sampler, and the FHE encoding is provided as part of the problem instance not as part of the
sampler’s output. This results in the assumption getting categorized as public-coin (since s is not known to the sampler).
In our work, on the other hand, we assume that x is chosen by the sampler. Since x must be hidden inside the FHE
encoding, we must have this encoding be output by the sampler itself — this results in our assumption being categorized
as private coin. In both cases, there is secret randomness used in generating the FHE encoding which must be kept
private. The work of [AMY Y25] shows that both assumptions are subject to a very similar attack, due to the presence of
the FHE encoding.

1.2.2 Applications of prFE

We then proceed to use our new tool in simple, black box ways to achieve the following results.

Key Policy ABE. For key-policy ABE supporting circuits of unbounded depth, we obtain the following results.

Theorem 1.5 (Unbounded kpABE, No Circularity). Assuming LWE and IND-secure prFE (Definition 4.4), there
exists a very selectively secure kpABE scheme for circuits of unbounded depth and attribute length ¢ with

[mpk| = £-poly(A), [skc| = |C|-£-poly(A), let| = £-poly(A).
By relying on circular small-secret LWE instead of plain LWE, we can improve the parameters as below.

Theorem 1.6. Assuming circular small-secret LWE and IND-secure prFE (Definition 4.4), there exists a very selectively
secure kpABE scheme for circuits of unbounded depth and attribute length ¢ with

Impk| = poly(¢,A), |skc| = poly(A), |ct| = poly(¢,A).

Previously, the only other unbounded depth KP-ABE scheme by [HLL23] achieved the same parameters as Theorem 1.6
but relied on the circular evasive LWE assumption, which is now known to have attacks [AMYY25]. Moreover, in
Theorem 1.5, we show that circularity can be dispensed with altogether at the cost of worse parameters.



Ciphertext Policy ABE. For ciphertext policy ABE we obtain the following result.

Theorem 1.7. Assuming circular small-secret LWE and IND-secure prFE (Definition 4.4), there exists a very selectively
secure cpABE scheme for circuits {C : {0,1}¢ — {0,1}} of unbounded depth with

|cpABE.mpk| = poly(A), |cpABE.skx| = poly(¢,A), |cpABE.ctc| = poly(A).

Previously, AKY used LWE, private-coin Evasive LWE and circular tensor LWE assumption to construct unbounded
depth cpABE. We note that the cpABE scheme instantiated as above replaces the reliance on circular tensor LWE and
LWE assumptions used by AKY by simply circular small-secret LWE. It also replaces the private coin evasive LWE
used in AKY by IND-secure prFE. We note that this cpABE has a shorter mpk as compared to that of AKY (which is
poly(A, £)), other parameters being the same.

ABE for Turing Machines. AKY provided a compiler that uses kpABE for bounded depth circuits and cpABE for
unbounded depth circuits to achieve kpABE for Turing machines. Plugging our new cpABE into this compiler, we
obtain:

Corollary 1.8. Assuming circular small-secret LWE and IND-secure prFE (Definition 4.4), there exists a very selectively
secure ABE for TM with

Impk| = poly(A),  [sk| = poly(A, [M]), |et| = poly (A, [x], ).

[AKY?24] uses LWE assumption, private coin evasive LWE assumption and circular tensor assumption for their
construction with the same parameters as in Corollary 1.8.

The concurrent work by [CW25] achieves ABE for Turing Machines assuming LWE and circular evasive LWE
assumption and better parameters as compared to AKY or Corollary 1.8. Concretely AKY and Corollary 1.8 achieve
Impk| = O(1), |ct| = O(|M|?), sk = O(|x] - t) and [CW25] achieves |mpk| = O(1), |ct| = O(|M]), sk = O(t)
where O(-) hides poly(A) factors !.

1.2.3 Applications of prMIFE and prlO
We use our prMIFE to construct Multi-Input Predicate Encryption (miPE) as below.

Theorem 1.9 (miPE for poly arity). Assuming non-uniform IND-secure prMIFE(Definition 7.4) , subexponentially
secure PRF, and sub-exponential LWE, there exists a miPE scheme for polynomial arity, supporting functions of
bounded polynomial depth, and satisfying security as per Definition 3.25.

In the special case of constant arity, we can base security of the scheme on weaker assumptions — it suffices to assume
polynomial-time security of PRF and LWE.

Previously, the works of [AY Y22, FEMV24] defined the notion of multi-input predicate encryption and provided the
first constructions for specific functionalities. The follow-up work of Agrawal et al. [ARY Y23] supported the most
general functionality — it allowed to compute arbitrary predicates in P on vector (xq, . .., Xy ) where x; is encrypted by
party i € [n] and k is a constant. Next, we provide some applications of our new tool of prlO.

Instantiating the Random Oracle. Hohenberger, Sahai and Waters [HSW14] used iO to instantiate the random
oracle in several applications. In more detail, they showed selective security of the full-domain hash (FDH) signature
based on trapdoor permutations (TDP) [BR93], the adaptive security of RSA FDH signatures [Cor00], the selective
security of BLS signatures, and the adaptive security of BLS signatures [BL.SO1] in the standard model. Our prlO can
be used to instantiate all these applications.

Theorem 1.10 (Full-Domain Hash Signatures ). Assuming IND-secure prlO, sub-exponential secure punctured PRF,
and one-way TDP, there exists a selectively secure full-domain hash signatures.

ICW25 claims AKY key size to be O(t?) however it is O(|x| - ), to the best of our knowledge.



1.3 Recent Attacks on Evasive LWE and Repercussions.

The original work of [VWW22], later formalized by the follow-up [BUW24, HHY25], showed that for contrived
auxiliary information, the private coin evasive LWE assumption is false — all prior work using this assumption avoids
this attack by suitably curtailing the auxiliary information. Subsequent to the first online appearance of the present work,
there were two important developments that affected our results:

1. Impossibility of simulation secure PRFE for general circuits. The concurrent work of [BDJ25] and the
follow-up work of [AMY Y25] show that there exists a contrived “self-referential” functionality for which
pseudorandom functional encryption or pseudorandom obfuscation satisfying strong simulation style security
(called “pseudorandom CT” or prCT security) cannot exist.

2. Attacks against Evasive and Circular Evasive LWE. New counter-examples for evasive LWE were developed
[BDJT25, BUW24, AMYY25, HIL25, DIM 25, HHY25]. Some of these attacks show that the intuition that
evasive and circular evasive LWE evade the zeroizing regime is not always true. Of these, the most important
attacks as related to our work, are presented in [AMY Y25, HJL25] who showed (via essentially the same attack)
that by carefully crafting a contrived circuit to implement a PRF which is used (non black-box) in the construction
of prFE in the previous version of this work (as well as the construction of prlO in the concurrent work of
[BDJ*25]), the attacker can obtain problematic leakage.

The present manuscript takes the following steps to address the situation.

Impossibility of simulation secure PRFE for general circuits. Impossibility results are ubiquitous in cryptography
— similar impossibilities are known, for instance, for the random oracle model [CGHO04], virtual black box (VBB)
obfuscation [BGIT01] and simulation secure FE [BSW11]. The community has addressed these impossibilities either
by weakening the security definition or by weakening the functionality.

In general there is no win-win situation around impossibilities — weakening the security definition has the disadvantage
that it may admit schemes that are intuitively insecure, as in the case of IND-secure FE [BSW11]. Weakening the
functionality has the disadvantage that it is difficult to characterize which functionalities are “safe”” and forces one to
essentially assume that the attacks do not apply to some “natural” subset. Nevertheless, despite impossibilities known
for ROM and VBB obfuscation [CGH04, BGI " 01], the meaningfulness of ROM for practical security, and of VBB
obfuscation for restricted functionalities [Wee05, CRV10] is accepted widely.

In our setting, both remedies can apply. We have weakened the security definition of prFE, prMIFE and prlO to the
IND based versions which is the usual notion of security considered for these primitives and admit constructions from
standard assumptions, even for general circuits. Thus, all our applications now rely on IND secure building blocks,
which are known to be instantiable via standard assumptions. We also observe that the pseudorandom functionalities
that are useful for our applications, such as blind garbled circuits, are quite natural and do not fall prey to known attacks,
even for the stronger prCT notion of security.

Attacks against Evasive and Circular Evasive LWE. To handle these attacks, we have restricted the evasive LWE
assumption so that it avoids all known counter-examples. To the best of our understanding, similar restrictions need to
be placed on all schemes based on circular evasive (including [HLL23, CW25]) or private coin evasive LWE (including
[BDJ25]).

The constructions of prFE, prMIFE and prlO are now viewed as a heuristic satisfying IND security. To further
strengthen our heuristic, we modified the construction in the original version of this work (see Appendix A for a high
level summary and Section 4 for a formal description)so that the attacks no longer apply, even for a contrived circuit
implementation of the PRF. Similar modifications would be required to make the scheme by [BDJ"25] secure against
these attacks. We also mention the work by [BUW24] which presents attacks against classes of evasive LWE such that
either B or P are not known to the adversary. In our case (even in the original version), both B and P are known to the
adversary, hence these attacks do not apply.



1.4 Concurrent Work

Pseudorandom Obfuscation. The concurrent work of Branco et al. [BDJ25] also considered obfuscation for
pseudorandom functions and constructed it using private coin evasive LWE, similar to us. Their construction is
also subject to the attacks by [HIL25, AMYY25] similarly to the previous version of the present work, if the circuit
implementation of the building blocks is allowed to be chosen adversarially. They do not study FE or MIFE for
pseudorandom functionalities which is the main focus of our work. Note that while FE implies iO, this is with
exponential loss in the reduction, and a large body of work has focused on replacing the usage of iO by FE in applications
— please see [GPSZ17] for a discussion. The applications developed in the two works are different.

Additionally, as discussed above, Branco et al. [BDJ™25] also provided an important lower bound by showing
that simulation style security for pseudorandom obfuscation is impossible for general functionalities. As mentioned
previously, following this impossibility, we have weakened our security to IND based versions — thus, this modification
was made subsequent to [BDJ"25]. However, the techniques used to convert the proofs using our original definition to
the IND based version are standard and well known in the FE literature (starting with [DCIJ ™" 13]).

ABE for Turing Machines. The concurrent work by Cini and Wee [CW25] achieves ABE for Turing Machines
assuming LWE and circular evasive LWE assumption. The previous version of the present work achieved ABE for Turing
Machines assuming LWE and private coin evasive LWE. To compare these: (i) [CW25] achieved better parameters,
(ii) we relied on private coin evasive LWE assumption without circularity. It was previously believed that circular
evasive LWE falls in the public coin category of evasive LWE assumptions, but the recent work of [AMY Y25] displays
zeroizing attacks even against circular evasive LWE, calling this belief into question. The present version of our work
now weakens the requirement of private coin evasive LWE to IND secure prFE.

Comparison with Succinct LWE. We note that the recently introduced succinct LWE assumption [Wee24, Wee25] is
a falsifiable variant of LWE that has been used for parameter optimizations in ABE schemes [Wee24, Wee25], distributed
broadcast encryption [CW24] and such other applications. It is not currently known to imply stronger primitives such as
unbounded ABE or witness encryption, to the best of our knowledge.

2 Technical Overview

In this section, we present the core ideas that we develop in this work. Below X denotes a noisy version of X where the
exact value of noise is not important.

2.1 Preparations

Evaluation Algorithms by Boneh et al. (BGG™). The seminal work of Boneh et al. [BGG* 14] developed algorithms
for evaluating arithmetic functions on the ciphertext as well as the public key of an ABE scheme, which form the
cornerstone of several subsequent constructions. Their core technique is as follows: given an input x € {0, 1}5, and a
matrix A € Z’,;X(m, one can homomorphically evaluate a circuit f : {0,1}¢ — {0,1} on an “input encoding” matrix
of form A — x ® G by multiplying on the right by a low norm matrix Hp ¢ to obtain the term Ay — f (x)G. Here, G
is a special gadget matrix defined as follows. Let g = [1,2,22,...,2!°89]T and G = I ® g". In key evaluation, one can
homomorphically evaluate a circuit f : {0,1}* — {0,1} on A to obtain A 5 = A-Hy s for some low norm matrix
Hpy . In ciphertext evaluation, given an attribute x and corresponding attribute encoding of the form sT(A—x®G),
which we refer to as BGG™ encoding, right multiplication by Hy 7 Yields sT(As — f(x)G) without substantially
blowing up the noise in the encoding since Hp ¢ x is low norm. Skipping several details, since the key generator can
compute Ay = A - Hp ¢, it can provide a matching key which allows the decryptor to cancel out the masking term
sTA £ and proceed with decryption. We refer to Hp s and Hp f x as the PK and CT evaluation matrices respectively.

Handling Unbounded Depth by Hseih, Lin and Lu (HLL). The essential barrier in supporting circuits of unbounded
depth for homomorphic computation is that the norm of the matrix Hp rx grows exponentially with the depth of the



circuit being computed, causing the the noise in the ciphertext encoding to blow out of control after some number of
evaluations. While it has been long known how to use circular security in the context of unbounded depth FHE [Gen09],
its utility in the context of ABE was uncovered only very recently, in an elegant work by Hseih, Lin and Luo [HLL23]
(HLL). In order to perform noise reduction while maintaining the required algebraic structure of the encoding, HLL
included the following additional advice in their ciphertext:

S = hcts(s), E=s"(Agc —S®G)

Above, hcts(+) is an FHE ciphertext decryptable by secret key s denoted in the subscript — thus S is a circular FHE
ciphertext, and E is a BGG™ encoding with attribute S and re-using the FHE secret s as the LWE secret.

The Automatic Decryption Trick. The trick of reusing the FHE secret as the LWE secret in the BGG™ encoding of
attribute hcts(+), was introduced by Brakerski et al. [BTVW 17] and can lead to “automatic decryption” of the FHE
ciphertext, as described next. Recall that in the GSW FHE scheme [GSW13], the secret key is s, a ciphertext for
message y' is a matrix C and decryption computes s™C to recover (a noisy version of) y'. Brakerski et al. [BTVW17]
suggested “vectorizing” the BGG™ ciphertext evaluation procedure so that homomorphic evaluation on the encoding
produces a term of the form s"(As — hcts(y")) (i.e. without G). Now, the inner product of s and hcts(y") causes

FHE decryption to occur automatically and we obtain the encoding sT A r+ y", where the noise in the encoding is low.

This term suffices to proceed with homomorphic computation in HLL but at the cost of incorporating circularity into the
evasive LWE assumption.

Randomizing Advice for CP-ABE. Recently, Agrawal, Kumari and Yamada [AKY24] (AKY) built upon the
construction by HLL to obtain the first ABE for Turing machines from lattice assumptions. A key technical contribution
of the AKY construction is a way to randomize the advice provided in the HLL ciphertext, making it suitable for
integration with Wee’s bounded depth CP-ABE. These techniques led to the first CP-ABE for unbounded depth circuits,
which they further leveraged to construct a KP-ABE for Turing machines. In more detail, AKY transformation requires
computation of the following randomized HLL terms:

Sy = thsr(Sr)r E; = SI(Acirc -5 ® G)

Above, sy = s" (I ® r) where r is chosen by the key generator while s is chosen by the encryptor.

Evidently, neither party can provide the encodings directly, and while randomizing the message inside an FHE
ciphertext from s to s, is easy given knowledge of r, randomizing the secret key of FHE ciphertext is much more
challenging. To get around this difficulty, AKY suggest that the structure of the advice provided by the encryptor be
changed, so that the true power of FHE — which is to transform encoded messages rather than underlying secret keys —
be further leveraged. Thus, they provide:

T = hete(s,sd), D = tT(A; — (1,bits(T)) ® G)

where sd is a PRF seed, t is the secret of a fresh FHE scheme and A is a public matrix of appropriate dimensions. Now,
one can homomorphically evaluate on the encoding D in bounded depth, using knowledge of T, to obtain

t" AL + t"hct(Sy, Er) = t' AL + (Sy, Ey)

where A/, is some r dependent matrix and the equality follows by automatic decryption. To get rid of the masking term
t" AL, the encryptor additionally provides t"C for some fixed matrix C and the key generator provides C~!(A’) where
C~1(AL) is not a true matrix inverse but rather a low norm matrix so that C - C~1(AL) = AL. Together these allow the
decryptor to compute the term t" A and cancel it out from the encoding above, to recover (Sy, Ey) in the clear.

The security of the above construction, relies on evasive LWE (aside from other assumptions), and depends crucially
on the fact that the computed terms (Sy, E;) are pseudorandom. Digging deeper into the AKY proof, the term s"P in
Evasive LWE can be essentially simplified to the advice terms (Sy, E;) which, therefore need to be pseudorandom for
invoking the assumption.
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2.2 Compact Functional Encryption for Pseudorandom Functionalities & Applications.

Our starting point is the observation that the techniques developed in AKY are quite a bit more general and can be
leveraged to compute functionalities beyond the randomized HLL advice they were developed for. Perhaps surprisingly,
we show that techniques developed to support an “evasive” functionality like ABE (i.e. where the adversary receives no
decrypting keys) can be used to construct a full fledged Functional Encryption (FE) for a nontrivial class of functionalities.
Note that unlike ABE, the FE functionality is non-evasive in that the adversary can obtain decryptions of the challenge
ciphertext. This core tool — FE for pseudorandom functionalities — can then to be used in a clean, black-box way to
make significant advances in the space of ABE schemes. We view the identification of this tool and its multi-input
generalization as the core conceptual contribution of this work.

Generalizing AKY techniques beyond ABE. Taking a step back, let us analyze what the AKY technique enables:
the encryptor provides an FHE ciphertext T of a message (say x), and a BGG™ encoding of attribute T with the FHE
secret doubling up as the encoding randomness. Homomorphic evaluation of any function f coupled with automatic
decryption allows to recover a masked version of f(x) and evasive LWE allows to cancel the mask. Thus, this technique
seems to enable computation of any function f on the input x, while keeping it hidden! Intuitively, security follows
from evasive LWE as long as the output of the functionality is pseudorandom, such as their (S, E;), but more generally
pseudorandom output of any function, such as a PRF.

We show that the above intuition can be formalized to yield the first compact FE for pseudorandom functionalities,
namely, functionalities where the output is (pseudo)random for any given input that is seen by the adversary in the security
game. We sketch our construction for prFE below. In the following, f : {0, 1} — {0,1 }Z has the property that the output
of f is pseudorandom for every input seen by the adversary. We also use a PRF : {0, 1}* x {0,1}* — [—q/4,9/4].
The usage of PRF is introduced for the security reasons which we will highlight later.

— The setup algorithm samples matrices A, and (B, B~1) of appropriate dimensions and outputs mpk := (A, B)
and msk := B~1. Here, B! is the trapdoor for B which allows to compute short preimages B! (U) for any target
matrix U.

— The encryptor on input x first samples a GSW secret key s, where s = (57 — 1)T and a PRF seed sd < {0, 1}".
A1"he

5T Ahe + e;h e

R, — followed by a BGG™ encoding of X using randomness s as cJ; := sT (A, — X ® G) + e],. It additionally

computes ¢, := sTB + e, and outputs the ciphertext ct = (cg, Catt, X).

It then computes a GSW ciphertext, X = hcts(x, sd), using public key Ag,e = ( ) and randomness

— The key generator on input msk = B~! and function f does the following.
(a) Samples a nonce r < {0,1}" and defines function F[f, r], with f and r hardwired, as
F[f,r](x,sd) = f(x) |g/2] + PRF(sd, r).

It then computes the FHE evaluation circuit VEvalg w.r.t. the function F[f, r] (this can be computed using the
knowledge of F[f, r]). Note that the circuit VEvalg can be used to compute on a GSW ciphertext for an input,
say y, to recover a GSW ciphertext encoding F[f, r](y).

(b) Next, it computes the matrix Hl;;m for the circuit VEvalg using the public matrix A,¢. Recall that the matrix
Him and Hﬂatt x (which can be computed given VEvalg, A and X) will satisfy the relation

(Astt —X® G)H}__x = AaH}  — VEvalp(X).

(c) Ttsets Ap = Ay - Hgm, samples K <~ B~ (AF) and outputs skr = (K, 1).
— The decryption on input sky = (K, r) and ct = (cp, catt, X) work as follows.

(a) It first computes the matrix Him,x for the circuit VEvalg using A, and X.

11



(b) Next, it computes z := ¢, - K — ¢l - Him,x’ rounds z co-ordinate wise and output the most significant bits.

To see the correctness of our scheme, we note that
ol -Hy x ~ sTAuHY  —sT(hcts(F(x,sd))) ~ sTAf — F(x,sd), )

where the second approximate equality follows by automatic decryption. Now to remove the masking term "sT Ag" we
compute cf - K ~ sTAp and thus z ~ sTAg — sTAg + F(x,sd) = f(x) |4/2] + PRF(sd, r). Now, rounding gives
us bits of f(x) as long as |PRF(sd, r)| < g/4. The exact decryption error is

el K+ PRF(sd,1) — (e} Rp + el Hy ) )

where R is a matrix with small entries determined by R and Fsatisfying VEvalg(bits(X)) = AmeRg — (0 F[f, 1](x,sd))T.

Our construction supports functions of bounded polynomial depth dep = poly(A) and has the following efficiency
Impk| =L - poly(dep,A), [skg| = £-poly(dep,A), |ct| =L -poly(dep,A).

As seen above, our construction achieves compactness.

Malicious Circuit Attack and Fix. In the above construction, if we allow the adversary to choose the circuit
implementation of the PRF used in the above construction along with its corresponding homomorphic evaluation, then
there is a contrived attack that allows the adversary to learn problematic leakage [AMY Y25]. At a very high level, the
attack, building upon clever ideas by [HJL21], shows a way to create a correlation between the error term resulting from
FHE evaluation (and automatic decryption) with the PRF output by using a contrived circuit to implement the PRF. A
similar attack applies to the concurrent work of [BDJT25].

There are multiple simple ways to prevent such an attack — the simplest one is to leverage the fact that the secret key
is computed by the key generator who is an honest party (it holds the master secret key) in the real world, and can ensure
that the circuit representation of any function f as well as the PRF can be made canonical by using the universal circuit
or a garbled circuit representation. Nevertheless, in this work, we also present an alternate fix to the scheme which
uses modulus reduction to “throw away” the accumulated error after FHE evaluation, replacing it with rounding error
which is no longer correlated with the PRF seed, even for a contrived circuit chosen by the adversary. Thus, our current
scheme is not subject to any attacks for the functionalities considered in our work, even for maliciously chosen circuit
specifications, to the best of our knowledge. Please see Appendix A for details.

Security. 'We first define a strong simulation style security which says that so long as the output of the functionality is
pseudorandom, the ciphertext is pseudorandom, given all the additional information available to the adversary. We
denote this security notion as prCT security. While this notion was shown to be impossible for general functionalities
[AMYY25] by exhibiting a self referential functionality where it cannot hold, we believe it is still meaningful for natural
functionalities and discuss it here. We discuss indistinguishability style security later.

In more detail, let Samp be a PPT algorithm that on input 1%, outputs

(fl/- ..,kaey,xl,. . .,mesg,aux S {O,l}*)

where Q\ey is the number of key queries, Qmsg is the number of message queries. We say that a prFE scheme is secure

if
< mpk, aux, fl,...,kaey,> ( mpk, aux, fl,...,kaey,>
e
{Enc(mpk,x]-)}].e[Qmsg], Skfl”"’Skakey {9 ECT}je[Qmsg]’ Skfl"”’Skakey

giVen (aux, fl/ e ’kaey’ {fi(xj)}iG[ley],jG[Qmsg]) ~ec (aux, fl’ e ’kaey’ {Ai,j}iE[ley],jG[Qmsg]>

where (mpk, msk) < Setup(1%), sk, < KeyGen(msk, f;) for i € [Quey], CT is the ciphertext space and A;; <
{0,1} fori € [Queyl,j € [Qmsg)-
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The careful reader may have noticed that the above definition has a multi-challenge flavour, even though the
construction is in the public-key setting. This peculiarity arises because single-challenge security does not generically
imply multi-challenge security for our definition. To see this, recall the standard hybrid argument to prove multi-challenge
security from single-challenge security: the proof follows a sequence of hybrids, where we simulate some of the
ciphertexts honestly, while trying to change a particular honest ciphertext to be random. Now, to generate honest
ciphertexts, we need to know the corresponding plaintexts. However, this could ruin the precondition for invoking
single-challenge security for the target ciphertext, since knowing some inputs may ruin the pseudorandomness of outputs,
if the inputs are correlated to each other.

We provide some high level intuition for our proof of security for prFE. For simplicity, we focus here on the single
challenge setting and refer the reader to the main body for the detailed proof in the multi-challenge setting. The proof
begins by invoking evasive LWE with an appropriate sampler — this allows to reduce the reasoning to the distribution of
the pre-condition, which replaces the term K = B! (AF) with c]T3 - K = sTAfg. Now, as we see in Equation (1),

el Hlfxm,x =sTAr — F(x,sd) = sTAr — f(x) |q/2] — PRF(sd, r).

This allows to simplify these two terms to sTAp and f(x) |q/2] + PRF(sd, r), where the latter term is pseudorandom,
hence simulatable and can be ignored hereafter. The terms that remain can now be handled by relying on LWE using
standard techniques [Wee22, HLL23, AKY?24]. Please see Section 4.2 for details.

IND-Secure prFE.  To avoid the impossibility result of [AMY Y25], we define a weaker IND security which is standard
in FE literature. The IND security for a prFE scheme is defined as follows. Let Samp be a PPT algorithm that outputs
(f1,--. ,kaey,x?,. .. ,x%msg,x%, ... ,xbmsg, aux € {0,1}*) where Qyey is the number of key queries, Qmsg is the

number of message queries. We say that a prFE scheme satisfies IND-Security if
( aux, {fi, fi(x?)}ie[ley],jE[Qmsg]) ~e (aux, {fi, Aij < Vorm tie(Quey i€ (Qmeg])
and fi(x?) = f,(x]l) Vi € [Qkey), Vj € [Qmsg], then we have

(mpk, aux, {f;, Enc(mpk, x?), skf. }ij) ~c (mpk, aux, {fi, Enc(mpk, x}), skf }ij)
where i € [Qyeyl,j € [Qmsg), (f1,-- 1 fQueyr x?, ., x%msg, x%, el xémsg, aux) < Samp(1%), (mpk, msk) <«
Setup(1%, prm).
We note that this definition is strictly weaker than standard indistinguishability definition for FE [GGH 16], since we
require the security to hold only for the case where all the decryption results are pseudorandom. We use this definition
for all our applications. We conjecture that our prFE scheme satisfies this notion of security.

Justification for IND security of prFE.  We discuss the reasoning behind our conjecture that our prFE satisfies IND
security. In terms of basing security from an assumption, we can prove prCT security for prFE under suitably
parametrized evasive LWE, to avoid all known attacks for the functionalities considered in this work. Opening up the
security proof, the sampler for the evasive LWE that we assume is induced by the sampler used in the prCT definition
for prFE. Hence, by suitably restricting the sampler of evasive LWE, one can conjecture prCT security of prFE for
natural functionalities, to which lower bounds of [AMY Y25, BDJ"25] do not apply.

To the best of our knowledge, there are no attacks or impossibilities against the scheme for suitably restricted
samplers and functionalities. Since prCT security can be proven from a plausibly sound version of evasive LWE and
since it implies the weaker IND based security which does not suffer from any impossibility, we conjecture that our prFE
satisfies IND based security. While our applications only require security to hold for a natural class of functionalities for
which even prCT security may plausibly hold, we also conjecture that IND security may be satisfied by our construction
for all pseudorandom functionalities, even contrived ones for which prCT security cannot hold.
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2.2.1 Application to ABE with Unbounded Depth

For ease of exposition, we describe our applications using a (single-challenge) prCT-secure prFE scheme (Definition 4.2).
However, we can adapt the construction to be based on an IND-secure prFE by leveraging the Trojan method [DCIJ " 13]
— we can hardwire the decryption result of the prFE ciphertext into the prFE secret key using a SKE scheme having
pseudorandom ciphertext. Details can be found in the relevant technical sections.

Removing Circularity from HLL. We demonstrate the utility of prFE by showing that it can be used to bootstrap a
very weak kpABE scheme into a full fledged one. This enables us to improve assumptions underlying prior works.

In more detail, our weak kpABE scheme, denoted by 1ABE is a secrer key scheme which only supports a single
ciphertext and single secret key query — this object is so simple that it can be constructed merely from one way functions.
This is lifted using prFE to build a full fledged public key ABE scheme supporting unbounded ciphertexts and unbounded
key queries. Our compiler does require 1ABE to satisfy some structural properties:

1. Decomposability: The computation IABE.KeyGen(C) can be decomposed into {1IABE.KeyGen;(Ci)}icc|
where C; denotes the i-th gate of C and has fixed polynomial size. Here, the depth of ABE.KeyGen; is fixed and
independent of the parameters of C. Moreover, output of 1ABE.Enc should be computable by a circuit of fixed
depth, irrespective of the length of x input to 1IABE.Enc.

2. Blindness: The 1ABE ciphertext and secret key should be pseudorandom when decryption is not allowed.

Given the above properties, the core idea is to use prFE to generate randomized versions of bits of 1ABE secret keys and
ciphertexts using randomness generated jointly by the encryptor and the key generator. This is supported by prFE of
fixed depth because of property 1 and respects the constraints imposed by prFE because of property 2. Thus we obtain a
public key scheme which supports unbounded ciphertexts and keys. We outline our compiler below.

— The setup algorithm generates (prFE.msk, prFE.mpk) using prFE.Setup and outputs these as msk and mpk
respectively.

— The encryption algorithm on input mpk, attribute x and message y computes a prFE ciphertext, prFE.ct, encoding
input (x, #,sd) where sd <— {0,1}" is a PRF seed.

— The keygen algorithm on input msk = prFE.msk and circuit C works as follows. It samples nonce r < {0, 1}A and
defines functions Fye, ;[r, C;], with r and i-th gate of C hardwired, for i € [|C|] and Fc;[r] as follows

(a) Fyey,i[r, Ci] oninput (x, p,sd), first computes 1ABE.msk using the randomness PRF(sd, r),i.e. 1ABE.msk <
1ABE.Setup(1"; PRF(sd, 1)) and then outputs 1ABE.sk¢, +— 1ABE.KeyGen, (1ABE.msk, C;).

(b) Fct[r] oninput (x, p,sd), first computes 1ABE.msk as above and then outputs an 1ABE.ct encoding message y
w.r.t. attribute x.

It then computes prFE keys {prFE.skyey,i }ic[c|] and prFE.sket corresponding to functions {Fyey[r, i] }ic(c)) and
Fet[r], respectively. It outputs skc = ({prFE.skiey,i }ic[|c|), PrFE-skct)-

— The decryption algorithm on input skc = ({prFE.skyey,i }ic[|c|}, PrFFE.sket) and ct = prFE.ct first runs the prFE
decryption, using prFE keys and ciphertext prFE.ct, to compute

Fiey,ilr, Ci](x, t,5d) = 1ABE.skc,,  Fet[r](x, i, sd) = 1ABE.ct.
Finally it sets 1ABE.skc = (1ABE.sk¢,, .. ., 1ABE.skc ) and outputs the decryption result as LABE.Dec(1ABE.sk¢, 1ABE.ct).

Correctness follows from those of the prFE and 1ABE: By correctness of prFE, the decryptor recovers the ciphertext
and secret key pair of 1ABE and by the correctness of 1ABE, one can recover the message # when C(x) = 1. To prove
the security, it suffices to show that ct = prFE.ct is pseudorandom. By the security of prFE, it suffices to show that the
decryption results of the ciphertext using the secret keys are jointly pseudorandom. This follows from the security of
1ABE, since the decryption results are ciphertext and secret key pairs generated by different randomness, where the
decryption is not possible for each pair. We refer to Section 5.2 for details.
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Building 1ABE. It remains to instantiate 1ABE with the desired properties. Fortunately, these properties are relatively
weak and easily satisfied. For instance, we can instantiate 1ABE simply by using blind garbled circuits [BLSV 18]
(Section 3.2.3)- here blindness is precisely the property that the garbled circuit and its labels should be pseudorandom,
when the evaluation result of the garbled circuit using the given labels is random. Given a blind garbled circuit, the
labels of the garbled circuit form the 1ABE ciphertext, the set of garbled gates form the 1ABE key, and decomposability
follows from the structure of a garbled circuit, where we can garble each gate independently. Care needs to be taken
to modify the circuit C in the secret key so that when C(x) = 0, it outputs a random string rather than L so as to be
compatible with our prFE. This yields the following theorem.

Theorem 2.1. Assuming LWE and IND-secure prFE, there exists a very selectively secure kpABE scheme for circuits
of unbounded depth and attribute length ¢ with [mpk| = £- poly(A), |skc| = |C|- £ poly(A), |ct| = £ - poly(A).

Note that HLL relied on a new assumption called circular evasive LWE, which we replace by IND-secure prFE
above albeit at the cost of larger parameters — in particular the secret key is large and scales with |C|.

Next, we show that by using the abstraction of Attribute Based Laconic Function Evaluation (AB-LFE) [QWW 18],
we can match the parameters by HLL. Intuitively AB-LFE allows to compress a circuit C into a short digest, which is
then used by an encryptor to compute a ciphertext ct for some attribute, message pair (x, ). The decryptor, given
C, ct can recover y if and only if C(x) = 1. For our compiler, we require an AB-LFE scheme where the encryption
algorithm can be decomposed into an offline and an online phase. The offline encryption algorithm takes as input (X, j)
and outputs ctog and a private state st. The online encryption algorithm takes as input (st, digest) and outputs ctep.
This property is satisfied by the construction of [HLL23].

At a high level, our kpABE uses the compression of the AB-LFE to shorten the secret key. The key generation
computes a digest C for the circuit C, then computes a prFE key for a circuit which outputs the online part of AB-LFE
ciphertext. The encrypt algorithm computes the offline part of the AB-LFE ciphertext and the state st using input (x, y).
It then encrypts st using prFE encryption. Now, prFE decryption allows to recover the online part of the ciphertext,
and AB-LFE decryption allows to recover y if C(x) = 1.We refer the reader to Section 5.4 for details.We prove the
following theorem:

Theorem 2.2. Under the circular LWE assumption and IND-secure prFE, there exists a very selectively secure kpABE
scheme for circuits of unbounded depth and attribute length ¢ with

Impk| = poly(£,A), [skc| = poly(A), [ct| = poly(£, 7).

Constructing kpABE for Turing machines from Weaker Assumptions. Next, we turn our attention to kpABE for
Turing machines. We show that using prFE and a single-key kpABE for unbounded depth circuits, we can build a
cpABE for unbounded depth circuits and further a kpABE for Turing machines with parameters matching AKY. The
construction for cpABE is as follows.

— The setup algorithm generates (prFE.msk, prFE.mpk) using prFE.Setup and outputs these as cpABE.msk and
cpABE.mpk respectively.

— The encryption algorithm, given circuit C and message y, works as follows: It samples randomness Ry, and computes
(kpABE.mpk, kpABE.msk) = kpABE.Setup(1%,1¢; Ryey). Next, it computes a prFE.ct encoding (Ryey, sd, ),
where sd is a PRF key, and a kpABE secret key for circuit C as kpABE.sk¢ < kpABE.KeyGen(kpABE.msk, C).It
outputs cpABE.ct := (prFE.ct, kpABE.mpk, kpABE.skc).

— The key generation algorithm, given msk and attribute x outputs a prFE key, prFE.skg, for the function F[x, ] where
r + {0,1}*. It outputs cpABE.sky := prFE.skg.
The function F[x, r] on input (Ryey, sd, p) first computes (kpABE.mpk, kpABE.msk) using the randomness Rye,
and then outputs a kpABE ciphertext kpABE.ct encoding p w.r.t. attribute x using randomness PRF(sd, r).

— The decryption algorithm on input secret key prFE.skg and ciphertext cpABE.ct := (prFE.ct, kpABE.mpk, kpABE.sk¢)
first runs the prFE decryption to obtain F[x, r](Ryey, sd, #) = kpABE.ct and finally performs kpABE decryption
using kpABE.ct and kpABE.skc.
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Correctness follows from those of kpABE and prFE: The decryption of prFE ciphertext using the prFE secret
key yields kpABE ciphertext encrypted under x. This kpABE ciphertext can be decrypted using kpABE.skc when
C(x) = 1. To prove the security, we show prFE.ct is pseudorandom. By the security of prFE, it suffices to show that
the decryption results of prFE.ct are pseudorandom. This follows from the security of kpABE, since the decryption
results are kpABE ciphertexts which cannot be decrypted by kpABE.sk-. We refer the reader to Section 6.1 for details.
Thus, we obtain the following theorem.

Theorem 2.3. Assuming circular small-secret LWE and IND-secure prFE (Definition 4.4), there exists a very selectively
secure cpABE scheme for circuits {C : {0,1}¢ — {0,1}} of unbounded depth with

|cpABE.mpk| = poly(A), |cpABE.skx| = poly(¢,A), |cpABE.ctc| = poly(A).
AKY provided a compiler that uses kpABE for bounded depth circuits and cpABE for unbounded depth circuits to
achieve kpABE for Turing machines. Plugging our new cpABE into this compiler, we obtain:

Corollary 2.4. Assuming circular small-secret LWE and IND-secure prFE (Definition 4.4), there exists a very selectively
secure ABE for TM with

[mpk| = poly(A),  [sk| = poly (A, [M]), |et| = poly (4, [x],1).

Unbounded-Depth prFE. In Appendix C , we show how to compile a compact bounded-depth prFE scheme into a
compact unbounded depth prFE using blind garbled circuits.

2.3 Multi-Input prFE & Applications

We extend the notion of prFE to multi-input setting and define a secret-key multi-input FE for pseudorandom
functionalities prMIFE = (Setup, KeyGen, Ency, . .., Ency, Dec) for n-ary functions as follows: The setup algorithm
on input 1%, arity 1 and parameter prm, specifying the parameters of the function class, outputs (mpk, msk). The key
generation algorithm on input msk and a function f : (Xprm)” — Vprm oOutputs a functional secret key sk - The i-th
encryption algorithm on input msk and an input message x; € Xprm outputs a ciphertext ct;. The decryption algorithm
on input secret key sk and 7 ciphertexts cty, .. ., ct, (corresponding to inputs x1, . . ., X, respectively) outputs some
Y € YVprm. As in the single input setting, we define security in both the simulation and indistinguishability styles.

prCT Security. In prCT security, we require that the ct is pseudorandom given the output of the function of encrypted
input is pseudorandom— however it requires much care to accommodate the fact that there are exponentially many
function evaluations even if only polynomially many input queries per slot are issued. We define it as follows. Let
& = x(A) be a function in A and Samp be a PPT algorithm that on input 1%, outputs

(Ufedketgol 5 ielan)s -0 3 ey 20x € {0,1}7)

where g is the number of key queries and g; is the number of encryption queries for the i-th slot. We define the
following advantage functions:

def K i in
AdVI;lIZE()Q =Pr |:.A0(1 /fl/ e ,fqo, {fk(lel, . x{1 )}ke[qo],jlE[ql]p--,jne[qn]' aux) = 1:|

= Pr[ AoV fu - faor ABbsin = VormYecal el oinelan) ) = 1]

def i
AdVl_:l?ST(/\) = Pr [.Al(mpk, fl/ . ,fqo, {Enci(msk, xf )}ie[fl],ij[qi]’Skflf . ,Squo, aux) = 1:|

—Pr {Al(mpk,fl, R {5{1' — Sim(msk)}ie[n]ljidqi],skfl,. ) .,squo,aux) = 1}

where (mpk, msk) ¢ Setup(1*,1", prm) and sk, « KeyGen(msk, fi) for k € [go]. We say that a prMIFE scheme
is secure if for every PPT Samp, .4, and Sim there exists another PPT .4 and a polynomial p(-) such that

AdVERE(A) > AdVEDST(A) /p(x) — negl(x),  Time(Ag) < p(x) - Time(Ay).
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The parameter x above is introduced to adjust the strength of the requirement for the precondition. By default, we
require ¥ > A" since the input length to the distinguisher is polynomial in A" anyway and this condition should be
fulfilled for the above equations to to make sense. If we need «x to be larger, this strengthens the requirement for the
precondition, as it means we want the distributions in the pre-condition to be indistinguishable against an adversary with
a longer running time.? Ideally, we want x to be as small as A" to make the requirement weaker. Looking ahead, for
our construction of prMIFE scheme supporting polynomial arity n = poly(A), we require large « as an artifact of the
security proof techniques. In the special case of 7 being constant, we can achieve x = A",

x-IND Secure prMIFE. Similar to prFE, we introduce the x-IND-security of prMIFE, a strictly weaker security notion
than x-security. It is defined, for x = K()\), as follows. Let Samp be a PPT algorithm that outputs

({fidetqo (3o ¥ Huctqny - A% ¥ha Hisetgup 2ux € {0,1}7)

where ¢ is the number of key queries, g; is the number of encryption queries for the i-th slot, f1,..., fg, € Fprm and

x{:ib € Xpm foralli € [n],b € {0,1},]; € [g;]. We say that the prMIFE scheme satisfies k-IND-security if for every
PPT sampler Samp such that

fk(lel,Or--'/xZio) = fk(x]f/l,...,xﬁ,l) Vi1 € [q1],-- -, Vin € [qu], Yk € [q0]

and

K jl jn ~ K X .
<1 S )}ke[qo],ie[n]/]'fe[%] ’a”X> e (l i }kewo],ie[nJ,f,-ew,-] ’aux> /

we have

(mpk’ {5 i A0 et ’aux) e (mpk’ U i A et ’aux> ’

where k > A", (mpk, msk) < Setup(1*,1", prm), sk, < KeyGen(msk, fi), ctfb < Enc(msk, x{’b) fori € [n],
ji € 1qi], b € {0,1}, and k € [go]. We note that «-IND security above is weaker than the IND-based security defined
for MIFE in [AJ15], since it requires the ciphertext indistinguishability (i.e., Equation (34))to hold only when we have
pseudorandom condition for the decryption results (i.e., Equation (33)). Note that the additional parameter x in our
definition is used to parametrize the running time of the distinguisher in the pseudorandomness condition. Since this is
an additional condition imposed by the pseudorandomness requirement, the IND-based definition of [AJ15] does not
need it.

Construction. Next, we describe our construction for bounded depth prMIFE using a bounded depth prFE and a
secret-key encryption scheme. Our construction adapts the key idea from [AJ15], of "unrolling" ciphertexts on the fly
via recursive decryption. However, since our security notion is quite different, our proof departs significantly from
theirs, as we will discuss below.

Specifically, we use 1 instances of a single-input prFE scheme {prFE; };c [n]» With appropriate input lengths, to build a
n arity prMIFE scheme where the i-th encryption algorithm Enc; outputs the prFE; | functional secret-key, prFE;  1.sk,
for i € [n — 1] and Enc,, outputs a ciphertext corresponding to prFE, scheme. Here the prFE;  ;.sk contains the input
x; hardcoded within itself, wrapped in an SKE scheme, since prFE does not support function hiding. It computes the
ciphertext prFE;.ct for the input (SKE.sk, X;, X; 11, - - ., X,_1, Xn ) decryptable by prFE;.sk which in turn computes the
ciphertext prFE;_;.ct decryptable by prFE;_;.sk and so on. Now, note that the decryption of slot # ciphertext with
slot n — 1 functional secret-key will give us a ciphertext decryptable by functional key at slot n — 2. Unrolling upto
slot 1, we get a ciphertext, prFE;.ct, corresponding to prFE; scheme. Finally, the key generation algorithm outputs a
functional secret-key for prFE; which together with prFE;.ct will give us the desired output.
In more detail?,

ZRecall that A is a PPT algorithm. This means that it runs in polynomial time in its input length. Here, x serves as a “padding", which artificially
makes the input longer and allows .A; to run in longer time.
3We omit substantial notation here for the ease of readability.
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1. The setup algorithm generates 1 instances of prFE scheme {prFE;.mpk, prFE;.msk} for appropriate input
lengths and a secret key for SKE scheme SKE.sk. It outputs mpk = ({prFE;.mpk}c[,)) and msk =
(SKE.sk, {prFE;.msk, prFE;.mpk};cy)-

2. The keygen algorithm on input msk and a function f : ({0,1}%)" — {0,1}, computes prFE;.sks
prFE;.KeyGen(prFE;.msk, f) and outputs sky := prFE;.sky.

3. The i-thencryption algorithm oninput (msk, x; € {0,1}), parses msk = (SKE.sk, {prFE;.msk, erEi.mpk}ie[n])
and does as follows. If i € [n — 1]

— Compute SKE.ct; < SKE.Enc(SKE.sk, x;).

— Define function F; := F;[SKE.ct;, prFE;.mpk] which on input (SKE.sk, X;11, ..., X;_1,X») first computes
x; = SKE.Dec(SKE.sk, SKE.ct;) and then computes a prFE;.ct encoding (SKE.sk, X;, X; 1, - ., X1, Xn ) if
i # 1 else it computes prFE;.ct encoding (xq,Xa, . .. ,xn_1,xn)4. It outputs prFE;.ct.

— It computes a functional key for F; using the i + 1-th instance of prFE and outputs it as the i-th ciphertext, i.e.,
ct; == prFE;  1.sk < prFE; 1.KeyGen(prFE; 1.msk,F;).

If i = n, it outputs ct,, := prFE,.ct < prFE,.Enc(prFE,.mpk, (SKE.sk, x;)).

4. The decryption algorithm on input sk = prFE;.sky, and ciphertexts ct; = prFE; j.sk for i € [n — 1], and
ct, = prFE,,.ct does the following: (a) Iteratively compute prFE;_q.ct for i € [2, 1] by decrypting prFE;.ct with
prFE;.sk starting with i = n. (b) Compute and output y <— prFE;.Dec(prFE;.mpk, prFE;.sks, f, prFE;.ct).

Correctness follows from the correctness of underlying ingredients. To see this, note that by the correctness of prFE,
and the definition of F,,_1, we have prFE,,.Dec(prFE,,.mpk, prFE,,.sk, F,,_1, prFE,,.ct) will output F,, _1(SKE.sk, x;,)
correctly. Next, by the correctness of the SKE scheme, we have x, 1 = SKE.Dec(SKE.sk,SKE,ct,,_1) thus
F,_1(SKE.sk,xy,) = prFE,_.ct where prFE,_;.ct encodes (SKE.sk, x;,_1, Xy, ). Unrolling as in decryption step (a),
we get prFE;.ct which encodes (x1,X3,...,X;_1,Xs). Now, from step (b) of decryption and correctness of prFE;
scheme we have prFE;.Dec(prFE;.mpk, prFE;.skg, f, prFEj.ct) = f(xq1, ..., Xn).

prCT Security. While the key-idea of our construction is adapted from [AJ15], our security proof differs significantly
from theirs as we elaborate next. Consider the initial view of an adversary .4 which outputs g key queries { f1, ..., fao 1,

q; input queries for i-th slot {x]'} helqlr - {x1} jn€lgn) and auxiliary information aux 4

aux, {prFE;.mpk}ic(,], {fk, skp = erEl'5kfk}ke[qo}
Doy : {ctg" = SKE.ct/, erEi+1.sk]i}i§[n[1]],, 3)
Ji€\qi

{ct{{‘ = erEn.ctj” } .
Jn€[an]

To prove security we design a simulator Sim as follows: On input msk = (SKE.sk, {prFE;.msk, prFE;.mpk};c(,|)

e fori € [n — 1], it first samples a random SKE ciphertext vy; from the ciphertext space of SKE scheme, defines
F;[7i, prFE;.mpk] as in the construction and outputs ct; = prFE;, 1.sk < prFE;, 1.KeyGen(prFE; 1.msk, F;[7;, prFE;.mpk]).

o for i = n, it outputs a randomly sampled ct;,, from the ciphertext space of prFE,, scheme.

Given the above simulator it suffices to show that Equation (3) is indistinguishable from the following distribution

aux 4, {prFE;.mpk}c(,), {fk, skp, = erEl'Skfk}ke[qo]

Doy : {ctf =9/ + CTske, PrFEi+1-5kji}ie[n—1],/ @
ji€lail

{6l < CT e, jn€[4n]

4The randomness for computing the ciphertexts comes from a PRF, which we omit here in the overview.
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At a high level, the security proof proceeds as follows. To prove the pseudorandomness of { prFE,,.ctin } jn» We show that

the decryption results of these ciphertexts using the secret keys {erEn.skj”—1 } jn_ are all pseudorandom. This allows
us to invoke the security of prFE,,. The decryption results of the above ciphertexts using the secret keys are ciphertexts
{prFE, _.ct/n-1in}, jn_1,jn Of PrFE,;_1 and we would like to prove the pseudorandomness of them. We again consider

the decryption results of the ciphertexts using the secret keys {erEn_l.sk] 2}j . This process continues until
2 Jn=2

we reach the point where we have to prove the pseudorandomness of {prFE;.ct/t Jn } j1,...,jn» Where each ciphertext

encodes (x1 o X , X, ). By invoking the security of prFE; once again, we can conclude that it suffices to show that

{ fk(x1 R )} kji,...jn @re pseudorandom even given SKE ciphertexts encrypting each x , where the latter is dealt
as aux111ary 1nformat10n throughout the process of the above recursive invocations of erE security We then invoke

the security of SKE to erase the 1nf0rmat10n of x ! from the SKE ciphertexts. This allows us to conclude, since the
pseudorandomness of { fi (x1 o, X)) kjr...jn directly follows from the precondition.

A bit more formally, to prove Equation (3)~ Equation (4) we begin by invoking the security of prFE,, with sampler that
provides inputs { (SKE.sk, x ]”)}] €[gy)» functions {F]” 1[SKE. et/ prFE,_1.mpk|}; | c[g, > and all the remaining

n—1/
components of Equation (3) as auxiliary information. Now from the security guarantee of prFE,, with the sampler, we

know that to prove prFE.ct is pseudorandom it suffices to show function output
F/" 1[SKE.ct"1, prFE,_1.mpk] (SKE.sk, X} ) = prFE, _1.Enc(prFE, _1.mpk, (SKE.sk,x/"1,x1)) = prFE,_y.ctir-1in

is pseudorandom for all j,_1 € [g,_1], ju € [gn]. Thus it suffices to show

auxy, {prFE; mpk},e (n—1] {fk/ skfk = prFE;. skfk}

kelqo]’
1,0 : i .
{SKE.ctf }ie[n—l],/{erEi—i-l'Sk]l}le[n 2, ,{erEn 1.Ctin—in }]n L€lgnil,
ji€lgi] ji€lail Jjn€lqn]
aux, {prFE;mpk}ici,_1, {sz skp = erEl.skfk}ke[qO] ,
Dl 1+

' {Vfi}ie[nq],/{erEerl skl }16[11 2, {5’” v }],, 1€[g1],
ji€lgil ji€lgil jn€lan]

where ’)/1:1 — CT skg, On-1in CT orfe,_,» and CT ske and CT g, , denotes the ciphertext space of the SKE
scheme and prFE,,_; scheme, respectively. Recursively invoking the security of prFE; fori =n —1,...,2, it suffices
to show the following:

1%, aux 4, prFE;.mpk, {fk, skp = erEl.skfk}ke[qO] ,

Dy 10 s o
’ SKECtJl ; —11, erE ct/rn
{ l }ZEI-[n l], { ! }jle[ql]/~~'/jn€[q;z}
ji€lail
1, aux 4, prFE;.mpk, {fk, skfk = erEl'Skfk}ke[qo] ,
n 1,1 ¢ . .
L CT Sl CT
o }li[n[q}]} { P }fle[ﬁﬂ/---rine[qn]
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Finally, applying the security of prFE; once again, we can see that it suffices to show the following:

Do : <1K,auxA, {fk, fk(xfl'l,...,x{;")}kh y ,{SKE.ct{f « SKE.Enc(SKE.sk,x{i)}ij.)

~
~c

Dy : <1’<, aua { fio AT {01y ol e O sk ) )

J1res]n LJi
Here, 1* appearing in the above distributions is introduced for compensating the blow up of the size of the adversary
caused by the multiple invocations of the prFE security— see Section 7 for details. To prove Equation (5), we first invoke

the security of SKE scheme to show the pseudorandomness of SKE ciphertexts. This erases the information of xg"

from SKE.ctzi. Next, we use the fact that the functionality supported by our scheme is pseudorandom to argue that the
function values fi(xJ,...,x);) are pseudorandom.

Subtleties in the proof. The high level overview presented above hides many important details, and indeed, as stated is
not secure. There are two important subtleties that arise when making the formal argument, and these are so significant
that they require us to strengthen the underlying evasive LWE assumption. Moreover, to the best of our understanding,
these issues also arise in prior work [VWW?22] and fixing them there also requires to strengthen the evasive LWE
assumption. Please see Section 7.3for details. We obtain the following theorem.

Theorem 2.5 (prMIFE for poly arity). Assume suitably parametrized private coin evasive LWE, non-uniform sub-
exponential PRF, and non-uniform sub-exponential LWE. Then there exists a prMIFE scheme for arity n = poly(A),
supporting functions with input length L and bounded polynomial depth d = d(A ), and satisfying security (Definition 7.2).

For constant arity, we can rely on a weaker variant of private coin evasive LWE , please see Section 7 for details.

2.3.1 Multi-Input Predicate Encryption.

Our construction can bootstrap a single-input PE scheme to a polynomial-input one generically by simply using an
prMIFE to generate PE ciphertext using randomness jointly chosen by the encryptors. The PE must have pseudorandom
ciphertext so as to be suitable for the compiler but this is a relatively mild property and readily satisfied by known
constructions [GVW 15b]. In more detail, our (simplified) construction works as follows.

— The setup generates a prMIFE instance (prMIFE.msk, prMIFE.mpk) and a single-input PE instance (PE.msk, PE.mpk).
It outputs msk = (prMIFE.msk, PE.msk) and mpk = (prMIFE.mpk, PE.mpk).

— The i-th slot encryption algorithm on input (msk, x;, #;) generates an i-th slot prMIFE ciphertext prMIFE.ct; <
prMIFE.Enc; (prMIFE.msk, (x;, p4;)). It outputs ct; = prMIFE.ct;

— The key generator on input msk and a function f generates a single-input PE functional secret key PE.sk o
PE.KeyGen(PE.msk, f). It also generates a prMIFE key, prMIFE.skg, for function F[PE.mpk] that, on input n
attribute-message pairs (X1, 1), - - ., (Xn, #n ), generates a single-input PE ciphertext w.r.t. attribute x = (x1,...,Xy)
and message p = (p1, ..., jin). It outputs sky = (PE.sk¢, prMIFE.skg).

— The decryption algorithm first runs the prMIFE decryption using prMIFE.skg and {ct; = prMIFE.cti}ie[n] to

compute the single-input PE ciphertext, PE.ct, encoding message u = (y1, ..., in) W.r.tattribute x = (x1,...,Xy).
Finally it performs PE decryption using PE.sky and PE.ct.

Correctness follow readily from those of the underlying building blocks. Intuitively, the security follows since the
decryption result obtained by each combination of the prMIFE ciphertexts forms a PE ciphertext, which is pseudorandom.
Therefore, we can invoke the security of the prMIFE to prove the security of multi-input PE. The actual construction
and proof are more complicated since we only assume x-IND security for prMIFE and for proving the security we need
the machinery of the Trojan method [ABSV15]. Please see Section 8 for details.
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24 prlO & Applications

We now use our multi-input FE to construct iO, a la [GGG™ 14] for the same functionality. We begin with the definition
of iO for pseudorandom functionalities, which we refer to as prlO. The syntax of prlO is as in regular iO, where we have
(i) an obfuscation algorithm which takes as input the security parameter A and a circuit C and outputs an obfuscated
circuit C, (ii) an evaluation algorithm takes as input an obfuscated circuit C and an input x. It outputs y = C(x). We
also require that the evaluation time of the obfuscated circuit be only polynomially slower than the run time of the circuit
Conx.

k-IND-Secure prlO. Our notion of security is specified as follows. For the security parameter A = A(A), let Samp
be a PPT algorithm that on input 1}, outputs

(Co,cl, aux € {0,1}*)

where Cy : {0,1}" — {0,1}" and C; : {0,1}" — {0, 1}" have the same description size. We then require that

1 (1%, {Col) haeqoprraux) = (15 {8x = (0,11} e o) aux)
and Cp(x) =Cy(x) Vxe{0,1}",
then (iO(l’\, CO),aux) R, (iO(l’\, Cl),aux)

where the parameter x above is introduced to adjust the strength of the requirement for the precondition, similarly to the
case of prMIFE. Roughly speaking, the above security definition says that the obfuscations of two circuits with the same
truth tables are indistinguishable, if the (entire) truth table is pseudorandom.

Our construction follows the blueprint of the multi-input FE to iO conversion by [GGG ™ 14]. Briefly, the obfuscation
of a circuit C : {0,1}" — {0,1}" using a (n + 1) input prMIFE scheme is

{prMIFE.sky;, prMIFE.ct; o, prMIFE.cty 1, ..., prMIFE.ct, o, prMIFE.ct,, 1, prMIFE.ct,, 41 c }

where prMIFE.sky; is the prMIFE functional key corresponding to the universal circuit U such that U(xy, ..., x,, C) =
C(x1,...,x4), prtMIFE.ct;, for i € [n],b € {0,1} denotes the i-th slot prMIFE ciphertext encoding bit b, and
prMIFE.ct; ;1 ¢ denotes the (1 + 1)-th slot prMIFE ciphertext encoding the circuit C. The evaluation algorithm on
input x = (x1,...,x,) runs prMIFE.Dec(prMIFE.sky, prMIFE.ct; v, ..., prMIFE.ct; x,, prMIFE.ct,, 11 c).

Correctness as well as security immediately follow from those of prMIFE. Roughly speaking, by the condition that
the truth table of the circuit is pseudorandom, we can invoke the security of the prMIFE to show the security. This leads
to the following theorem, shown in Section 9.

Theorem 2.6. Assuming x-IND-secure prMIFE, we have x-IND-secure prlO with the same x.

Instantiating the Random Oracle. In an elegant work [HSW 14], Hohenberger, Sahai and Waters posed the following
question: “Can we instantiate the random oracle with an actual family of hash functions for existing cryptographic
schemes in the random oracle model, such as Full Domain Hash signatures?” They then demonstrated that the
selective security of the full-domain hash (FDH) signature based on trapdoor permutations (TDP) [BR93], the adaptive
security of RSA FDH signatures [Cor00], the selective security of BLS signatures, and the adaptive security of BLS
signatures [BLS01] can be proven in the standard model by carefully instantiating the underlying hash function by iO for
each application.

We show in Section 10.1, that the random oracle in the FDH signature can be instantiated using prlO instead of
full-fledged iO. Similarly, we can instantiate the random oracle in selectively secure BLS signatures with prlO, following
a strategy similar to that in [HSW14]. At a high level, these proofs follow those in the random oracle model (ROM),
where we use iO to obfuscate a derandomized version of the simulator for the hash function in ROM-based proofs. In
these settings, the truth table of the simulated hash function is pseudorandom, allowing us to follow the same proof
strategy using prlO. Please see Section 10 for details.
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3 Preliminaries

In this section we define the notation and preliminaries used in our work.

Notation. We use bold letters to denote vectors and the notation [g, b] to denote the set of integers {k € N | a < k < b}.
We use [n] to denote the set [1, 1]. Concatenation is denoted by the symbol ||. We say a function f(n) is negligible if it is
O(n=¢) for all ¢ > 0, and we use negl(n) to denote a negligible function of n. We say f(n) is polynomial if it is O(n®)
for some constant ¢ > 0, and we use poly(#) to denote a polynomial function of n. We use the abbreviation PPT for
probabilistic polynomial-time. We say an event occurs with overwhelming probability if its probability is 1 — negl(n).
For two distributions X and Y, X, =~ Y, (resp., X ~; Y)) denotes that they are computationally indistinguishable
for any PPT algorithm (resp., statistically indistinguishable). We write X, = Y), when these distributions are the same.
Note that when we say two distributions are computational indistinguishable, this means that the two distributions
cannot be distinguished with non-negligible advantage in the input length of the adversary (rather than the security
parameter A), whose size is polynomial in its input length. For example, if the output length of the distributions is
subexponential in A, this means that the adversary is allowed to run in subexponential time and the advantage should be
subexponentially small. For a vector x, we let x; denote its i-th entry. For a set S, we let |S| denote the number of
elements in S. For a binary string x, we let |x| denote the length of x. For a vector x, we let x; denote its i-th entry. For
aset S, we let |S| denote the number of elements in S. For a binary string x, we let |x| denote the length of x.

3.1 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of our construction. Throughout this section,
n, m, and q are integers such that n = poly(A) and m > n[loggq]|. In the following, let SampZ(y) be a sampling
algorithm for the truncated discrete Gaussian distribution over Z with parameter y > 0 whose support is restricted to
z € Z such that |z| < /n7.

Let
g= (12208 G=1,0gT

be the gadget vector and the gadget matrix. Forp € Z7, we write G~ (p) for the m-bit vector (bits(p[1]), . . ., bits(p[n]))T,

where bits(p[i]) are m/n bits for each i € [n]. The notation extends column-wise to matrices and it holds that
GG (P)=P.

Trapdoors. Let us consider a matrix A € Z{*™. Forall V € ngm/, we let A~1(V) be an output distribution

of SampZ('y)mxml conditioned on A - A_l(V, v) = V. A «-trapdoor for A is a trapdoor that enables one to
sample from the distribution A~!(V, ) in time poly(n, m, m’,1ogq) for any V. We slightly overload notation and
denote a y-trapdoor for A by A 1. The following properties had been established in a long sequence of works
[GPV08, CHKP10, ABB10a, ABB10b, MP12, BLP™13].

Lemma 3.1 (Properties of Trapdoors). Lattice trapdoors exhibit the following properties.

1. Given AT 1 one can obtain A;,l for any v > T
2. Given A7!, one can obtain [A||B]7! and [B||A]; ! for any B.

3. There exists an efficient procedure TrapGen(1”,1™,4q) that outputs (A, A;Ol) where A € Zj*™ for some
m = O(nlogq) and is 2~ "-close to uniform, where Tp = w(+/nlogglogm).

Useful Lemmata.

Lemma 3.2 (tail and truncation of D, . ). There exists By € O(v/A) such that

Pr[x < Dyt |x[ > ')/BO(/\)} <27 forall v >1andA € N.
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Lemma 3.3 (Smudging Lemma [WWW22]). Let A be a security parameter. Take any a € Z where |a| < B. Suppose
v > BA“(). Then the statistical distance between the distributions {z : z < Dz} and {z+a:z < Dz} is
negl(A).

Lemma 3.4 (Leftover Hash Lemma). Fix some #,m,q € IN. The leftover hash lemma states that if m > 2nlogg,
then for A < ZJ*™, x < {0,1}" and y < ZJ the statistical distance between (A, A - x) and (A, y) is negligible.

More concretely, it is bounded by g v/ 21—

3.1.1 Hardness Assumptions

Assumption 3.5 (The LWE Assumption). Let n = n(A), m = m(A), and g = g(A) > 2 be integers and x = x(A) be a
distribution over Z,;. We say that the LWE(n, m, g, x) hardness assumption holds if for any PPT adversary .A we have

|Pr[A(A,sTA+eT) — 1] —Pr[A(A,vT) — 1]| < negl(A)

where the probability is taken over the choice of the random coins by the adversary A and A <+ Zg’xm, s Zg‘,
e+ x" andv «+ Zgﬁ We also say that LWE(n,m, g, x) problem is (non-uniformly and) subexponentially hard if

. .. o 3. . J

there exists some constant 0 < § < 1 such that the above distinguishing advantage is bounded by 2~ for for all
. L N

adversaries .4 whose running time (resp., size) is 2" .

As shown by previous works [Reg09, BLP™ 13], if we set x = SampZ(+y), the LWE(n,m, g, x) problem is as
hard as solving worst case lattice problems such as gapSVP and SIVP with approximation factor poly(#) - (q/y) for

some poly(n). Since the best known algorithms for 2k_approximation of gapSVP and SIVP run in time 20(n/k) it

follows that the above LWE(n,m, g, x) with noise-to-modulus ratio 27" s likely to be (subexponentially) hard for
some constant €.

Next, we define Evasive LWE assumption, with restricted samplers as described in [AMY Y25].

Assumption 3.6 (Evasive LWE). [Wee22, ARY Y23, AMYY25] Letn, m,t,m’,q € N be parameters and A be a security
parameter. Let x and x’ be parameters for Gaussian distributions. For Samp that outputs

Sc 231 xnpe ZZXt,aux € {0,1}"
on input 1* and for PPT adversaries .Ag and .A;, we define the following advantage functions:

AdVERE(A) ' Pr[Ag(B, SB +E, SP + E/, aux) = 1] — Pr[Ay(B, Cy, C’, aux) = 1] (©6)

AVEOST (1) € Pr[ A, (B, SB + E, K, aux) = 1] — Pr[4; (B, Co, K, aux) = 1] )

where
(S,P,aux) « Samp(1"),

B« zZ; ",
Co  Zm, ¢z,
E + D%’;m, E « D%;ﬁ
K + B~ !(P) with standard deviation O(y/mlog(q)).

We say that the evasive LWE (EvLWE) assumption with respect to the sampler class SC holds if for every PPT
Samp € SC and Aj, there exists another PPT 4 and a polynomial Q(-) such that

AdVIRE(A) > AdVEOST(1)/Q(A) — negl(A) and  Time(Ag) < Time(A7) - Q(A). 8)
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We conjecture that for reasonable class of samplers, the evasive LWE assumption holds. In particular, we conjecture
that our sampler SamperE(lA) used for the security proof of our prFE for natural class of functions should be in the
secure class of samplers SC for which the evasive LWE holds.

Remark 3.7. In the above definition, all the LWE error terms are chosen from the same distribution DZ,X' However,
in our security proof, we often consider the case where some of LWE error terms are chosen from Dz , and others
from Dz ,» with different x > x'. The evasive LWE assumption with such a mixed noise distribution is implied
by the evasive LWE assumption with all LWE error terms being chosen from Dz , as above definition, since if the
precondition is satisfied for the latter case, that for the former case is also satisfied. To see this, it suffices to observe that
we can convert the distribution from Dy ,/ into that from Dz , by adding extra Gaussian noise.

In the security proof, we may require the auxiliary information to include terms dependent on S. Furthermore, we
may want to prove the pseudorandomness of such auxiliary information. The following lemma from [ARY Y23] enables
this. In the lemma, we separate the auxiliary information into two parts aux; and auxp, where aux; is typically the
part dependent on S. The lemma roughly says that aux; is pseudorandom in the post condition distribution, if it is
pseudorandom in the precondition distribution.

Lemma 3.8 (Lemma 3.4 in [ARYY23]). Let n,m, t, m’, g € IN be parameters and A be a security parameter. Let x
and x’ be Gaussian parameters. Let Samp be a PPT algorithm that takes as input 1* and outputs

Se ZZ1/X",aux = (auxq,auxg) € S x {0,1}" and P € Z!

for some set S. Furthermore, we assume that there exists a public deterministic poly-time algorithm Reconstruct that
allows to derive P from auxp, i.e. P = Reconstruct(auxy).
We introduce the following advantage functions:

def

AdVERF (1) = Pr[A(B, SB +E, SP + E/, aux;, auxy) = 1] — Pr[A(B, Cy, C', ¢, auxp) = 1] )

AdVEOST (1) £ Pr[A(B, SB + E, K, auxy, auxy) = 1] — Pr[A(B, Co, K, ¢, auxp) = 1] (10)

where
(S,aux = (auxy, auxp),P) «+ Samp(lA),

B <z
Co« Z)"",C 2P e+ S
/ ! xt
E <« Dy <" E « Dl *
K + B~ 1(P) with standard deviation O(/mlog(q)).

Then, under the Evasive-LWE (cited above in Assumption 3.6) with respect to a sampler Samp € SC, for a sampler
class SC, if /—\dviRE/ (A) is negligible for any PPT adversary A, so is AdvI;lOST/ (A) for any PPT adversary .A.

3.1.2 GSW Homomorphic Encryption and Evaluation

We recall the format of the (leveled fully) homomorphic encryption due to [GSW13] and the correctness property. We
adapt the syntax from [HLL23].

Lemma 3.9. The leveled FHE scheme works as follows:

* The keys are
(public) Agpe = < Athe > € Z,Snﬂ)xm, (secret) sT = (87,—1),

STAfhe + e;‘rhe

where § € Z", Age € Zy*™, and el . ez"
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* Aciphertextof x € {0,1} is X = ApeR — xG € Zgnﬂ)xm, where R € Z"*™ is the encryption randomness.
The decryption equation is

sTX=—el R—xsTG € Z’q”,
which can be used to extract x via multiplication by G~1(|q/2] t,41), where 1,1 is the 1 4 1-th unit vector.
Lemma 3.10. (homomorphic evaluation for vector-valued functions [HLL23]) There is an efficient algorithm
MakeVEvalCkt(1",1",4,C) = VEvalc
that takes as input 7, 1, g and a vector-valued circuit C : {0, 1} — Z;X’“/ and outputs a circuit
VEvalc(Xy, ..., Xr) = C,
taking L ciphertexts as input and outputting a new ciphertext C of different format.
* The depth of VEvalc is d - O(log n log log q) + O(log? log ) for C of depth d.
* Suppose Xy = AmeR; — x[(]G for £ € [L] with x € {0,1}F, then

C = AmeRc — (%(Xx";/> € Zgnﬂ)xm,,

where | RE|| < (m +2)? [log q] maxc ) |R] |-
The new decryption equation is
sTC = —el Rc+C(x) € Z;X’”I.

3.1.3 Homomorphic Evaluation Procedures

In this section we describe the properties of the attribute encoding and its homomorphic evaluation. We adapt the syntax
from [HLL23].

* For L-bit input, the public parameter is Ayt € Zénﬂ) (L+Dym

* The encoding of x € {0,1}% is
sT(Aate — (1, xT) ® G) + ey,

where sT = (5T, —1) with 5§ € Z" and e],, € Z(L+Dm,
* There are efficient deterministic algorithms [BTVW17]

MEvalC(A,t,C) = Hc and MEvalCX(Aatt, C,x) = He

. . P L (n+1)xm’ L
that take as input A,tt, a matrix-valued circuit C : {0,1}* — Z; , and (for MEvalCX) some x € {0,1}",

and output some matrix in Z(L+Dm>m’,

— Suppose C is of depth d, then ||HT

T < (m+2)7 [logq].
— The matrix encoding homomorphism is (Aatt — (1,xT) ® G)Hex = AatHe — C(x).

Dual-Use Technique and Extension. In [BTVW17], the attribute encoded with secret sT is FHE ciphertexts under

key sT (the same, "dual-use") and the circuit being MEvalCX’ed is some HEvalc. This leads to automatic decryption.

(n+1)xm’
q

Let C be a vector-valued circuit, with codomain Z%X’”,, then VEvalc is Z -valued and

(8T (Aate — (1,bits(X)) ® G) + eft) - Hvevalc, x
= sTAatVEvalc — sTVEvalc(X) + (/)T (MEvalCX)
= sTAtVEvalc — C(x) + (e)T. (VEval decryption )
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3.2 Basic Cryptographic Primitives
3.2.1 Puncturable Pseudorandom Functions

Syntax. A puncturable pseudorandom function F : U x X — Y with key space /C, input space X’ and output space )
has the following syntax.

Setup(l)‘) — K. The setup algorithm takes as input the security parameter A and outputs a key K € K.

Puncture(K, x) — K{x}. The puncture algorithm takes as input a PRF key K € K and an input x € X, and outputs
a punctured key key K{x}.

Definition 3.11. (Correctness) A puncturable pseudorandom function scheme is said to be correct if for any K € /C,
x,x’ € X such that x # x’, we have

Pr[F(K{x},x") = F(K,x") | K{x} < Puncture(K,x)] = 1.

Definition 3.12. (Security) A puncturable pseudorandom function scheme is said to be (selectively) secure if the
advantage of a PPT adversary A in the following experiment is negligible.

1. A on input 1" outputs the challenge input x*.

2. The challenger samples a random key K <— /C and a bit B <— {0, 1}. Then, it computes y = F(K, x) if = 0,
else it sample iy <— ) uniformly at random. It also computes K{x*} <— Puncture(K, x*) and sends K{x*}, y to

3. A outputs a guess bit .
Awinsif p = .
A puncturable pseudorandom function with the security defined above exists from one-way functions [GGM84, BW 13,
BGI14, KPTZ13].
3.2.2 Symmetric Key Encryption with Pseudorandom Ciphertext

Syntax. A symmetric key encryption scheme for message space M = { M } Ae[N]- key space K={K\} re[N] and
ciphertext space CT sk = {C7T skg A }aen has the following syntax.

Setup(l)‘) — sk. The setup algorithm takes as input the security parameter A and outputs a secret key sk.

Enc(sk, m) — ct. The encryption algorithm takes as input the secret key sk and a message m € M and outputs a
ciphertext ct.

Dec(sk, ct) — m'. The decryption algorithm takes as input a secret key sk and a ciphertext ct and outputs a message
/
m e M,.

Definition 3.13. (Correctness) A SKE scheme is said to be correct if there exists a negligible function negl(+) such that
for all A € IN, for every message m € M, we have

sk < Setup(1%);
Pr|{ m'"=m: ct<« Enc(sk,m); | >1—negl(A),
m’ = Dec(sk, ct).

Definition 3.14. (Security) A SKE scheme is said to have pseudorandom ciphertext if there exists a negligible function
negl(-) such that for all A € IN, for every message m € M ,, we have

< negl(A),

sk ¢ Setup(1V); 1
Pr [ ‘B/ o ‘B ' ‘B/ V. AEnc(sk,-),Encﬁ(sk,~). )
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where the Enc(sk, -) oracle, on input a message m, returns Enc(sk, m) and EncP (sk, -) oracle, on input a message
m, returns ctg, where cty « Enc(sk,m) and ct; <— CTskga. We say that an SKE scheme has (non-uniform)

. o . . s

subexponential security if there exists a constant 0 < & < 1 such that the above advantage is at most 2~ for any
o Y .

adversary whose running time (resp., size) is 2" for sufficiently large A.

3.2.3 Blind Garbled Circuit
Here we provide the definition of a garbling scheme for circuit class C = {C : {0,1}%n — {0,1}ut}. A garbling

scheme for circuit class C consists of three algorithms (Garble, Eval, Sim) with the following syntax.

Garble(1%,1%n,1%ut, C) — (lab, C). The garbling algorithm takes as input the security parameter A, the input length
i, and output length £q, for circuit C, the description of the circuit C, and a random value st € {0, 1}A and
outputs the labels for input wire of the garbled circuit lab = {Iab]',b } jeltw]befo,1) Where each lab;, € {o,1}*

and the garbled circuit C.

Eval(l’\, C, laby) — y. The evaluation algorithm takes as input the garbled circuit C and labels corresponding to an
input x € {0, 1}, laby = {lab;y, }ie[s,,] Where x; denotes the i-th bit of x, and it outputs y € {0, 1} fout,

Sim (1/\, 11€1, 16n, y) is a PPT algorithm that takes as input the security parameter, the description length of C, an input
length /i, and a string y € {0, 1}£°“t, and outputs a simulated garbled circuit C and labels lab.
A garbling scheme satisfies the following properties.
Definition 3.15 (Correctness). A garbling scheme is said to be correct if for any circuit C € C and any input
x € {0,1}"n, the following holds
Pr {y = C(x) : (lab, C) + Garble(1*,16n, 1%u, C);y Eva|(C,|abx)] —1.

Definition 3.16 (Simulation Security). A garbling scheme is said to satisfy simulation security if for any circuit C € C
and any input x € {0,1}%n, the following holds

{(C,1aby) | (lab, €) < Garble(1%,1%n, 1eut, C)} m, {(C,1ab) | (C,lab) « Sim(1*,1/€1, 1% C(x))}

where lab = {lab;; } ¢, be (0,1} and labx = {lab; v, }ic (g, |-

Definition 3.17 (Blindness). [BLSV18] A garbling scheme (Garble, Eval, Sim) is called blind if the distribution
Sim(14,1/C1, 1%n, ) for y + {0, 1} e, representing the output of the simulator on a completely uniform output, is
indistinguishable from a completely uniform bit string. (Note that the distinguisher must not know the random output
value that was used for the simulation.)

Definition 3.18 (Decomposability). We note that the Garble(1%, 1in, 1 fout, C) algorithm can be decomposed, using
shared randomness st, as follows : (i) Garble; (1%, C;;st) for i € [|C£] where Garble; (1%, C;) outputs the garbling of
i-th gate of the circuit C (denoted by C;) and (ii) Garble;np(l/\, 1fin, 1 out; st) = lab which outputs 2 - #;, labels.

Note that information of a single gate C; of C can be represented by a binary string of length at most 4A for example,
since it suffices to encode its index, indices of its two incoming wires, and the truth table of the gate.

Theorem 3.19. [BLSV 18] Assume that one-way function exists. Then, there exists a blind garbled circuits scheme.

3.3 Attribute Based and Predicate Encryption
3.3.1 Attribute Based Encryption

We define both ciphertext policy attribute-based encryption (cpABE) and key policy attribute-based encryption (kpABE)
in a unified form below.

Let R = {R) : Ay x By — {0,1}} )N be a relation where A, and B, denote “ciphertext attribute" and “key
attribute” spaces. An attribute-based encryption (ABE) scheme for R and a message space M = { M } ¢ is defined
by the following PPT algorithms:
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Setup(1*) — (mpk, msk). The setup algorithm takes as input the unary representation of the security parameter A
and outputs a master public key mpk and a master secret key msk.

Enc(mpk, X, #) — ct. The encryption algorithm takes as input a master public key mpk, a ciphertext attribute X € A,,
and a message 4 € M. It outputs a ciphertext ct.

KeyGen(msk,Y) — sky. The key generation algorithm takes as input the master secret key msk and a key attribute
Y € B,. It outputs a private key sky.

Dec(mpk, sky, Y, ct, X) — u or L. The decryption algorithm takes as input the master public key mpk, a private key
sky, private key attribute Y’ € B,, a ciphertext ct and ciphertext attribute X € A,. It outputs the message y or L
which represents that the ciphertext is not in a valid form.

Definition 3.20 (Correctness). An ABE scheme for relation family R is correct if forall A € N, X € A,,Y € B,
such that R(X,Y) = 1, and for all messages y € M,

(mpk, msk) < Setup(1),
sky < KeyGen(msk,Y),
Pr i ct < Enc(mpk, X, p) : = negl(A)

Dec(mpk,sky, Y, ct, X) #u

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 3.21 (VerSel-IND security for ABE). For an ABE scheme ABE = {Setup, Enc, KeyGen, Dec} for a relation
family R = {R) : Ay x By — {0,1}} ¢ and a message space { M } e and an adversary A, let us define
Sel-IND security game as follows.

1. A outputs the challenge ciphertext attribute X* € A, and the key queries Y7, ..., Y.
2. Setup phase: On input 1%, the challenger samples (mpk, msk) < Setup(1) and gives mpk to A.

3. Challenge Query : At some point, A submits a pair of equal length messages (o, #1) € M2 to the challenger.
The challenger samples a random bit b < {0, 1} and replies to A with ct <— Enc(mpk, X*, up,). We require that
R(X*,Y;) = 0 holds for all i € [Q].

4. Output phase: A outputs a guess bit b’ as the output of the experiment.

We define the advantage Advversel IND(11) of A in the above game as
AdVEEENP (1) := [Pr[Expage, 4(1") = 1/b = 0] — Pr[Expae.4(11) = 1/b = 1] .

The ABE scheme ABE is said to satisfy VerSel-IND security (or simply very selective security) if for any stateful PPT

adversary A, there exists a negligible function negl(-) such that Ade%E’j'ND(l/\) = negl(A).

We can consider the following stronger version of the security where we require the ciphertext to be pseudorandom.

Definition 3.22 (VerSel-INDr security for ABE). We define VerSel-INDr security game similarly to VerSel-IND security
game except that the adversary A chooses single message u instead of (po, p11) at the challenge phase and the challenger
returns ct < Enc(mpk, X*, 1) if b = 0 and a random ciphertext ct <— C7 from a ciphertext space CT if b = 1.
Here, we assume that uniform sampling from the ciphertext space C7 is possible without any parameter other than
the security parameter A. We define the advantage AX%rEfX'NDr(lA) of the adversary A accordingly and say that the
scheme satisfies VerSel-INDr security if the quantity is negligible.
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In the following, we recall definitions of various ABEs by specifying the relation.
Ciphertext-policy Attribute Based encryption (cpABE). We define cpABE for circuit class {Cg( A),d( /\)} A by
specifying the relation. Here, C ¢(),d() 1s a set of circuits with binary output whose input length is £(A) and the depth
is at most d(A). Note that we do not pose any restriction on the size of the circuits. We define Aj\pABE = Cg( A),d(r) and
B/C\pABE = {0, 1}*. Furthermore, we define the relation RRPABE as RRpABE(C, x) = C(x).
Key-policy Attribute Based encryption (kpABE). To define kpABE for circuits, we simply swap key and ciphertext
attributes in cpABE for circuits. More formally, to define kpABE for circuits, we define A;‘)ABE = {0, 1}€ and
BKPABE = Cy(r)d(r)- We also define RKPABE : AKPABE X BKPABE — {0,1} as RipABE(x, C) = C(x).

The above relations also holds for circuit class {C ) }a which is the set of circuits with binary output whose input
length is £(A) and the depth is unbounded.

3.3.2 Predicate Encryption

In this section we define predicate encryption (PE) scheme. The syntax and correctness is same as that of the
ABE scheme in Section 3.3 except that we do not input the ciphertext attribute into the decryption algorithm, i.e
Dec(mpk, sky, Y,ct) — u or L. Weset Ay = {0,1} and By = Ce(r)d(r)- We also define Ry : APE x BYE —
{0,1} as R, (x,C) = C(x).

Here we define selective INDr security for a PE scheme.

Definition 3.23 (Selective INDr Security). A PE scheme is said to satisfy selective INDr security if there exists a
negligible function negl(-) such that for all A € IN, we have

X A(l/\);
(mpk, msk) ¢ Setup(1"); 1
Pr| B =B: (ust) <« AKeyGen(msk:)(mpk); —5| < negl(A),
ctg < Enc(mpk,x, ), cty < CT;
ﬁ . {0, 1}[ 'B/ — AKeyGen(msk,-) (St, Ct/g)

where CT is the ciphertext space of the scheme and the adversary A is admissible in the sense that for all key query f
made by A to the KeyGen(msk, -) oracle, it holds that f(x) = 0.

Theorem 3.24 ((GVW15a, GKW17, WZ17]). Assuming LWE, there exists predicate encryption schemes for (bounded
depth) circuits satisfying selective INDr security.
3.3.3 Multi-Input Predicate Encryption

In this section we define multi-input Predicate Encryption (mi-PE), adapting the syntax from [AY Y22]. Consider a

function family {Form = {f : (Xprm)" — {0,1}} } prm, for a parameter prm = prm(A), where each Fprm is a finite
collection of n-ary functions. Each function f € Fp,rm takes as input strings x1, ..., X, where each x; € Xy and
outputs f(xq,...,x,) € {0,1}.

Syntax. A mi-PE scheme miPE,, for n-ary function family Fprm consists of polynomial time algorithms (Setup, KeyGen,
Ency, ..., Ency,, Dec) defined as follows.

Setup(1%,1", prm) — (mpk, msk). The setup algorithm takes as input the security parameter A, the function arity 7
and a parameter prm and outputs a master public key mpk and master secret key msk.

KeyGen(msk, f) — sk . The key generation algorithm takes as input the master secret key msk and a function
fe Fprm and it outputs a functional secret key sk £

Enc;(msk, x;, 11;) — ct; for i € [n]. The encryption algorithm for the i*" slot takes as input a master secret key msk,
an attribute x; € Xprm, and message y; € {0,1}, and outputs a ciphertext ct;.
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Dec(mpk, sk £ focti ety cty) — {0,1}" U L. The decryption algorithm takes as input the master public key
mpk, secret key sk, function f and n ciphertexts cty, . .., ct, and outputs a string ¢’ € {0,1}" U L.

Next, we define correctness and security.

Correctness: Forevery A € IN, py, ..., un € {0,1}, x1,..., %y € Xorm, f € Fprm, it holds that if f(xq,...,x,) =
1, then

mpk, KeyGen(msk, f), f, - 4
Pr {Dec (Encl(msk,xl,yl),...,Encn(msk,xn,yn) = (1, )| =1 negl(A)

where the probability is over the choice of (mpk, msk) < Setup(1*,1", prm) and over the internal randomness of
KeyGen and Ency, ..., Ency.

Definition 3.25 (VerSel-IND-Security.). For a miPE scheme for function family {Fpm = {f : (Xpm)" —
{0,1}} } prm, parameter prm = prm(A), a stateful adversary A, we define the VerSel-IND-security game, Exp,ipg 45
as follows.

1. Query phase: On input 1%, 1", prm, A outputs the following in an arbitrary order.

(a) Key Queries: A issues polynomial number of key queries, say qo = go(A). For each key query k € [qo],
A chooses a function f; € Fprm.

(b) Ciphertext Queries: A issues polynomial number of ciphertext queries for each slot, say q; = g;(A) for
the i slot. We use (xffo, yéfo), (xffl, yf’l) to denote the j;-th ciphertext query corresponding to the i-th slot,
where j; € [g;] and i € [n].

2. Setup phase: On input 1*,1", prm,{ fi }ke[qo)- the challenger samples (mpk, msk) «— Setup(14,1", prm), a bit
B < {0,1} and does the following.

() It computes sks < KeyGen(msk, fi).

(b) It computes ct{f/5 + Enc;(msk, x{fﬁ, yilﬁ) fori € [n],j; € [q:]-

It returns (mpk, {Skfk }ke[qo]' {Ctgiﬁ}ie[”],]‘ie[ql‘] ) to A.
3. Output phase: A outputs a guess bit 5’ as the output of the experiment.

For the adversary to be admissible, we require that it holds that fk(lellrﬁ, ce, xﬁ,ﬁ) = 0foreveryi € [n],j; € [q],B €

{0,1}, and k € [go]. We define the advantage Adviﬁ'ﬁ'lz'\,'ﬂ of A in the security game as
AR (1Y) = |Pr [ Expripe 4 (1") = 118 = 0] — Pr[Expipe 4 (1) = 18 = 1] .

The miPE scheme is said to satisfy Sel-IND-security if for any stateful PPT adversary A, Advﬁﬁ',;'E'\,'B (1Y) = negl(A).

Due to space constraints, we proceed directly to the definition and construction of functional encryption for
pseudorandom functionalities. The remaining technical details and the full expansion of our constructions, as outlined
in the overview, are deferred to the full version of our work.

4 Functional Encryption for Pseudorandom Functionalities

4.1 Definition

In this section we give the definitions for functional encryption for pseudorandom functionalities. Consider a function
family {Fprm = {f : Xprm — Yprm } }prm for a parameter prm = prm(A). Each function f € Fpm takes as input a
string X € Xprm and outputs f(x) € Vorm.
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Syntax. A functional encryption scheme prFE for pseudorandom functionalities Fprm consists of four polynomial
time algorithms (Setup, KeyGen, Enc, Dec) defined as follows.

Setup(l)‘, prm) — (mpk, msk). The setup algorithm takes as input the security parameter A and a parameter prm
and outputs a master public key mpk and a master secret key msk?.

KeyGen(msk, f) — sk 7. The key generation algorithm takes as input the master secret key msk and a function
f € Fprm and it outputs a functional secret key sk .

Enc(mpk, x) — ct. The encryption algorithm takes as input the master public key mpk and an input x € Xprm and
outputs a ciphertext ct € C7, where CT is the ciphertext space.

Dec(mpk, sk o f ct) — y. The decryption algorithm takes as input the master public key mpk, secret key sk £, function
f and a ciphertext ct and outputs ¥ € Vprm.

Definition 4.1 (Correctness). A prFE scheme is said to satisfy perfect correctness if for all prm, any input x € Xprm
and function f € Fprm, we have

(mpk, msk) < Setup(1%, prm) , sk¢ < KeyGen(msk, f),
Dec(mpk, sk¢, f, Enc(mpk, x)) = f(x)

Pr

We define our security notions next. At a high level, our first notion says that so long as the output of the functionality is
pseudorandom, the ciphertext is pseudorandom. For notational brevity, we denote this by prCT security.

Definition 4.2 (prCT Security). For a prFE scheme for function family { Fprm = {f : Xprm — Yprm } } prm, parameter
prm = prm(A), let Samp be a PPT algorithm that on input 1%, outputs

(fl/' . .,kaey,Xl,. . .,mesg,aux S {0,1}*)

where Q\ey is the number of key queries, Qmsg is the number of message queries, and f; € Fprm, Xj € Xpm for all

i € [Qkeyl,j € [Qmsg]-

We define the following advantage functions:

AdVERE(A)E Pr [Ao ( aux, {fi, fi(xj)}ie[ley],je[Qmsg}) = 1]

=~ Pr|Ao( 2w, {fi Aij & Yo iciQujclQme) = 1]

def
Advi?ST(A): Pr [A1(mpk, aux, {fi, Enc(mpk, x;), sk }ic(Q. ] jc(Qms)) = 1}

— Pr [Al(mpk, aux, {fl, 5] — CT, Skfi}iG[ley],jG[Qmsg]) = 1}

where (f1,. .., fQur X1/ -/ XQpegraUx € {0,1}) <= Samp(1"), (mpk, msk) < Setup(1%,prm) and CT is the
ciphertext space. We say that a prFE scheme for function family Fprm satisfies prCT security with respect to the sampler
class SC if for every PPT sampler Samp € SC there exists a polynomial Q(-) such that for every PPT adversary Aj,
there exists another PPT A such that

ATRE(A) > ATDST(1)/Q(A) — negl(A) (11)

and Time(Ap) < Time(A;) - Q(A).

SWe assume w.1.o.g that msk includes mpk.
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‘We note that the above security definition is in the multi-challenge flavor. Unlike the standard security notions for
public key primitives (e.g., indistinguishability security for functional encryption [GGH " 16]), the single-challenge
does not imply the multi-challenge security, since the standard hybrid argument fails. It is shown in [AMY Y25] that
there is no prFE that satisfies prCT security in the multi-challenge setting for all general samplers. This impossibility
crucially relies on Qpsg being sufficiently large and does not apply to the single-challenge setting. We circumvent this
impossibility in two ways.

Remark 4.3 (Single-Challenge Definition). We can consider single-challenge version of the definition where we restrict
ourselves to the setting of Qmsg = 1. We argue that there is a huge gap between the multi-challenge security and
single-challenge security for PRFE, similarly to the case of FE with simulation-based security, where the multi-challenge
security is impossible[BSW 1], while the single-challenge security is not ruled out in the selective setting, to the best of
our knowledge. We conjecture that PRFE for general samplers may plausibly exist for the single-challenge case.

We also introduce an indistinguishability-based security definition. This definition is strictly weaker than standard
indistinguishability definition for FE [GGH ' 16], since we require the security to hold only for the case where all the
decryption results are pseudorandom. Since no impossibility result is known to apply to this definition, even for the
multi-challenge setting, it is also weaker than Definition 4.2.

Definition 4.4 (IND Security). For a prFE scheme for function family { Fprm = {f : Xprm — Vprm } } prm. parameter
prm = prm(A), let Samp be a PPT algorithm that on input 1%, outputs

(f1,-- .,kaey,x?,. . .,x%msg,x%,...,lemsg,aux € {0,1}%)

where ley is the number of key queries, Qmsg is the number of message queries, and fi € fprm, x? € Xprm for all

i € [Quey),J € [Qmsgl, b € {0,1}. We say that a prFE scheme for function family Fprm satisfies IND-pr-Security if
for every PPT sampler Samp, the following holds: If

(aux, {fi fi(x?)}ie[ley],je[Qmsg]) ~e (aux, {fi, Aij = Vorm bic[Qyey)i€Qmeg])

and
fi(x?) = fl(x]l) Vie [ley]rvj € [Qmsg]/

then we have

(mpk, aux, {f;, Enc(mpk,x})), skf. }ij) ~c (mpk, aux, {fi, Enc(mpk,x}), sk }ij)
where i € [Qeyl,j € [Qmsg],(fl,...,kaey,x?,...,x%msg,x},...,xémsg,aux) < Samp(1%), (mpk, msk)
Setup(1%, prm).

Definition 4.5 (Compactness). A prFE scheme is said to be compact if for any input message x € X, the running time
of the encryption algorithm is polynomial in the security parameter and the size of x. In particular, it does not depend
on the circuit description size or the output length of any function f supported by the scheme.

4.2 Construction

In this section, we provide our construction of a functional encryption scheme for pseudorandom functionalities
for function family 7y (1) (1)dep(r) = {f {0, 1} — {0,1}"}, where the depth of a function f € F is at most
dep(A) = poly(A). We denote the information of the parameters representing the supported class of the circuits by
prm = (]L(/\)’ 1£(A)/ 1dep(/\)).
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Ingredients. Our construction needs a pseudorandom function PRF : {0, 1}* x {0,1}* — [—q/4+ B,q/4 — B]'"*¢
that can be evaluated by a circuit of depth at most dep(A) = poly(A). Here B is chosen to be exponentially smaller
than g/4. We note that for our choice of B the statistical distance between the uniform distribution over [—q/4, q/4]
and [—q/4 + B,q/4 — B] is negligible.

Setup(1%, prm) — (mpk, msk). The setup algorithm parses prm = (1), 14(A) 1dep(A)) and does the following.
— Sample appropriate parameters g, 1, m, T, 0, 0g, B and M such that M divides g, as in Equation (12)°.

— Samples appropriate parameters as in Equation (12).

SetLx = m(A+L)(n+1) [logg]|,sample A, < ZgnH)X(LXH)m and (B,B7!) < TrapGen(1"+1,1"® gq),
where w € O(logq).

Output mpk := (A, B, M) and msk := B 1.

KeyGen(msk, f) — sk . The key generation algorithm parses msk = B 1 and does the following.

— Sample r < {0,1}* and define function F = F[f, r] with f, r hardwired as follows’:
On input (x, sd), compute and output f(x) |g/2] + PRF(sd, ) € Z%XZ.

— Parse F[f,1](x,5d) = M+ fuigh(x,5d) + fiow(X,sd), Where fiign(x,sd) € [0,q/M]’ and fiow(x,sd) €
[0, M — 1)*.Using the fact that the PRF and f(x) can be computed by a circuit of depth at most dep(A) =
poly(A), the function F[f, r] can be computed by a circuit of depth at most d = poly(dep).

— Define functions Fhigh := M - fhigh and Fio,, := M - fioy, Which on input (x,sd) outputs M - fpigh (X, sd)
and M - fiow(x, sd), respectively. We note that these functions can be computed by a circuit of depth at most
d = poly(dep).

— Define VEvalyigh = MakeVEvalCkt(n,m,q, Fpigh) and VEvali,,, = MakeVEvalCkt(n, 11, q, Fi, ). From
Lemma 3.10, the depth of VEvalygh and VEvalyo,, is bounded by (dO(logmloglogq) + O(log?logq)).

— Compute Hy"" = MEvalC(Aqtt, VEvalhign), Hi = MEvalC(Aag, VEvaligy) € ZJ )™

Phigh F
— Compute Apjgh = Aatt - HA;i and Ajoy = Aare - Hy.

— Compute
Ap=M- \‘Ahith + \‘AIOWJ

M M
and sample K < B71(Ap).
— Output skf = (K, r).
Enc(mpk,x) — ct. The encryption parse mpk = (Aatt, B, M) algorithm does the following.

— Sample 5 <~ D7, andsets = (87, —1)T.

s
— Sample eg < D% and compute cf =sTB+efl.

— Sample sd + {0,1}", Ape < Zy ", eme < Dy, R < {0,1}*m(A+L) and compute a GSW
encryption as follows.

Athe = (- A T > , X=ApR—(xsd)®G € Z,g"+1)xm(’\+L).

LetLx = m(A +L)(n+1) [logq] be the bit length of X.

6We assume these parameters to be part of the mpk.
"The circuit representation of the function F is the universal circuit with F hardwired.
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— Compute a BGG™ encoding as follows.

€,tt < D%§+1)m, C;rtt =T (Aatt — bitS(l, X) & G) + e;rtt‘

— Output ct = (g, Catt, X).

Dec(mpk, sk s f,ct) — y. The decryption algorithm does the following.

Parse mpk = (Aatt, B, M), sk = (K,r) and ct = (cp, Catt, X).

— Compute Hih:thx = MEvalCX(A,tt, VEvalpigh, X) and Hi‘::”t x = MEvalCX(Att, VEvalioy, X) for circuits
VEvalpigh and VEvalje,, as defined in KeyGen algorithm.

— Compute
Fhi F
T .| hieh T . 1gFiow
z=cIl. K- | M- Catt HAatt/X + Catt HAatt/X
B M M

Fori € [¢],sety; = 0if z; € [—q/4,q/4) and y; = 1 otherwise, where z; is the i-th coordinate of z.
Outputy = (y1,...,Y¢).

Parameters. We set our parameters as follows.
p = 20(deplogd) "y 2120g Af — 242 B ;1 — poly(A,dep), m = O(nlogq), B =2'"p,

=0 ( (n+1) logq) vs =0 =22, o5 =28, ¢ =250 /poly(A). (12)

Efficiency. Using the above set parameters, we have
Impk| =L - poly(dep,A), [ske| = £-poly(dep,A), |ct| =L poly(dep,A).
Correctness We analyze the correctness of our scheme below.
— First, we note that
el HZ = (5T(Aate — bits(1,X) ® G) + el JHy™®"

Fhigh . Fhigh
= STAattHAai - STVEVthlgh(b|ts(X)) + e;-ttHAaft,X

F .
. T T high
= ST Ahigh — Fhigh (X, sd) + ef Rpigh + e H, 'y
Fhi Fi
T high T T high
Catt HAatt/X B STAhigh -M- fhigh (X, Sd) + efheRhigh + eattHAatt,X
M M
sTApioh + el Rpgp + el H' e
high fhe ™ high att™ A 1, X

= M *fhigh(x/Sd) (13)

where VEvalhigh (bits(X)) = AheRhigh — (Fh' (:1”&55(1)). Using Lemma 3.10, we have
g 7

|RE|| < (0 +2)7 [log g1 - m = (m +2)" [1ogq] - 3(n + 1) [logq]
< (m+2)"0(logq) < p.
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and using the depth bound from Section 3.1.3,

[ (1)) < 2= o] < 24005 <

where dVEV3|h| denotes the depth of the circuit VEvaly,igh. So we have
HefheRhlgh + eattHFh"ih ) < 221 \f,B < 23}8 < M. Using this in Equation (13),

F.:
T . high
Catt HAatt/X - {STAhigh

i i J — fnigh(x,d) + errpigh

Ahigh
=sT { ZVIIg J + €] pigh — fhign (X, sd) +errfy (14)

2

and 0 otherwise, and ||espigh|| < (14 1) - ||s[|. To see the latter, we use the fact that [sTX] —sT[X]| =
Ay A
[sTX —sT[X]] = [sT(X — [X])], where X — | X] < 1.Soe] .. = {sT (% - {%DJ and ||eg pigh || <

. . T
Il (e = | %)) | < (e Dl
Using a similar analysis as to obtain Equation (14), we get

T Fiow
Catt HAa X A,
T =T | o flow(xsd) e, (1s)

Fi
where errhlgh € {0,1}Y, is the roundmg error which is 1 if H ST Anigh)T + e} Rhigh + €l H," ihx

where err] € {0,1}" and ||egjow|| < (1 +1) - ||s||. Using Equation (14) and Equation (15), we get

I:hlgh FIow

+
T
Catt - Aattr \\ att Aattr J

5]

M J) (M - frigh(x,5d) + fiow(x,sd)) + err

A A
=sT ( { ]IQ/IIth + ]{ZWJ> f,1](x,sd) +err (16)
where
err=M- es high T eS low T M - €Mhigh + erfioy

A Ay
=M- (ST L;\]/'Ith - LST ;\];Ith) + (ST {AAZWJ - LSTA]{ZWJ> + M- errpigh +erron  (17)

where errpigh, erfiow € {0, 1}‘Z are rounding errors and matrices Apigh, Ao are publicly computable matrices and

llerr] <M - ((n+1) - [Isl| + 1) + (n+1) - [Is]| + 1 <2M - ((n +1) - [[s]| + 1)
=24 (n+1) 22 11V2) <27p

Next, we note that

Anigh Ajow
cE-K:sT<M-{MgJ+{AZJ>+c]T3-K. (18)

where H (c]T3 -K)T H < 2”‘[%\5 - T from our parameter setting.
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— Using Equations (16) and (18), we get

Fpi F
T . high T . low
gl K- || S Panex || Can Hadix
B M M

=F[f,r](x,sd) + e} - K—err
= f(x) [q/2] +PRF(sd,r) +ef - K —err

where

|PRF(sd, 1) + ef, - K — err|| < |PRF(sd,r)|| + 2 BVA - T +27*B
< |IPRF(sd, r)|| +2°**18VA - T < q/4— B+ B < q/4

Hence the last step of decryption outputs y correctly with probability 1.

4.3 Security Proof for Pseudorandom Functionalities

Theorem 4.6. Let SC,,rg be a sampler class for prFE. Assuming LWE (Assumption 3.5) and private coin Evasive LWE

(Assumption 3.6) with respect to the sampler class that contains all Sampevs(l’\) induced by SamperE € SCprFE as
defined in Figure 1, our prFE scheme satisfies prCT security with respect to SCrg as defined in Definition 4.2.

Proof. Consider a sampler SamperE that generates the following:
1. Key Queries. It issues Qye, number of functions f1, ..., kaey for key queries.
2. Ciphertext Queries. It issues Qmsg ciphertext queries X1, ..., XQ, .-
3. Auxiliary Information. It outputs the auxiliary information aux 4.

To prove the prCT security as per Definition 4.2, we show

mpk = (Aa, B, M), auxy, Cp = SB+ Eg, mpk = (Aat, B, M), aux4, Cp < Zqungmwl
{x] - AfhE,]R] (X]I Sd]) & G}]E[QmSg]’ ~ {X] A Zgn pant )}jE[QmSg]’
T .= TA 7bt 1,X G T" 7 e L 1
{catt’] S (Aate — bits( ]) ® )T{Iiatt,]};e[Qmsg] {Catt,j — Zt(y Xt )m}jE[Qmsg]'
ks Yk

ke[ley] {Kk’ rk}ke[ley]

(19)
where T T
s €B,1
S - : 7 EB - : 4
T T
SQmsg eB/QmSg

(aux 4, { fit ke Orey)r 1%} jelOmeg)) < SaMP e (1Y)

andforj € [Qmsg], Sj, B, j, Afhe s R}, 5d;, €4y j are sampled as in the construction, fork € [Qyey |, we have ry < {0, 1},
Fy = F[f;, ;] and Ap, is as defined in the construction, and Ky = B71(Ap,)

assuming we have

(1%, auxa, {for fi(x)) e Qmghkelu)) X (1Y auxa, {fir Bk < {01} Yicionalhelow)): 20
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Sampevs(lA)

The sampler does the following.

— Runs the prFE sampler Samp , rg to obtain ({f¢} ke, {Xj}jc[Qne]s 2UXA) Where fi {0,1}F — {0,1}, Xj €
{0,1}" and aux 4 € {0,1}*.

— Set appropriate parameters as in Equation (12)“.

— Samples sd; < {0,1}*, Atnej < ZJ"™, efhej < Dy Rj {0,1}*m(A+L) and computes Xj = A jRj —

/j
(xj,5d;) @ G for j € [Qmsg] Where Age i = L vV j € [QOmsg]
jr Sd; ] msg fhe,j = gTAfhe,j ¥ e;'rhe,j ] msg]-

— Samples 3; <~ Dy, €qtrj ¢ D%;H)m

eltt,j Vj € [Qmsgl-

,sets s = (sz, —1)T and computes ¢!

T = sz(Aatt — bits(1,X;) ® G) +

— Samples 1y < {0,1}*, defines F[f, 1;] and computes Ag,, for k € [Qkey), as in the key generation algorithm.

— It outputs
s
S = , PZ[AFlﬂ‘--HAFley]
T
$ Qg

auxy = ({X = Afhe,jRj — (X]', Sd]) 24 G}fE[Qmsg]’ {Cltt,j = S}—(Aatt — bits(l, X]) ® G) + eltt,j}jE[Qmsg]) ;

auxy = (f1,... ,kaey, aux.4,r, ... /I'ley/Aatt/ M).

“We assume the parameters to be output as a part of auxy, even though we do not explicitly write so.

Figure 1: Description of the Sampler for Evasive LWE

We invoke evasive LWE assumption for a matrix B with the private coin sampler Samp,,, that outputs (S, P, aux =

(auxy, auxp)) with private coin coinsificqpe"s = {sd;, R}, e, Afhe,j}je[Qmsg]’ defined as follows.
By Lemma 3.8, to prove Equation (19) assuming evasive LWE, it suffices to show

Qmsg XmMw
auxy, B, Cg =SB+ Eg, auxp, B, Cg + Zq € ,
R R — (x: <d. . ) (n+1)xm(A+L)
{X] = Afhe,]R] (le Sd]) & G}]G[Qmsg}l N {X] — Zl] }je[Qmsg]’ o
T — T : . T ) ~c
{Catt,j = Sj (Aatt - bItS(L X]) ® G) + eatt,j}]E[Qmsg]’ {Catt,j “ Z{(]Lx-ﬁ-l)m}je[Qmsg],
CI’ = SP + EP CP - Zqungg.ley
where Ep < D%:‘;lgxz'ley. Using the representation
c]Ts,1 =s/B+ e]T,,’l
CB = . . . = {Cir;,j}je[Qmsg]’
CB/Qmsg = SQmsgB + eB/Qmsg
cp1 =S{AF, tep ... ||slTApley + eIT’,l,ley
_ . T
Cr= : - {CP,j,k} J€[Qmsg] k€[ Qukey]”
T _ T T T T
CPszsg - SQmsglAF1 + ePersgxl || e Ilstsg AFley + eP/Qmsg,ley
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we rewrite Equation (21) as follows.

. mw .
auxp, B, {CEJ = s]TB + elg,j}jE[Qmsg]/ auxz, B, ECB;]) <—qu) }]e[Qmsg]'
n+1)xm(A+
{Xj = Ane /Rj — (xj,5d)) © Glicign) | | {Xj < Zy Y€ [Qmeg) o)
. ~c
{C;Tatt,j = S]'T(Aatt — bits(1,X;) ® G) + eltt,j}je[QmSg}/ {cattj ZngH)m}je[Qmsg],
T T T .
{CP,j,k - Sj AFk + eP,j,k}]E[Qmsg}rke[ley] {CP,]’,k — Zs}je[Qmsg],ke[ley]

where ep ;. < D[ZU . Now, to prove Equation (19) it suffices to show Equation (22).
We prove Equation (22) via the following sequence of hybrids.

Hybg. This is L.H.S distribution of Equation (22).

Hyb;. This hybrid is same as Hyb, except we compute CIT, ik s

T gyFhighk o Fiow,k
att,j Aatt,X]- att,j Aatt,Xj

M M

C
T = M-
Cpik =

+ fi(xj) [4/2] + PRF(sdj, 1) + e

where ep ;. < ’D[ZU]. We claim that Hyb, and Hyb, are statistically indistinguishable. To see this, we observe
the following.

— From Equation (16) we note that

CT . l::high,k CT . l::Iow,k
att,j Aattlxj att,j Aatt,X]-

M M

Anigh k Ajow k
- s].T <M { M + M +errj; + eIT’,j,k

_ T ) T
= s]. AFk + err;k + eP,j’k

M- + fi(x) [9/2] + PRF(sd;, 1) +ep

where Herr]-,kH <272,
— Next, we note that HerrjrkH < 280 /poly(A) = x1 = Hep’j’kH. Thus by noise flooding (Lemma 3.3)
we have elT,’].,k A5 errg + elT,’].,k with a statistical distance of poly(A)2~.
From the above, we have
A(Hyby, Hyby) = v Qm;i' Pl (),

Thus, it suffices to show pseudorandomness of the following distribution given auxp

T _—gT I
B, {CB,j = Sj B+ eB,j}je[Qmsg]
{X/ = Afhe,jRj — (Xj/ Sd]) ® G}jE[Qmsg]’
_ {C;rtt,j = SjT (Aate — bits(1,X;) ® G) + eaTttr]'}fE[Qmsg]'
(Fiic = i) 19721 + PRE(S50) + €131l

Hyb,. This hybrid is same as Hyb; except that for all j € [Qmsg] We sample Cpj < Zg”w, Catt,j < ZéLXH)m and

Afhej < Z,gnﬂ) “™ where Afhe,j is the the public key used to compute X;. We have Hyb; ~ Hyb, using LWE.

To prove this we consider sub-hybrids Hyb ; for i € [Qmsg|, where in Hyb; ; we sample CBj < Z;”w, Catt,j <

Z{ ™ and Agej + Z " for 1 < j < i We set Hyby = Hyby o and Hyb, = Hyb; o . Next, we
prove that for all i € [Qmsg], Hyby; 1 ~¢ Hyby; via the following claim.
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Claim 4.7. Hyby ;_1 ~¢ Hyby ;, for i € [Qmsg], assuming the security of LWE.

Proof. We show that if there exists an adversary A who can distinguish between the two hybrids with non-
negligible advantage, then there is a reduction B that breaks LWE security with non-negligible advantage. The
reduction is as follows.

1. The adversary A sends the function queries f1, ..., kaey, message queries X1, ...,XQ, ., and auxiliary
input aux 4 to the reduction.

nxmw—+m+(Lx+1)m

2. Binitiates the LWE security game with the LWE challenger. The challenger sends Ajwe € Z,

andb € Z?WMHLXHW to B.

3. B parses Aue = (B, Apes Aby). where B' € ZJ", Age € Z°", ALy € Z) " ang
bT = (bg, bf,, bl). Forj € [Qmsg], it computes ¢ ;, Catt,j and Agye,; as follows.

 For1 <j <i: Bsamples cp; Z[]”w, Catt,j ZgLXH)m and Afgej < Z

* For j = i: B does the following.

(n+1)xm
q .

/

— Samples b - Zj"” and sets B = (B

bT> and ¢ ;== bf —bT.

A . .
— Sets Age; = ( fhe) and computes X; = Age iR; — (x;,5d;) ® G as in the construction.

b;rhe
. . = A Lx+1
— Sets Aae = ALy, + bits(1,X;) © G, Aayx = <aftttt>, where a,, < ZyX " and o, =
bl — (al; — bits(1,X;) ® G), where G and G denotes the first 72 rows and 7 + 1-th row of the
gadget matrix G € Zénﬂ) m respectively.

e For j > i: B computes CTB i X; and ¢! . as in the construction, where C:tt j is computed using

att,j
Aatt
Aatt = ( T .
Aatt

4. B sets auxy = (f1,... ,kaey,auxA, ST 10\, Aatt, M) where 1 + {0,1}* and computes Fj,k as in
Hyb;. It sends (auxy, {cg ]-,Xj, el j/Fj,k}) to the adversary.

5. A outputs a bit f’. B forwards the bit f’ to the LWE challenger.

We note that if the LWE challenger sent b = §Awg + eywe, then B simulated Hyb; ;_; with A else if LWE

challenger sent random b <+ Z?ermHLXH)m then 3 simulated Hyb ; with A.

To see the former case, we note that if b = 5Auwe + elwe = 5(B/, Ame, Aly) + (e}, e, el.), then
bg = 5B’ + e, bae = 5Ame + €], and byt := SAL, + el,;. Thus we have

< B’ Ag, _ A .
cg; = (3,1 (bT) +el, Aphei = (ﬁAfhe fefTh) , Qi =(5,-1) ((aTatt) — bits(1,X;) ® G) +el,

Latt

To see the latter case, we note that if b < ZZ”HmHLXH)m then it implies bg + Z;”w, bhe Zq’", baw —
Z,SLXH)m. This implies the following.
— Randomness of by implies the randomness of ¢f, ; :== bl —bT.
. . (n+1)xm
— Randomness of b, implies Ay < Zg .

— Randomness of b, implies randomness of ¢, = bl — (al; — bits(1,X;) ® G).
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Hyb3.

Hyb4.

Hyb5.

Hyb6.

Hyb7.

Thus, it suffices to show pseudorandomness of the following distribution given auxp
B, {epj  Z§"}jcQneglr 1Xj = Atme,Rj = (Xj:5dj) @ Gljc|Qpeg)-

Lx+1)m

{Catt,j — Zt(] }jE[ngg]’ {F',k = fk(xj) M/z] + PRF(Sd]’ I'k) + e;,j,k}]'e[Qmsg]/ke[ley].

where Afhe’]' — Zgn+l)><m.

This hybrid is same as Hyb, except that for j € [Qmsg] we sample X; < Zgnﬂ)xm(/\ﬂ“). We have
Hyb, =5 Hybs using leftover hash lemma. By leftover hash lemma (Lemma 3.4) we have that the statistical
distance between A, ;R; and a uniform matrix U « Z,SHH) m(AHL) g m(A +L)/2". This implies that the

statistical distance between Xj = A, R; — (xj,5d;) ® G and X; Zgnﬂ)xm()\ﬂ“) ism(A+L)/2" and we

have

Qmsg - m(A+L) < Omsg - poly(A)
2n - 27 '
Thus, it suffices to show pseudorandomness of the following distribution given auxp

A(Hyby, Hybs) <

+1)xm(A+L Lx+1)m
B, {CB,j « Z[rinw, Xj - Zg” ) xm( )rcatt,j « Z{(q x+1) }]'E[Qmsg]’

{Fjx = fe(x}) [a/2] + PRF(sdj, 1) + €f ;1 }ic Qumeg) k€ [Quey )

This hybrid is the same as the previous one except that we replace PRF (sd i) -) with the real random function

R/(-) for each j € [gmsg]. Since sd; is not used anywhere else, we can use the security of PRF to conclude that
this hybrid is computationally indistinguishable from the previous one.

This hybrid is same as the previous one except that we output a failure symbol if the set {1} k€ [Qrey ] in auxp,
contains a collision. We prove that the probability with which there occurs a collision is negligible in A. To
prove this it suffices to show that there is no k, k" € [Qyey] such that k # k' and ry = rjs. The probability of this
happening can be bounded by Qﬁey /2" by taking the union bound with respect to all the combinations of k, k.
Thus the probability of outputting the failure symbol is Qﬁey /2 which is negl(A).

In this hybrid we compute Fj,k as
i:‘]}k = fk(xj) Lq/ﬂ + R]',k + eIT’,j,k

forall j € [Qmsg), k € [Qxey|- Namely, we use fresh randomness R < [—q/4+ B,q/4 — B]'** instead of
deriving the randomness by R/ (r). We claim that this change is only conceptual. To see this, we observe that
unless the failure condition introduced in Hybs is satisfied, every invocation of the function R/ is with respect to a
fresh input and thus the output can be replaced with a fresh randomness.

Thus, it suffices to show pseudorandomness of the following distribution given auxp

1 A+L Lx+1
B, {CB,j (_nglxj - Zgn+ Yxm(A+ )rcatt,j <_Zz(7 X+ >m}je[Qmsg]’
{Fj,k = fk(x]) Lq/2-| + R/,k + eir’,j,k}je[Qmsg]rke[ley]'

This hybrid is same as the previous one except we sample R; . < (—q/4,q9/ 4}1X£ . We note that Hyb, ~; Hybs.
To see this note that the statistical distance between the uniform distributions U; = [—q/4 + B,q/4 — B] and
Uy =[—q/4,q/4] is

2 2
—-Zl<
q—4B  q|~

4B _ poly(A)
g vt A
g~ 2!

1
A(U], Uz) - E ‘
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by our parameter setting. Therefore,

ley : Qmsg : POIY(/\)
24 '

A(Hyb,, Hybs) <

Hybg. This hybrid is same as the previous one except we sample Fj,k — Zg. This follows from the pseudorandomness
of { fx(xj) }; k- To see this note that we have
A ~ A 14
(1%, auxa, {fir fi(X)} je(QmeglkeQuey]) e (17 auxa, {fir Ajse <= {0, 1} } e (0negl ke [Quey])
which implies
A -
(1%, auxa, {fir Fix = fi(xj) [4/2] + Rjk + €5 ;1 }je(Qmogl k€ (Quey]) (23)

. ¢
~e (11, auxa, {fir Bk = Zg}jei0megkelOney])

where R;; < [—q/4, q/4]"¢ and epk < DY, o
Thus, using Equation (23) and noting that adding random strings does not make the task of distinguishing the two
distributions any easier, we achieve the following distribution

+1 A+L Lx+1
auxa, B, {ep; ¢ 2, X; < 2y e o 2P0 )

~ )
{ijk — Z[] }je[Qmsg}rke [ley]'

which is the R.H.S distribution of Equation (22), hence the proof.

S KP-ABE for unbounded depth circuits using prFE

In this section, we provide a construction of kpABE for unbounded depth circuits.

5.1 Preparations
Here we define attribute based laconic function evaluation scheme and its properties.
Syntax. An attribute based laconic function evaluation (AB-LFE) scheme for a circuit class {Cprm = {C :

Xorm — {0,1}}}prm for a parameter prm = prm(A) and a message space M consists of four algorithms
(crsGen, Compress, Enc, Dec) defined as follows.

crsGen(l/\, prm) — crs. The generation algorithm takes as input the security parameter 1" and circuit parameters
prm and outputs a uniformly sampled common reference string crs.

Compress(crs, C) — digest. The compress algorithm takes as input the common random string crs and a circuit
C € C and outputs a digest digest.

Enc(crs, digest, (x, #)) — ct. The encryption algorithm takes as input the common random string crs, a digest digest,
an attribute x € Xprm and a message 4 € M and outputs a ciphertext ct.

Dec(crs, C,ct) — p/ L. The decryption algorithm takes as input the common random string crs, a circuit C, digest
and a ciphertext ct and outputs a message # € M or L.
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Definition 5.1 (Correctness). An AB-LFE scheme for circuit family Cprm is correct if for all prm, C € Cprm, X € Xprm
such that C(x) = 1, and for all messages y € M,

crs + crsGen (14, prm),
digest = Compress(crs, C),
ct <— Enc(crs, digest, (x, i) :
Dec(crs, C, ct) # u

Pr = negl(A)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 5.2 (Pseudorandom Ciphertext Security). For a AB-LFE scheme and an adversary A, we define the

experiment for security Expt?ﬁ{"FE(l/\) as follows.

1. Run A to receive circuit parameters prm. Run crs < crsGen(1*, prm) and send crs to A.

2. Achooses C € Cprm, X € Xprm and y € M. Run digest = Compress(crs, C), sample f <— {0,1}. If B = 0, it
computes cty < Enc(crs, digest, (x, i) else if 8 = 1, it computes ct; <— CT ag-Lre, Where CT ag-LFE is the
ciphertext space of AB-LFE. It sends digest, ctg to A.

3. A outputs a guess bit §’ as the output of the experiment.

We define the advantage AdvﬁB'LFE(/\) of A in the above game as

AdvABLFE()) = ’Pr[Exptéi’LFE(l)‘) = 1} - Pr[Exptﬁi-LFE(1A) - 1} ‘ .

We say that a AB-LFE scheme is adaptive pseudorandom ciphertext secure if for every admissible PPT adversary A,
we have Adv/4BLFE(1) < negl(A), where A is said to be admissible if C(x) = 0.

The selective (resp. very selective) notion of the security requires the adversary A to choose x (resp. x, C) along with
prm before it receives crs.

Definition 5.3 (Decomposability). We say that a AB-LFE scheme for a circuit class {Corm = {C : Xprm —
{0,1}} } prm satisfies decomposability if for any crs < crsGen (1%, prm) and digest <~ Compress(crs, C), we have
digest = {digest; };c|, ] for some polynomial qc, which may depend on C, and size(digest;) < poly(A). Further-
more, we have that Enc(crs, digest, (x, 1)) = {Enc;(crs, digest;, (x, 1)) }ic[q] Where size of the encryption circuit
size(Enci(-,-, (-,+))) < poly (A, [x|).

Remark 5.4. Here, we do not require the digest to be much smaller than the circuit description C, unlike the usual
convention in the context of AB-LFE. This relaxation allows us to instantiate AB-LFE using blind garbled circuits,
which do not have compact digests.

5.2 Construction of kpABE with Unbounded Depth
Building Blocks. We require the following building blocks for our construction.

1. An attribute-based laconic function evaluation scheme AB-LFE = AB-LFE.(crsGen, Compress, Enc, Dec) for
circuit class Cg( A)> consisting of circuits with input length £ (A) and with unbounded depth and size. We let
CT aB-LrE denote the ciphertext space of the scheme. We assume that the AB-LFE scheme is decomposable
(Definition 5.3), i.e., we have AB-LFE.Enc = {/—\B-LFE.Enci}iG[qC] for some g and use dag-LrE to denote the
maximum depth of a circuit required to compute {AB—LFE.Enci}ie[q c]- We assume that the output length of

AB-LFE.Enc; does not depend on i and denote its length by /AB-LFE,

2. A FE scheme for pseudorandom functionality prFE = (prFE.Setup, prFE.KeyGen, prFE.Enc, prFE.Dec) for
circuit class C; A)ilorre (A), (ABLFE consisting of circuits with input length L(#, A), maximum depth dp.rg(A) and

output length /AB-LFE 'We denote by prm the parameters (1L(A), 14ere(A) 1£éB_LFE) that specifies the function

class being supported. We also denote the ciphertext space of the scheme by C7 rE.
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3. A PRF function PRF : {0,1}* x {0,1}* — {0,1}Ren where Ry, is the length of randomness used in
AB-LFE.Enc. We assume that PRF can be computed by a circuit of depth at most d,rg.

4. A secret key encryption scheme SKE = (SKE.Setup, SKE.Enc, SKE.Dec) with the message space being

{0, 1}écAtB_LFE. We denote the ciphertext space of the scheme by C7T sk and the key space of the scheme by KskE.
We assume that SKE has pseudorandom ciphertext as per Definition 3.14.

We assume that uniform sampling from C7T skg are possible without any parameter other than the security parameter.

Now, we describe our compiler for constructing a key-policy ABE scheme kpABE = (Setup, KeyGen, Enc, Dec) for
circuits of unbounded depth with attribute length £(A). We denote the ciphertext space of the scheme by C7T ypage. For
our construction, we have CT ypaBe = CT prrE-

Setup(14,1%) — (mpk, msk). The setup algorithm does the following.

— Run (prFE.msk, prFE.mpk) < prFE.Setup(1%, prm) and crs <— AB-LFE.crsGen(1%).
— Set msk = prFE.msk® and mpk = (prFE.mpk, crs). Output (msk, mpk).

KeyGen(msk, C) — skc. The key generation algorithm does the following.

— Parse msk = prFE.msk.

Compute digest = AB-LFE.Compress(crs, C). Parse digest = {digest; }ic|y.-
Sample r < {0,1}* and SKE.ct; < CT sk fori € [gc].
For i € [g¢], define circuit Flcrs, digest;, r, SKE.ct;], with crs, digest;, r, SKE.ct; hardwired, as follows:

Circuit F|crs, digest;, r, SKE.ct;]
Input: (sd, x, y, flag, SKE.sk)
1. It computes AB-LFE.ct; as follows:

AB-LFE.Enc;(crs, digest;, (x, 1¢); PRF(sd,r)) if flag =0

AB-LFE.ct; =
o { SKE.Dec(SKE.sk, SKE.ct;) if flag = 1

2. Output AB-LFE.ct;.

— Fori € [gc] compute prFE.sk; <— prFE.KeyGen(prFE.msk, Fcrs, digest;, 1]).
— Output skc = ({digesti, erE.ski,SKE.cti}ie[qd,r).

Enc(mpk, x, t) — ct. The encryption algorithm does the following.

— Parse mpk = (prFE.mpk, crs) and sample a PRF key sd < {0, 1}*.
— Compute prFE.ct < prFE.Enc(prFE.mpk, (sd, x, 3,0, L)).
— Output ct := prFE.ct.

Dec(mpk, skc, C, ct, x) — y. The decryption algorithm does the following.

— Parse mpk = (prFE.mpk, crs), skc = ({digesti, erE.skl-,SKE.cti}iE[qd,r) and ct = prFE.ct.

— Forall i € [g¢], compute y; = prFE.Dec(prFE.mpk, prFE.sk;, Fcrs, digest;, r, SKE.ct;], prFE.ct).
— Sety = (y1,...,Yqc) and output AB-LFE.Dec(crs, C, y).

8W.L.0.G we assume that msk contains mpk.
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Correctness. We prove the correctness of our scheme using the following theorem.
Theorem 5.5. Assume AB-LFE and prFE schemes are correct. Then the above construction is correct.

Proof. From the correctness of prFE scheme we have

y; =F[crs, digest;, r, SKE.ct;] (sd, x, 1,0, L)
=AB-LFE.ct; = AB-LFE.Enc;(crs, digest;, (x, it); PRF(sd, 1))

for i € [gc| with probability 1. Thus we have y = {AB-LFE.ct;};c[, ] = AB-LFE.ct. Next, by the correctness of
AB-LFE scheme it follows that, if C(x) = 1,

AB-LFE.Dec(crs, C,y) = AB-LFE.Dec(crs, C, AB-LFE.ct) = u

with all but negligible probability. O

Security. We prove the security of our scheme via the following theorem.

Theorem 5.6. Assume that the prFE scheme is IND secure (Definition 4.4), AB-LFE scheme satisfies very selective
pseudorandom ciphertext security (Definition 5.2). Then our construction of kpABE scheme satisfies VerSel-IND
security (Definition 3.22).

Proof. We prove the security via the following sequence of hybrids.
Hybyg. This is the VerSel-IND game. Namely, the adversary sees

coins 4, mpk = (crs, prFE.mpk), skcx = {digestf, 1*, SKE.ctf, erE'Sk?}kG[Q],iE[qck]
prFE.ct < prFE.Enc(prFE.mpk, (sd,x, 4,0, 1))

where the adversary A with randomness coins_4 queries for (x, (po, 1), ct..., CQ), sker = {digestf, *, SKE.ctif,
prF E.ski-‘}iE (9] denotes the secret key corresponding to the k-th key query CX as defined in the KeyGen algorithm,

and p is the challenge bit chosen by the game. In particular, we choose SKE.cti-C < CT skg forall k and i.

Hyb;. This hybrid is the same as Hyb except that SKE.sk <— Kskg is chosen and SKE.ct;{ is computed as

SKE.ctf = SKE.Enc(SKE.sk, AB-LFE.ctf) (24)
where
AB—LFE.ctf = AB—LFE.Enci(crs,digestf, (x, 1o); PRF(sd, r)) (25)

for k € [Q] and i € [g.+]. By the pseudorandom ciphertext security of SKE, this hybrid is computationally
indistinguishable from the previous one.

Hyb,. This hybrid is the same as Hyb, except that prFE.ct is computed as
prFE.ct < prFE.Enc(prFE.mpk, (L, I, 1,1,SKE.sk)).

We claim that this game is computationally indistinguishable from the previous hybrid by the IND-pr-Security of
prFE. To see this, we first observe that we have

Flers, digestf, t, SKE.ctf] (sd,x, 1,0, L) = AB-LFE.cti.<
= SKE.Dec(SKE.sk, SKE.ct})
= Flcrs, digestt, ¥, SKE.ct’] (L, 1, L, 1,SKE.sk)
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for all k € [Q] and i € [gcx] by the correctness of prFE and SKE, where AB-LFE.ctf is defined as Equation (25).
As we will show later, we have

1

(coinsA, {Flcrs, digest¥, ¥, SKE.ct}], AB'LFE-Cti‘{}ke[Q],ie[qck])

yAB-LFE
[ct

~ (coinsA, {Flcrs, digestk, ¥, SKE.ctt], AB-LFE.ctf « {0,1} }kE[Q],ie[qu]) (26)
where AB—LFE.cti.‘ is defined as Equation (25) in the LHS and SKE.ct;‘ is defined as Equation (24) on both sides.
Therefore, we can invoke the security of prFE.

AB-LFE

Hybs. This hybrid is the same as Hyb, except that AB—LFE.cté‘ is replaced with AB—LFE.ctf + {0, 1}%& . By
Equation (26), this hybrid is computationally indistinguishable from the previous one. Notice that in this hybrid,
the view of the adversary is independent from the challenge bit .

The fact that Hyby and Hyb; are computationally indistinguishable means that the adversary has negligible advantage in
Hyby, since its advantage in Hybs is 0. It remains to prove Equation (26). We prove Equation (26) via the following
sequence of hybrids.

k k

Hyby. This is the LHS distribution of Equation (26) except that we give crs, {digesti-‘, “} ki instead of {F[crs, digest;, r*,

SKE.cti.‘] }ki to the distinguisher:

: : k Lk k ; k . k
<comsA, crs, {d|gesti,r ,AB-LFE.ct; = AB-LFE.Enc;(crs, digest;, (x, pg); PRF(sd, r ))}ke[Q],ie[qu]) :

We can rewrite the above distribution as

(coinsA,crs, {digestk, r*, AB-LFE.ct’ = AB-LFE.Enc(crs,digestk, (x, ]/llg); PRF(sd, rk))}ke[Q}> .

where we group the terms {digestf}ie[%k] and {AB-LFE.ct;‘}ie[qck] into digest® and AB-LFE.ct* forall k € [Q].

Hyb’l. This hybrid is same as the previous one except that we output a failure symbol if the set {rk } ke[Q] contains a
collision. We prove that the probability with which there occurs a collision is negligible in A. To prove this it
suffices to show that there is no k, k' € [Q] such that k # k' and t* = ¥ . The probability of this happening
can be bounded by Q?%/2" by taking the union bound with respect to all the combinations of k,k’. Thus the
probability of outputting the failure symbol is Q% /2* which is negl (A).

Hyb}. In this hybrid we change all the PRF values computed using sd to random. Namely, we replace PRF(sd, rk)
with true randomness. Since PRF is invoked for fresh input for each k € [Q], this hybrid is indistinguishable
from the previous hybrid. We now consider the following distribution:

(coinsA, crs, {digest’, 1*, AB-LFE.ct‘ + AB-LFE.Enc(crs, digest!, (X/Vﬁ))}ke[Q])

Hyb%. In this hybrid we invoke the security of AB-LFE scheme to switch AB-LFE.ct* to random for all k € Q]
Namely, the distribution is now:

(coinsA,crs, {digestk, t*, AB-LFE.ctf + CTAB_LFE}kE[Q])

By the admissibility of the adversary and very selective pseudorandom ciphertext security of AB-LFE, this
hybrid is indistinguishable from the previous one. Notice that this hybrid is the same as the RHS distribution of
Equation (26) except that we give crs, {digest;‘, * }ki instead of {Fcrs, digesti-‘, r*, SKE.cté‘] i

We therefore have Hyb(, ~ Hyb%, which implies Equation (26), since SI'(E.ctéC can be simulated by sampling SKE.sk
and encrypting AB—LFE.cté‘. This completes the proof. O
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5.3 AB-LFE from Blind Garbled circuits.

In this section we give a construction of AB-LFE = (crsGen, Compress, Enc, Dec) (or 1ABE) for a circuit class
C ={C:{0,1}L — {0,1}} and message space {0,1} from blind garbled circuits. Our construction supports circuits
of unbounded depth and input length. Our construction can equivalently be seen as constructing a IABE scheme.

Building Blocks. A blind garbled circuit scheme bGC = (bGC.Eval, bGC.Garble, bGC.SIM) for circuit class C.

Construction. We describe our construction for AB-LFE scheme AB-LFE = (crsGen, Compress, Enc, Dec) below.
crsGen(l/\) — crs. The crs generation algorithm outputs crs := L.
Compress(crs, C) — digest. The Compress algorithm outputs digest = C.
Enc(crs, digest, x, ) — ct. The encryption algorithm does the following.

— Parse digest = C, sample R <— {0, 1} and define circuit C[R], with R hardwired, as follows

e -{ 40

— Compute ({labjp}ie(r41]pe{0,1}/ E[YQ/]) + bGC.Garble(1*, 151, C[R], 11).
— Output ct = (ETI?]Aabx,y) where laby,, = (laby ... laby, 1, labp 1 1,,).
Dec(crs, C,ct) — p/ L. The decryption algorithm does the following.

— Parse ct = (Eﬁﬁ,labx/y).

—

— Output ¢’ = bGC.Eval(C[R], laby).

Correctness. The correctness of the scheme follows directly from the correctness of the underlying bGC scheme. We
prove it using the following theorem.

Theorem 5.7. Assume that the blind bGC is correct (Definition 3.15). Then the AB-LFE scheme is correct (Definition 5.1).

Proof. Forct = (al?],labw) where laby ; = (Iablfxl,...,IabL,xL,IabLH,V), we have

P

bGC.Eval(C[R], laby,,) =

if C(x) = 1 from the correctness of bGC scheme with probability 1. This implies the correctness. O

Efficiency. The AB-LFE scheme has the following efficiency properties.

Idigest| = |C|, |ct| = O(|C|, L, A).

Decomposability. The decomposability follows from the decomposability of the blind garbled circuits. In particular
we can parse digest = {digest; }c[c|], Where digest; = C; fori € [|C|] and C; denotes the i-th gate of C in topological

—_~

order. We can also parse ct = {ct; };c[c|] Where we can set ct; = (C1[R], laby) and ct; = G;[R] for i € [2,[C]]

—_—

where C;[R] denotes the i-th gate of C;[R] and C;[R] is the corresponding garbling. Note that here |digest;| = poly(A)
and |ct;| < poly(A,L).
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Security. The security of the scheme follows from the simulation security and the blindness of the underlying bGC
scheme. We prove this using the following theorem.

Theorem 5.8. Assume that the bGC scheme satisfies simulation security (Definition 3.16) and blindness (Definition 3.17).
Then the AB-LFE scheme satisfies adaptive pseudorandom ciphertext security (Definition 5.2).

Proof. Suppose the adversary after receiving crs = L from the challenger outputs the challenge circuit C and the
challenge inputs (x, #). To prove the security of the AB-LFE scheme, we consider the following sequence of hybrids.

Hybg. This hybrid corresponds to the real-world game where the ciphertext is computed honestly using the Enc
algorithm.

Hyb;. This hybrid is same as the previous hybrid except that the challenger computes (6, IEE) — bGC.SIM(l)L

1/CIRI, 1L+1 R) where R « {0,1}.
Noting that C[R](x, #) = R by the admissibility of the adversary, Hyb, =, Hyb; follows by the simulation
security of the bGC scheme.

Hyb,. This hybrid is same as the previous hybrid except that the challenger samples uniformly random string (C Iab)

such that |(C, lab)| = |[bGC.SIM(1%,15+1 1ICIRIl R)| and returns digest = C, ct = (C, lab) to the adversary.
Hyb; ~. Hyb, using the blindness of the bGC scheme.

Note that in Hyb,, the adversary is given a random string. Therefore, the adaptive pseudorandom ciphertext security
follows. o

We get the following theorem.

Theorem 5.9. Assume that one-way function exists. Then, there exists a AB-LFE scheme for the circuit class
C ={C:{0,1}L — {0,1}} and message space {0,1} with |digest| = |C|, |ct| = O(|C|,L,A).

Instantiating the AB-LFE scheme as above, and using a prFE scheme supporting d, ;g = poly(A) depth circuits
with input length L = £+ poly(A), we obtain the following theorem.

Theorem 5.10. Assuming LWE and IND secure prFE (Definition 4.4), there exists a very selectively secure kpABE
scheme for circuits of unbounded depth and attribute length ¢ with

Impk| = £-poly(A), [skc|=|C[-£-poly(A), [ct| =£-poly(A).

We note that the kpABE scheme instantiated as above has longer secret keys but is not based on any circular
assumptions.

Equivalence of 1ABE and AB-LFE from Blind Garbled Circuits. We show that the AB-LFE scheme instantiated
from blind garbled circuits is in fact equivalent to the instantiation of 1ABE using BGC— which we bootstrap to a full
fledged KP-ABE using prFE in the technical overview (Section 2).

First, we roughly outline the instantiation of 1ABE using BGC : 1) Setup: set msk = Rpgc, Where Ry is the
randomness required to compute bGC components. 2) Encrypt: To encrypt (X, j¢) using msk = Rpgc, we simply
generate bGC labels corresponding to (x, ¢#) using randomness Rpgc. 3) Keygen : To generate a key for circuit C using
msk we first sample some randomness R < {0,1} and generate bGC garbled circuit corresponding to C[R], where
C[R] is defined exactly as in the above construction, using randomness Rpgc. This secret-key 1ABE is (1-key,1-ct)
secure and has random keys and random ciphertexts.

Next, we note that this 1ABE is equivalent to AB-LFE from bGC except for minor syntactical differences. Both
primitives essentially generate the components of a bGC scheme, the only difference being that 1IABE generates the
garbed circuit and garbled labels in KeyGen and Enc separately using the same randomness, while AB-LFE generates
both in Enc(crs, digest, (x, ) ) since digest = C is provided as input. So, when bootstrapping a 1ABE to kpABE, we
let the prFE output both 1ABE.sk and 1ABE.ct as described in technical overview. This is the only difference from the
construction of kpABE using AB-LFE.
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5.4 Using the AB-LFE from HLL

We can directly instantiate the AB-LFE in Section 5.2 with the construction shown by [HLL23] (HLL henceforth).
For this instantiation, we do not assume decomposability of AB-LFE since the HLL construction has succinct digest,
i.e. gc = 1 for any C and |digest| = poly(A). This instantiation leads to the parameter size of |mpk| = poly (¢, A),
|skc| = poly(¥, A), and |ct| = poly(¥, A), which is already better than the previous instantiation.

By adding a twist to the construction in Section 5.2 exploiting the structural property of HLL, we can improve the
secret key size so that its dependency on ¢ can be removed. To do so, we exploit the online-offline structure of the
AB-LFE.Enc algorithm which can be split as AB-LFE.Enc = (AB-LFE.EncX, AB-LFE.EncD). Here, AB-LFE.EncX
takes as input crs and x and outputs the offline part of the ciphertext AB-LFE.cto¢ and short state st and AB-LFE.EncD
takes as input digest and st and outputs online part of the ciphertext AB-LFE.cto,. For the AB-LFE with online-offline
structure, we consider the following security notion.

Definition 5.11 (Online-Offline Pseudorandom Ciphertext Security). For a AB-LFE scheme with the online-offline

structure and an adversary A, we define the experiment for security Expt?i{LFE""’Ofr (1’\) as follows.

1. Run A to receive circuit parameters prm. Run crs ¢~ crsGen(1%, prm) and send crs to A.

2. Achooses C!,...,CR ¢ Corm, X € Xprm and u € M. Run (AB-LFE.ctof, st) <— AB-LFE.EncX(crs, (x, 1))
and sample B < {0,1}. It then computes AB-LFE.ctX,, for k € [Q] as

Enc(st, digest’, (x, 1)) if =0

. , where digest® = AB-LFE.Compress(crs, C*)
CT AB-LFE ifg=1

AB-LFE.ctf {

where CT ap-LFE is the ciphertext space of AB-LFE. It sends AB-LFE.ct, {digestk, AB-LFE.ctlén}ke[Q] to A.

3. A outputs a guess bit §’ as the output of the experiment.

AB-LFE

We define the advantage Adv , n=°ff()) of A in the above game as

AB-LFE

AdVA on—off ()\) — ‘PI' [ExptOA’i-LFEonfofF(l/\) — 1:| — Pr [Exptﬁi-LFEonfoff(l/\) — 1:| ‘ .

We say that a AB-LFE scheme is very selective pseudorandom ciphertext secure if for every admissible PPT adversary

A, we have Advﬁ‘lB_LFE°”’°Ff (A) < negl(A), where A is said to be admissible if C¥(x) = 0 for all k € [Q].

Formally, HLL proved the following theorem:

Theorem 5.12 ([HLL.23]). Under the circular LWE assumption, there exists a very selectively secure AB-LFE scheme for
circuit class C = {C : {0,1}* — {0,1}} with online-offline pseudorandom ciphertext security (as per Definition 5.11)
satisfying

lcrs| = O(4,A), |digest| = O(A), [st| = O(A), |ctofr| = O(L,A), |cton| = O(A)

We make slight modifications to our construction of kpABE scheme to optimize the secret key size. The high
level idea is very simple. Instead of letting the prFE decryption recover the entire AB-LFE ciphertext, we recover
only the online part of it. We then put the offline part of AB-LFE ciphertext into the ciphertext of kpABE so that the
decryptor can recover the entire AB-LFE ciphertext during the decryption. This eliminates the necessity of hardwiring
crs to the prFE secret key, since the online part can be computed only from the short state and digest. This leads to
the improvement on the efficiency, since the state and digest are of fixed polynomial size, while crs is of size O(£).
Concretely, we modify the KeyGen, Enc, Dec algorithm of Section 5.2 as follows.

KeyGen(msk, C). This is same as the KeyGen algorithm in Section 5.2 except the following.
— Define circuit F[digest, r, SKE.ct] (instead of F[crs, digest;, r, SKE.ct]) , with digest, r hardwired, as follows
On input (sd, st, flag, SKE.sk):
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AB-LFE.EncD(st, digest; PRF(sd, if flag =0
— Compute AB-LFE.cton = ncD(st, digest; PRF(sd,r)) - if flag =0
SKE.Dec(SKE.sk, SKE.ct) ifflag=1
— Output AB-LFE.ctop.
— Compute prFE.sk < prFE.KeyGen(prFE.msk, F[digest, r, SKE.ct]).

— Output skc = (digest, prFE.sk, r, SKE.ct).
Enc(mpk, x, j¢). The encryption algorithm does the following.

— Parse mpk = (prFE.mpk, crs) and sample a PRF key sd < {0, 1}*.
— Compute (AB-LFE.ctyf, st) <— AB-LFE.EncX(crs, (x, i)).
Compute prFE.ct < prFE.Enc(prFE.mpk, (sd, st)).

Output ct := (AB-LFE.ctys, prFE.ct).

Dec(mpk, skc, C, ct, x). The decryption algorithm does the following.

— Parse mpk = (prFE.mpk, crs), skc = (digest, prFE.sk, r, SKE.ct) and ct = (AB-LFE.cts, prFE.ct).
— Compute AB-LFE.cton, = prFE.Dec(prFE.mpk, prFE.sk, F[digest, r, SKE.ct|, prFE.ct).
— Sety = (AB-LFE.ctof, AB-LFE.cton) and output AB-LFE.Dec(crs, C, y).

We note that even with the above changes the correctness and security arguments are almost the same as that of
Section 5.2. We skip the proof for correctness since it is straightforward and focus on the security proof, where we
highlight the difference from that for Theorem 5.6. We consider similar sequence of hybrids Hyby to Hybs and Hybj, to
Hyb%, where the latter hybrids are introduced to show that the online parts of the AB-LFE ciphertexts obtained by prFE
decryption are pseudorandom. The main difference in the former hybrids is that SKE.ctk encrypts the online part of
the AB-LFE ciphertext AB—LFE.ctlén instead of the entire ciphertext AB-LFE.ctk. For proving Hyb’o =5 Hybg, we use
online-offline pseudorandom ciphertext security of AB-LFE (as per Definition 5.11).

For this instantiation, we have dE'éc_?FE = poly()\) where dE\réc—?FE is the maximum depth of a circuit required to
compute AB-LFE.EncD and hence we use a prFE scheme supporting d,,re = poly(A) depth circuits with input length
L = poly(A). We formalise this using the following theorem.

Theorem 5.13. Assuming the circular small-secret LWE and IND secure prFE (Definition 4.4), there exists a very
selectively secure kpABE scheme for circuits of unbounded depth and attribute length £ with

|mpk| = poly(¢,A), |skc| = poly(A), |ct| = poly(¢,A).

We note that the kpABE scheme instantiated as above has succinct keys and ciphertexts. Our scheme achieves the
same parameters as the unbounded depth KP-ABE scheme by [HLLL.23] but does not make use of the circular evasive
LWE assumption as they do.

6 Compiling KP-ABE to CP-ABE using prFE

In this section, we give a compiler that upgrades a single-key secure kpABE scheme for circuits of unbounded depth to
a collusion resistant cpABE scheme for circuits of unbounded depth using a prFE scheme with IND security.

6.1 Construction

Building Blocks. We require the following building blocks for our construction.
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1. Asingle-key secure key-policy ABE scheme kpABE = (kpABE.Setup, kpABE.KeyGen, kpABE.Enc, kpABE.Dec)
for circuit class Cy(y) = {C: {0, 1}¢ — {0,1}} consisting of circuits with input length £(A) and unbounded

i . (kPABE . - kpABE
depth. We denote the ciphertext space of kpABE scheme by CT page := {0, 1} | ciphertext size by £
and master public key size by fﬁp'iBE. We note that the length fléf ABE of the ciphertext only depends on £ and A.

of the setup algorithm represented as a circuit and the depth dg’ ABE of

We also require that the the depth dtgf‘BE

the encryption algorithm represented as a circuit are of fixed polynomial poly(A) independent of .

2. A FE scheme for pseudorandom functionality prFE = (prFE.Setup, prFE.KeyGen, prFE.Enc, prFE.Dec) for
circuit class CL( Ndype (A KPABE consisting of circuits with input length L(A), maximum depth d,,,rg(A) and
Mprl et

output length Eléf ABE  For our compiler, we should set d g large enough so that the scheme can support a circuit
of the form F[x, r, SKE.ct] defined below. The depth of the circuit can be bounded by a fixed polynomial as we
discuss below. Therefore, we set d,,rg = poly(A), where poly(A) is a sufficiently large fixed polynomial.

3. A PRF function PRF : {0,1}* x {0,1}* — {0,1}Ren where Ry, is the length of randomness used in
kpABE.Enc. We assume that PRF can be computed by a circuit of depth at most d,,r.

4. A secret key encryption scheme SKE = (SKE.Setup, SKE.Enc, SKE.Dec) with the message space being
kpAB

{0, 1}£ct E. We denote the ciphertext space of the scheme by CT skg and the key space of the scheme by KCske.
We assume that SKE has pseudorandom ciphertext as per Definition 3.14.

Now, we describe our compiler for constructing a ciphertext-policy ABE scheme cpABE = (Setup, KeyGen, Enc, Dec)
for circuits of unbounded depth with attribute length £.

Setup(1*,1%) — (cpABE.mpk, cpABE.msk). The setup algorithm does the following.

— Run (prFE.msk, prFE.mpk) < prFE.Setup(1%,1%).
— Set cpABE.mpk = prFE.mpk and cpABE.msk = prFE.msk. Output (cpABE.mpk, cpABE.msk).

KeyGen(cpABE.msk, x) — cpABE.sky. The key generation algorithm does the following.

— Parse cpABE.msk = prFE.msk and sample r < {0, 1}* and SKE.ct <~ CT skE.
— Define circuit F[x, r, SKE.ct], with x, r and SKE.ct hardwired, as follows.

Circuit F[x, r, SKE.ct]
Input: (Ryey,sd, u, flag, SKE.sk)

1. It computes (kpABE.mpk, kpABE.msk) = kpABE.Setup(1%,1¢; Ryey)-
2. It computes kpABE.ct as follows:

kpABE.ct = kpABE.Enc(kpABE.mpk, x, 4t; PRF(sd, r)) if flag =0

kpABE.ct — :
SKE.Dec(SKE.sk, SKE.ct) if flag =1

3. Output kpABE.ct.

Note that since the depths of the setup algorithm kpABE.Setup and the encryption algorithm kpABE.Enc
represented as circuits are bounded by poly(A) by our assumption, the depth of the above circuit F[x, r, SKE.ct]
can be bounded by a fixed polynomial poly(A).

— Compute prFE.sk < prFE.KeyGen(prFE.msk, F[x, 1]).
— Output cpABE.sky := (prFE.sk,SKE.ct, r).

Enc(cpABE.mpk, C, #) — cpABE.ct. The encryption algorithm does the following.
— Parse cpABE.mpk = prFE.mpk and sample a PRF key sd < {0, 1}*.
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— Sample Rye, < {0,1}* and generate (kpABE.mpk, kpABE.msk) = kpABE.Setup(1*,1%; Ryey ).
— Compute prFE.ct <— prFE.Enc(prFE.mpk, (Ryey,sd, 1,0, L)).

— Compute kpABE.skc + kpABE.KeyGen(kpABE.msk, C).

Output cpABE.ct := (prFE.ct, kpABE.mpk, kpABE.skc).

Dec(cpABE.mpk, cpABE.sky, x, cpABE.ct, C). The decryption algorithm does the following.

— Parse cpABE.mpk = prFE.mpk, cpABE.sky = (prFE.sk, SKE.ct, r) and cpABE.ct = (prFE.ct, kpABE.skc).
— Compute y = prFE.Dec(prFE.mpk, prFE.sk, F[x, r, SKE.ct], prFE.ct).
— Compute and output kpABE.Dec(kpABE.mpk, kpABE.skc, C, y, x).

Correctness. We prove the correctness of our scheme using the following theorem.
Theorem 6.1. Assume kpABE is correct and PRF is secure. Then the above construction of cpABE scheme is correct.

Proof. From the correctness of prFE scheme, with probability 1 we have
y = F[x, 1, SKE.ct](Ryey, sd, 4,0, L) = kpABE.ct

where kpABE.ct = kpABE.Enc(kpABE.mpk, x, ; PRF(sd, r)) and (kpABE.mpk, kpABE.msk) = kpABE.Setup(1*4,1%; Riey)-
Next, using the security of PRF, PRF(sd, r) is indistinguishable from R <+ {0, 1}R'e". Furthermore, by the correctness
of kpABE, we have

kpABE.Dec(kpABE.skc, C, kpABE.ct, x) = kpABE.Dec(kpABE.skc, kpABE.Enc(kpABE.mpk, x, ji; PRF(sd, r))) = pu.

if C(x) = 1, with all but negl probability. Therefore, by the security of PRF, the correctness follows. O
Remark 6.2. For the above conversion to work, it is important that the ciphertext length Etf ABE of kpABE is independent
from the depth of the circuits being supported by the scheme. Otherwise, the key generator, who does not know the depth
of the circuit associated with the ciphertext, cannot choose sufficiently long output length for the circuit F[x, r, SKE.ct]
and we cannot achieve correctness.

6.2 Security

We prove the security of our scheme via the following theorem.

Theorem 6.3. Assume that the prFE scheme is IND-secure (Definition 4.4), kpABE scheme satisfies VerSel-INDr
security (Definition 3.22) then the construction of cpABE satisfies VerSel-IND security.

Proof. Suppose the adversary .4 with randomness coins 4 queries for C, (po, 1), x!, ... xQ. We prove the security via
the following sequence of hybrids.

Hybg. This is the VerSel-IND game. The adversary sees

coins 4, cpABE.mpk = prFE.mpk, cpABE.sk.« = {prFE.sk¥, SKE.ctk, rk}ke[Q]/
cpABE.ct = (prFE.ct < prFE.Enc(prFE.mpk, (Ryey,sd, y1g,0, L)), kpABE.mpk, kpABE.skc)

where prFE.sk’ < prFE.KeyGen(prFE.msk, F[x¥, ¥, SKE.ct}]), SKE.ctf « CTskg, t* « {0,1}* for all

k € [Q], Rkey < {0,1}*,5d + {0,1}" and kpABE.skc ¢ kpABE.KeyGen(kpABE.msk, C). Also for all the
key queries x1, ..., Xg and the challenge circuit C issued by the adversary, we have C [xk} =0.
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Hyb;. This hybrid is the same as Hyb except that SKE.sk <— Kskg is chosen and SKE.ctk is computed as
SKE.ct" = SKE.Enc(SKE.sk, kpABE.ct) (27)
where
kpABE.ct" = kpABE.Enc(kpABE.mpk, X", jig; PRF(sd, 1)) (28)

for k € [Q]. By the pseudorandom ciphertext security of SKE, this hybrid is computationally indistinguishable
from the previous one.

Hyb,. This hybrid is the same as Hyb; except that prFE.ct is computed as
prFE.ct < prFE.Enc(prFE.mpk, (L, I, 1,1, SKE.sk)).

We claim that this game is computationally indistinguishable from the previous hybrid by the IND-pr-Security of
prFE. To see this, we first observe that we have

F[x*, ", SKE.ct"] (Ryey, sd, 11, 0, L) = kpABE.ct*

— SKE.Dec(SKE.sk, SKE.ct")
= F[x, r*, SKE.ct*] (L, L, 1,1, SKE.sk)

forall k € [Q] and i € [g.+] by the correctness of prFE and SKE, where kpABE.ctX is defined as Equation (27).
As we will show later, we have

(coinsA, kpABE.mpk, {F[x*, ¥, SKE.ct"], kpABE.ctk}ke[Q})

~c ((coins 4, kpABE.mpk, {F[x", ", SKE.ct"], kpABE.ct* «- {0, 1}‘55ABE},(€[Q]) (29)

where kpABE.ctX is defined as Equation (28) and SKE.cté‘ is defined as Equation (27). Therefore, we can invoke
the security of prFE.

kpABE

Hybs. This hybrid is the same as Hyb, except that kpABE.ctf is replaced with kpABE.ct" « {O,l}éct . By
Equation (29), this hybrid is computationally indistinguishable from the previous one. Notice that in this hybrid,
the view of the adversary is independent from the challenge bit B.

The fact that Hyby and Hybs are computationally indistinguishable means that the adversary has negligible advantage in
Hyby, since its advantage in Hybs is 0. It remains to prove Equation (29). We prove Equation (29) via the following
sequence of hybrids.

Hybj. This is the LHS distribution of Equation (29) except that we give x*, 1}, - ) instead of {F [k, %, SKE.ct"] }1e 0]
to the distinguisher:

(coinsA, kpABE.mpk, {xk, r*, kpABE.ct* = kpABE.Enc(kpABE.mpk, x*, j15; PRF (sd, rk))}ke[Q]) .

Hyb’l. This hybrid is same as the previous one except that we output a failure symbol if the set {rk} ke[Q] contains a
collision. We prove that the probability with which there occurs a collision is negligible in A. To prove this it
suffices to show that there is no k, k' € [Q] such that k # k' and t¥ = ¥, The probability of this happening
can be bounded by Q?/ 2A by taking the union bound with respect to all the combinations of k, k. Thus the
probability of outputting the failure symbol is Q% /2" which is negl(A).
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Hyb). In this hybrid we change all the PRF values computed using sd to random. Namely, we replace PRF(sd, rk)
with true randomness. Since PRF is invoked for fresh input for each k € [Q], this hybrid is indistinguishable
from the previous hybrid. We now consider the following distribution:

(coinsA, kpABE.mpk, {xk, 1, kpABE.ct" = kpABE.Enc(kpABE.mpk, xk,yﬁ)}ke[Q])

Hybg. In this hybrid we invoke the security of kpABE scheme to switch kpABE.ctX to random for all k € [Q]. Namely,
the distribution is now:

(coinsA, kpABE.mpk, {xk, t*, kpABE.ctk + CTkpABE}kE[Q])

By the admissibility of the adversary and very selective pseudorandom ciphertext security of kpABE, this hybrid
is indistinguishable from the previous one.

We therefore have Hyb{, . Hyb}, which implies Equation (29), since SKE.ct" can be simulated by sampling SKE.sk
and encrypting kpABE.ctk . This completes the proof. O

Instantiations of CP-ABE Instantiating the building block kpABE by the single-key secure KP-ABE from cir-
cular small-secret LWE [HLL23], we have |kpABE.mpk| = poly (¢, A), |kpABE.skc| = poly(A), |kpABE.ct| =
poly(¥, A). Furthermore, it is easy to see that the depth of the circuits implementing the setup and the encryption

algorithms can be independent of ¢ in their scheme by appropriate parallelization. Namely, we have dtzyABE = poly(A)

and dlc(f ABE _ poly(A). Hence we use a prFE scheme supporting dpre = poly(A) depth circuits with input length
L = poly(A) and output length Elc(f ABE _ poly (¢, A) for this instantiation.

Theorem 6.4. Assuming circular small-secret LWE and IND-secure prFE (Definition 4.4), there exists a very selectively
secure cpABE scheme for circuits {C : {0,1}* — {0,1}} of unbounded depth with

|cpABE.mpk| = poly(A), |cpABE.skx| = poly(¢,A), |cpABE.ctc| = poly(A).

Implications to ABE for Turing Machines. We note that our unbounded CP-ABE scheme in Theorem 6.4 can be
used to instantiate ABE for Turing Machines (JAKY24]). We get the following corollary.

Corollary 6.5. Assuming circular small-secret LWE and IND-secure prFE (Definition 4.4), there exists a very selectively
secure ABE for TM with

Impk| = poly(4), [sk| = poly(A, [M]), [ct| = poly(4, x|, ).

[AKY24] uses the LWE assumption, evasive LWE assumption and circular tensor assumption for their construction
with the same parameters as above. Since our prFE can be instantiated from the LWE and the evasive LWE, we can
remove the circular tensor assumption from [AKY?24] to base the security on the evasive LWE and the LWE.

7 Multi-Input FE for Pseudorandom Functionalities

In this section, we construct our main tool — multi-input functional encryption for pseudorandom functionalities.

7.1 Definition

In this section we give the definitions for multi-input functional encryption for pseudorandom functionalities (prMIFE).
Consider a function family { Fprm = {f : (Xprm)" — Yprm } }prm. for a parameter prm = prm(A), where each Fprm is
a finite collection of n-ary functions. Each function f € Fprm takes as input strings xq, . .., x,, where each x; € Xpm
and outputs f(x1,...,X,) € Vprm.
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Syntax. A miprfe scheme prMIFE, for n-ary function family JFpm consists of polynomial time algorithms
(Setup, KeyGen, Ency, ..., Ency, Dec) defined as follows.

Setup(1%,1", prm) — (mpk, msk). The setup algorithm takes as input the security parameter A, the function arity 7
and a parameter prm and outputs a master public key mpk and master secret key msk®.

KeyGen(msk, f) — sk 7. The key generation algorithm takes as input the master secret key msk and a function
fe Fprm and it outputs a functional secret key sk iz

Enc;(msk, x) — ct. The encryption algorithm for the i-th slot takes as input the master secret key msk and an input
x € Xprm and outputs a ciphertext ct; € CT, where CT is the ciphertext space.

Dec(mpk, sk fr f,ct1,...,cty) — y. The decryption algorithm takes as input the master public key mpk, secret key
sk £ function f and n ciphertexts cty, ..., ct,, and outputs y € Vprm.

Definition 7.1 (Correctness) A prMIFE scheme is said to be correct if for every prm, n-ary function f € Fpm and
input tuple (x1,...,x,) € X2 we have

prm

[ (mpk, msk) < Setup(1*,1", prm) , sk¢ < KeyGen(msk, f),
T
Dec

>1—negl(A).
(mpk,skf,f, Ency(msk, x1), ... Ency,(msk, xn)) = f(x1,...,xn)

Definition 7.2 (x- Security and (x, €)-Security). Let x = x(A) be a function in A. For a prMIFE scheme for function
family { Fprm = {f : (Xprm)" = Vprm } }prm. parameter prm = prm(A), let Samp be a PPT algorithm that on input
1)‘, outputs

({fk}ke[l]o}/ {'lel1 }11€[q1]’ sy {xi’ln }jne[qn]’aux S {0/ 1}*>

where ¢ is the number of key queries, g; is the number of encryption queries for the i-th slot, fi, ..., f;) € Fprm and

X' € Xom forall i € [n], j; € [q;]. We say that the prMIFE scheme satisfies x-security with respect to the sampler
class SC if for every PPT sampler Samp € SC there exists a PPT simulator algorithm {Sim; };c[,) such that

7 7o ]” 7 %C 1K/ /A 1 1 ’ ) 30
( Ao el )}ke[qo],he[ﬂh]---d’né[ﬂn] aux) ( {# k’“""'f”}ke[qo],he[m...,fnew aux ) GO

Ji — Ji
then < s kfk} elao)’ A }ie[n},fiem’aux> e (mpk’ {f"’Skfk}ke[qo]’{‘s" }z‘e[nLjie[qi]’a”X)’ Gl
>

where k > A", (mpk,msk) < Setup(1},17,prm), sks < KeyGen(msk, fi), ct! « Enc(msk,x/'), o «
Sim;(msk), and A j, i 4= Vprm fori € [n], j; € [q;], and k € [qo].

We also define the parametrized version of the definition that we call (, €)-security, where we require that when
Equation (30) holds, the two distributions in Equation (31) should not be distinguishable for any PPT adversary with
advantage more than €. Therefore, (, €)-security for all inverse polynomial € implies « security. When we consider
(x, €)-security, we typically consider sub-exponentially small €.

Remark 7.3. Note that 1% in Equation (30) is introduced for the purpose of padding, allowing the distinguisher for the
distributions to run in time polynomial in x and requiring the distinguishing advantage to be negligible in x.'% The
reason why we require ¥ > A" is that the input length to the distinguisher is polynomial in A" anyway and in order
for the padding to make sense, x should satisfy this condition. If we need « to be larger, this doubly strengthens the
requirement for the precondition, as it means we want the distributions in Equation (30) to be indistinguishable against
an adversary with a longer running time and smaller advantage. Ideally, we want « to be as small as A" to make the
requirement weaker. However, the security proof for our construction in Section 7.2 for general # requires large x as an
artifact of the proof technique. In the special case of # being constant, we can achieve x = A",

9We assume w.1.0.g that msk includes mpk.
10This is due to our convention, where the running time of the distinguisher should be polynomial in its input length and the distinguishing
advantage should be negligible in its input length. Please refer to Section 3 for the details.
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It is shown in [AMY Y25, BDJ"25] that there is no prMIFE that satisfies the above style security for all general
samplers. We can only hope that the prMIFE satisfies the above security with respect to some class of samplers. To get
around the impossibility, we also define the following indistinguishability based variant of the security definition for
prMIFE. Our definition is a strict weakening of the standard indistinguishability security notion for multi-input FE,
since we require that the security should hold only for the case where the decryption results obtained by all combinations
of the ciphertexts and secret keys are jointly pseudorandom. It is known that multi-input FE with standard IND-based
security is achievable assuming the existence of FE [AJ15], so our definition below is achievable in principle, though we
do not know an instantiation of the latter from standard post-quantum assumptions.

Definition 7.4 (k-IND-Security and (x, €)-IND-Security). Let x = x(A) be a function in A. For a prMIFE scheme for
function family { Fprm = {f : (Xprm)" — Vprm } } prm, parameter prm = prm(A), let Samp be a PPT algorithm that
on input 1, outputs

({fidetgo (o ¥l uetqny - A% ¥ia Hisetgp 2ux € {0,1}7)

where ¢ is the number of key queries, g; is the number of encryption queries for the i-th slot, f1,..., fg; € Fprm and

x{:ib € Xpm foralli € [n],b € {0,1},]; € [g;]. We say that the prMIFE scheme satisfies k-IND-security if for every
PPT sampler Samp such that

Fel@lo, o xli)y = el a0y Vi€ il Vin € (9l VK € (0] (32)

and

1 L f(adt o xln . )z<1", A , ) 33
( {fur il xn)}ke[qo],he[m]-wjne[qn] e ) ~ (1% {fi k'“""'f”}ke[qol,he[m...,fnewn] awx ), 33

we have

<mpk’ {f k’Skfk}kG[qo],{Ct{io}idn]/ﬁe[qi]’aux> e (mpk’ {f k’Skf"}ke[qo1’{Ct{fl}ie[miem,n’aux>’ GY

where © > A", (mpk, msk) < Setup(l)‘, 1", prm), skp, KeyGen(msk, fx), Ctﬁb < Enc(msk, xﬁb), Dijin €
Yorm fori € [n], j; € [q;], b € {0,1}, and k € [qo].

We also define the parametrized version of the definition that we call (k, €)-IND-security, where we require that
when Equation (32) and (33) hold, the two distributions in Equation (34) should not be distinguishable for any PPT
adversary with advantage more than €. Therefore, (k, €)-IND security for all inverse polynomial € implies x-IND
security. When we consider (i, €)-IND security, we typically consider sub-exponentially small €.

We note that k-IND security above is weaker than the IND-based security defined for MIFE in [AJ15], since it
requires the ciphertext should hide the message (i.e., Equation (34)) only when the decryption results are pseudorandom
(i.e., Equation (33)). Furthermore, it is weaker in that it requires the adversary to submit the key queries in addition to
the encryption queries at the beginning of the game.

7.2 Construction for n-input prFE

In this section we provide our construction of a multi-input functional encryption scheme for pseudorandom functionalities
for function family 1) an) = {f : {{0,1}*}" — {0,1}}, where the depth of a function f € F is at most
d(A) = poly(A). Each function f € JF takes as input strings x1, ..., x, € {0,1}" and outputs f(xq,...,x,) € {0,1}.
We consider the case of arity n being constant and the general case of 1 being arbitrary polynomial in A. While we
provide separate security proofs for these cases, we have unified description of the construction. The reason why we
consider the proofs separately is that we can base the security of the scheme on a weaker assumption when 7 is constant
than the general case.
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Building Blocks. Our construction uses the following building blocks.

1. n single-input FE scheme for pseudorandom functionality prFE, ..., prFE,. Fori € [n], prFE; = (prFE;.Setup,
prFE;.KeyGen, prFE;.Enc, prFE;.Dec) for circuit class Cinp,.(1),dep:(A),0ut;(1) CONSisting of circuits with input
length inp; (A), maximum depth dep; () and output length out;(A). We denote the ciphertext space of the prFE;
scheme by CT pr;-

For our construction, we set the following parameters

— inpy =n-L,dep; =d, and out; = 1.

— inp; = |SKE.key| + (n — i)L 4+ nA, dep; = poly(d, A), and out; = |prFE;_j.ct| for i € [2,n], where
SKE.key € CT ske and prFE;_j.ct € CT oFg, -

2. We also use n — 1 pseudorandom functions PRF, ..., PRF,_1. Similarly to the case of SKE, we use A to
setup these instances of PRF. We specify the domain and codomain of the functions as PRF; : {0, 1}A X
{{0,1}A}"=" — {0,1}'*"i where len; is the length of randomness used in prFE;.Enc fori € [n — 1].

We describe our construction of prMIFE = (Setup, KeyGen, Ency, . . ., Enc,, Dec) in the following.
Setup(1*,1", prm) — (mpk, msk). The setup algorithm does the following.
— Forall i € [n], generate (prFE;.mpk, prFE;.msk) < prFE;.Setup(1*,1P™:).
— Generate SKE.sk <~ SKE.Setup(1).
— Output mpk := ({prFE;. mpk};c(,)) and msk := (SKE.sk, { prFE;.msk, prFE;.mpk};c ) ).
KeyGen(msk, f) — sk - The key generation algorithm does the following.

— Parse msk = (SKE.sk, {prFE;.msk, prFE;.mpk};c,)-
— Compute prFE;.sky prFE;.KeyGen(prFE;.msk, f).
— Output sk := prFE;.sky.

Enc;(msk, x;) — ct;. Fori € [n — 1], the Enc; algorithm outputs a function secret key corresponding to prFE; , 1-th
instance in the following way.

— Parse msk = (SKE.sk, {prFE;.msk, prFE;.mpk};c,)-

— Sample r; < {0,1}A.

— Compute SKE.ct; < SKE.Enc(SKE.sk, x;).

— Define F; := F;[SKE.ct;, r;, prFE;.mpk] as in Figure 2.!!

— Compute prFE; q.sk < prFE;, .KeyGen(prFE;,  .msk,F;).
— Output ct; := prFE; 1.sk.

Ency,(msk, x;;) — cty,. The Ency, algorithm does the following.

Parse msk = (SKE.sk, {prFE;.msk, prFE;.mpk};c,)-

Fori € [n— 1], sample K; < {0, 1}

Compute prFE,.ct < prFE,.Enc(prFE,.mpk, (SKE.sk, x4, K1, ..., Ky;_1)).
Output cty, = prFE, .ct.

Dec(mpk, skf, f,cty, ..., cty) >y € {O, 1}. The decryption algorithm does the following.

— Parse mpk = ({prFE;.mpk};c|y)), skf = prFE;.sk¢, ct; = prFE; sk fori € [n — 1], and ct, = prFE,.ct.

"'The hardwired values are not hidden, even if we don’t output them explicitly.
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Function F;[SKE.ct;, r;, prFE;. mpK]

Hardwired constants: A SKE ciphertext SKE.ct;, r; € {0,1}*, and a prFE master public key prFE;.mpk.
On input (SKE.sk, (X;11,1i41), -+, (Xp—1,1-1),Xn, K1, . . . K;), proceed as follows:

1. Compute x; := SKE.Dec(SKE.sk, SKE.ct;).

2. Compute prFE;.ct as

— prFE;.Enc(prFE;.mpk, (x1,...,%,); PRF1(Ky, (1q,...,1,1))) ifi = 1.
— prFE;.Enc(prFE;.mpk, (SKE.sk, (x;,17), ..., (Xp—1,Tn—1),Xn, K1, ... Ki_1); PRFi(K, (1, ..., 1 -1))), if
i#1.

3. Output prFE;.ct.

Figure 2: Function F;

— Fori =mn,...,2 and do the following.
1. Compute prFE;_;.ct := prFE;.Dec(prFE;.mpk, prFE;.sk, F;_1, prFE;.ct).
2. If i = 2 output prFE;.ct, else seti :== i — 1 and go to Step 1.

— Output y := prFE;.Dec(prFE;.mpk, prFE; sk, f, prFE;.ct).

Remark 7.5. We consider two cases of parameter settings for the construction. One is the case of n being constant. In
this case, we simply set A = A. In the general case of n = poly(A), we do something more complex. In this case, we
assume that PRF and SKE have subexponential security. This means that there exists 0 < J < 1 such that there is no

adversary with size 2" and distinguishing advantage 2N against SKE and PRF for all sufficiently large A. In the
security proof, we require PRF and SKE to be secure even against an adversary that takes 1* as an input and thus runs in
polynomial time in x. To satisfy this requirement, we run SKE and PRF with respect to a larger security parameter A

that satisfies 22" > x«(1). An example choice would be to take A := (n2A)1/9,

Efficiency. The scheme satisfies

Impk| = poly(n, L,d, A, A), |ske| = poly(d,A), [ct1| = nLpoly(dep,A), |ct;| = poly(n,L,d, A, A) fori € [2,n].

Correctness. We prove the correctness of our scheme via the following theorem.

Theorem 7.6. Suppose prFE; fori € [n] and SKE are correct, then the above construction of prMIFE satisfies correctness
as defined in Definition 7.1.

Proof. To prove the theorem, we first prove the following statement.

Claim1.7.Fori =mn,...,2, we have

Pr[prFE;.Dec(prFE;.mpk, prFE;.sk, F; 1, prFE;.ct) = prFE;_j.ct] =1 (35)
where
FE; {.mpk, (SKE.sk, (x;_1,1;_1),..., (Xy—1,t—1), Xn, Ky, ... K;_ .
orFE,_ Enc [ P B pk, ( (xi—1,%i-1) (Xn—1,Tn-1),%n, K1 i-2) it 42
prFE; q.ct = ;PRF; 1 (Ki—q, (i1, -, tp1))

prFE;.Enc(prFE;.mpk, (x1,...,%,); PRF1(Ky, (1q,...,15-1))) ifi = 2.
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Proof. We prove this by induction.
Base Case: For i = n, we show that

Pr[prFE, .Dec(prFE,.mpk, prFE, sk, F,,_1, prFE, .ct) = prFE, _j.ct] = 1.
From the correctness of prFE,, scheme, we have with probability 1

prFE, .Dec(prFE,.mpk, prFE, sk, F,,_1, prFE, .ct)
=F,_1[SKE.ct,,_1,¥,_1,prFE,_1.mpk](SKE.sk,x,;, K1, ... K;,_1).

Next, by the definition of F,,_1 and the correctness of the SKE scheme, we have

prFE, .Dec(prFE,.mpk, prFE, sk, F, 1, prFE,.ct)

prFE,,_1.mpk, (SKE.sk, (X,_1,1y_1),Xn, K1, . .. Kn_z);>

=prFE,_1.Enc
! PRF,_1 (anl/ I'1171)

which proves the base case.
Inductive Step: For the inductive step, suppose Equation (35) holds for some i € [3,7] then we prove the same
statement for i — 1. Consider

prFE;_;.Dec(prFE;_;.mpk, prFE;_1.sk, F;_», prFE;_1.ct)
=F; »[SKE.ct; »,t; 5, prFE;_».mpk](SKE.sk, (x; 1,1, 1),..., (Xy_1,tn_1),Xn, K1, ... Ki_2)

prFE;_».mpk, (SKE.sk, (X;_2,%i_2),..., X, Ky, ... Ki3);> .
rFE; ».Enc ifi #3
_ ] PFEi ( PR, 2(Ki 2, (1 2, ta 1)) 107
prFE;.Enc(prFE{.mpk, (x1,...,%,); PRF1(Ky, (1q,...,151))) ifi = 3.

where in the first equality we use prFE;_;.sk = prFE;_;.KeyGen(prFE;_;.msk, F;_5) and prFE;_;.ct = prFE;_;.Enc
(prFE;_1.mpk, (SKE.sk, (x;_1,1t; 1), .-, (Xp_1,1-1),%Xn, K1, ... K;_2); PRF; _1(K;_1,(t;_1,...,1,_1))) which fol-
lows from the assumption for i. The second equality follows from the definition of F;_5 and the correctness of the SKE
scheme.

This completes the proof of the inductive step. O

Using the above claim we get prFE.cty = prFE;.Enc(prFE;.mpk, (xq,...,X,); PRF{(Ky, (r1,...,1,_1))) from
Step 7.2 of the decryption algorithm with probability 1. From the correctness of prFE; scheme, the decryption Step 7.2
outputs

y =prFE;.Dec(prFE;.mpk, prFE; sk, f, prFE;.ct)
=prFE;.Dec(prFE;.mpk, prFE;.sky, f, prFE;.Enc(prFE;.mpk, (xq, ..., Xu); PRF1(Ky, (11, ..., 15-1)))
=f(x1,...,Xn)

with probability 1. O

7.3 Security Proof for General n

Theorem 7.8. Let SC,ymiFe be a sampler class for prMIFE. Suppose prFE; scheme satisfies non-uniform x-prCT

security as per Definition B.1 for x = A 108 ith respect to the sampler class that contains all SamperE(l)‘),
induced by Samppr,\MFE € SCurmiFe. as in Equation (44), SKE satisfies sub-exponential INDr security and PRF; is

. . . 2 o
sub-exponentially secure, then prMIFE constructed above satisfies x-security for k = A" 1984 as per Definition 7.2.

. . . . 2
Furthermore, under the same assumptions, we have that prMIFE satsifies (x, €)-security with x = A" logA and
e = \—nlogA/2
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Proof. We first prove the former part of the theorem (i.e., x-security). Consider a sampler SampperFE that generates
the following:

1. Key Queries. It issues go number of functions f1, ..., fs, for key queries.

2. Ciphertext Queries. It issues 4; number of messages for ciphertext queries for slot i. We use x{" to denote the
ji-th ciphertext query corresponding to the i-th slot, where j; € [g;] and i € [n].

3. Auxiliary Information. It outputs the auxiliary information aux 4.
To prove the security of prMIFE, we first define {Sim; };c[,, as follows.
Sim;(msk) — ct; fori € [n—1].

— Parse msk = (SKE.sk, {prFE;.msk, prFE;.mpk};c,)-

Sample r; < {0,1}" and 7; < CT skE.
Compute prFE;  1.sk <— prFE;1.KeyGen(prFE; 1.msk, F;[y;, t;, prFE;.mpk]).

Output ct; := prFE;.sk.
Simy (msk) — ct,. Sample &, <= CT nFg, and output ct, = &,.
Then, it suffices to show

aux g, {prFE;.mpk}c(,], {erE"'Ctjn}jne[qn]’

{fk, skp, = erEl'Skfk}ke[ ” {SKE.ctéf, rzi, erEi+1.skji}ie[n71]r,
fo ji€lai]

aux 4, {prFE;.mpk}ic(,), {5{;1}]' o]
) n n (36)

e {fk, sky, = erEl.skfk}ke[ ],{yf, o, erEiH.sk/i},.e[n,l],
fo ji€lail

where (aux 4, { fx }«, {xz"}i,ji) — SampperFE(l)‘),

(mpk = {prFE;.mpk};, msk = (SKE.sk, { prFE;.msk, erEi.mpk}i)) + Setup(1*,1", prm),
prFEy.sky, < prFE;.KeyGen(prFE;.msk, fy) fork € [go],
SKE.ct/ < SKE.Enc(SKE.sk,x}'), ) « CTeke, 1/« {0,1}",

prFE; 1. KeyGen(prFE; ;.msk, Fi[SKE.ctgi, rﬁ:i, prFE;.mpk]) in LHS of Eq. (36)

erEH_l.Skji — i .
prFE; 1. KeyGen(prFE; 1.msk, Fi['yf’, 1{’, prFE;.mpk]) in RHS of Eq. (36)

prFE,.cti" « prFE,.Enc(prFE,.mpk, (SKE.sk, Xy, KI",..., K" |)), 8l  CT pre,,
K;” — {O,l}A, fori € [n—1], j; € [gi], and j, € [gn]

assuming we have

ke[qﬂ}/jlG[ql]r"'rjne[q"]>

<1K,auxA, { fir fk(x]f,. x{f)}

~ (1", aux 4, { fir A } (37)

ke[qo},jle[qllr---,jne[qn])

where (aux4, { fx }x, {x{:" i) < SampperFE(lA), and A{(l'”"j” + {0,1}. We prove this in the following two steps.
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» Step 1. We first show that Equation (37) implies

1%, auxy, prFE.mpk; 1%, auxy, prFE.mpk,
Ji Ji j
{SKEct/ Yicpnjiets]  {PFELS Yic i) |~ | (SKES i ljiclamse) {8 Ficy]coxlan

{fk, sk, = prFEj.sky, {fk, sk, = prFEj.sky

ke[qo] ke[qo)

(38)
where j = (j1,...,ju) € [q1] X+ X [qn), A <= CT prre,, and
prFE;.ctl < prFE;.Enc (erEl mpk, (x1 ,.- ]”)) .
* Step 2. We prove that Equation (38) implies Equation (36).
Step 1. We show the following lemma.

Lemma 7.9. If SKE satisfies subexponential INDr security, Equation (37) implies Equation (38).

Proof. We first prove the following:

K fi ji
(1 ,auxA,{fk, fk(xl, )}kE[qo],]le[ql], el {SKE.cti <—SKE.Enc(SKE.sk,xi)}ie[n el ]>

~~. (1K,auxA, { frr AJ1 }

where (aux_4, { fx }x, {x{:i}i,]-i) + Samp(1"), SKE.sk < SKE.Setup(1"), and A;'(l”“/j” < {0,1}. To prove this, we
observe

, {SKE.ct/' < SKE.Enc(SKE.sk, x/ ) (39)
kelgol 1 €lq1] - vjn€lqn] { ! ( l)}iG[n 1],ji€[q:]

,auxA,{fk, fd, f”)} {SKE et/ < SKE.Enc(SKE.sk, X/ )}‘ ,_
koj1seesjin Li

~e <1K,aux,4,{ fio Sl X}l eCTSKE}i]_) (40)

~ K i Ji

~e (1 Jaux g, { fio A }k,h,_"/],n, { FCTSKE}L]) (1)

~e (1K,auxA,{fk, apry o {SKE<t) SKE.Enc(SKE.sk,x{ff)}ij) 42)
J1se+s]n /i

Here, we justify each step of the equations above. We can see that Equation (40) follows from subexponential INDr
security of SKE, since SKE.sk is used only for computing {SKE.ctﬂ"}i,jl. and not used anywhere else. Note that by our

choice of the parameter oA > k() we can use the security of SKE even for an adversary who runs in time polynomial
in x. We can see that Equation (41) follows from Equation (37) by noting that adding random strings does not make the
task of disginguishing the two distributions any easier. Finally, Equation (42) follows from INDr security of SKE again.
We then consider a sampler Samp; that on input 1 outputs

(fl,.. Faor L XV Y clarl vl A0XT 2 (1 ,aux 4, {SKE.ct/ } e, 1],]16[%])).

By the security guarantee of prFE; with sampler Samp; and Equation (39), we obtain Equation (38). O

Step 2. To prove that Equation (38) implies Equation (36), we prove the following statement.
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Lemma 7.10. For /1 € [n] and an adversary .A, let us consider the following distinguishing advantage:
aux 4, {prFE.mpk;}ic(n, {SKE'Ct{"i’I{i}ie[”*l]/jie[qi]
Ad\,’j‘l()\)déf A {f sk, = prFE1sks brelgols
{PrFEi 15K i)l {PPFER-CY Ye g xx (gl
aux 4, {prFE.mpk;}icp), {SKECt{irrfi}ie[nfl],]}e[m]
A {frrskp, = PrFEl-Skfk}ke[qg]/ (43)
{PrFE; 1.5k b ic i1 jicias {0 Fielgy)x - [an]

where j = (j, .., ju), N CT orFE,» erEiH.sk]"' < prFE;; 1.KeyGen(prFE; 1.msk,F; [SKE.ctg",ri, prFE;.mpk]),
and

n—1/"n—

prFE;,.ct! < prFE,.Enc (erEh.mpk, (SKE.sk, (x]hh,rizh), N O rl”’i), (x{f,K]l", ... ,KL’LQ)) )

Then, for every h* := {h} € [2,n(A)]}, and every non-uniform adversary A = {A,}, such that Size(A) <
poly(;c),l2 there exists another non-uniform adversary B = {5, } , and a polynomial Q such that

Adv}gfl()\) > /—\dvf; (A)/Q(\) — negl(x) and  Size(B) < Q()\') - Size(A)

assuming the security of prFE as per Definition B.1 with respect to x and the subexponential security of PRF, where
A= AN,

Proof. We invoke the security of prFE;« with non-uniform sampler Samp,,.. that takes as input the security parameter
1" and outputs

i . Jir—1 _ - Jpr— i _
Functions: {Fh',_i =F.] [SKE-C’E;*,LI’Z*,L prFEy,« _1.mpk] }jh*—le[Qh*—l] ,
Inputs: {x]h*""']" = (SKE.sk, U T BRURN GV LN <l
P Oa 1) o K ) St dclan | - @44

aux 4, {prFE;.mpk}. i« 11, { fr, skf, = prFE;.sk ,
Auxiliary Information:  auge % [ 224 {p e Pkicie 1), 1fir S, Pjv 15K £, Feegol
{SKE.ct}, 1 Yicin1] jiclq)r {PFEir1:SK Fiep—2] jie g

We can see that the size of Samp is poly(A") = poly(A’), since qoq; - .. gn = poly(A™). We also consider the
following distributions:

(erEh* .mpk, {FQ’::;, prFE. skl -1 } -, {erEh* Enc(xfrin) } o, auxh*>
¥ reeer]n

Tn* -1

and (erEh*.mpk, {F#**:i, pI’FEh*.Sk]'h*fl}' , {N;,*,...,jn — CTerE,,* }]' j /aUXh*> ) (45)
h*reesln

Tn* -1

By the security guarantee of prFE- with respect to Samp;,., we can see that an adversary .A that can distinguish the
distributions in Equation (45) with advantage more than € can be converted into another adversary B that can distinguish

the following distributions with advantage more than ¢’ & ¢/ Q(MN) — negl(k) satisfying Size(B) < Q(A’)Size(A)
for some polynomial Q:

<{Fﬁfi} ,{Fﬁfji(xjh*'“"j")}, , ,auxh*)

Jnx -1 Jix —1re+e1]n

and <{F{fj_—§}, ,{A/h*fl/-wf" « CTerE,,*}, , ,auxh*>. (46)
i1 e

12Here, we deviate from our convention that the adversary runs in polynomial time in its input length. Note that k here may be super-polynomial in
the input length to A.
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By inspection, one can see that the distributions in Equation (45) are equivalent to those in Equation (43) with 1 = h*.13
Therefore, to complete the proof, it suffices to show that 3 can be used as a distinguisher against the distributions in
Equation (43) with h = h* — 1 whose advantage is at least € — negl(x). To show this, we first observe that the second
distribution in Equation (46) is equivalent to that in Equation (43) with & = h* — 1. Therefore, it suffices to prove that
A cannot distinguish the first distribution in Equation (46) from the first distribution in Equation (43) with h = h* — 1
with more than negligible advantage in x. To show this, we consider the following sequence of hybrids.

Hyb;. This is the first distribution of Equation (46). Recall that we have

prFEy _.mpk, (SKE.sk, (x5, 1 1), . (K KL ) ) 5

F) 1 (i rin) = prFEy- .Enc

PRFj 1 (K%, (1,0 dr 1))

n

Hyb,. This hybrid is the same as the previous one except that we replace PRF«_; (K{:ﬁ_l, -) with the real random

function R/ (-) for each j, € [msg]. Since KZi_l is not used anywhere else, we can use the subexponential
security of PRF to conclude that this hybrid is computationally indistinguishable from the previous one. In
particular, by our choice of the parameter oA x“() | we can conclude that the adversary cannot distinguish
this hybrid from the previous one with advantage more than negl(x).

Hybs. This hybrid is the same as the previous one except that we output a failure symbol when there exist

. . 5! ./
(-1, rjn—1) # (s _qs- -, Jlh_q) such that (erji,...,rﬁj) = (rﬁfj,...,#j). We show that the
probability of this happening is negligible in x. To prove this, it suffices to show that there are no i €
[h* —1,n—1],j,j € [qi] satistfying j # j’ and rJZ = rﬁ/. The probability of this happening can be bounded by
(43 +---q>_;)/2*" by taking the union bound with respect to all the combinations of i, , j'. By our choice of
A, this is bounded by negl(x).

Hyb,. In this hybrid, we replace F]hhf:i (xw* i) with

prFE;«_q.cti*~1-vin — prFE,._.Enc (erEh*_l.mpk, (SKE.sk, (i1 g1y, (x@KflKLz))) .

Namely, we use fresh randomness for each encryption instead of deriving the randomness by R/ (rﬁfji, ceey r;”j ).
We claim that this change is only conceptual. To see this, we observe that unless the failure condition introduced
in Hybs is satisfied, every invocation of the function Rin is with respect to a fresh input and thus the output can be
replaced with a fresh randomness.

Hybs. In this hybrid, we remove the failure event. Namely, we always outputs prFE;« _j.ct;. . regardless of
whether the failure event happens or not. Since the failure event happens with probability only negl(x) probability,
we conclude that the adversary is not able to distinguish this hybrid from the previous one with more than negl(x)

probability.

Noting that the final hybrid is equivalent to the first distribution in Equation (43) with h = h* — 1, we complete the
proof. O

Lemma 7.11. Assuming that Adv}4 (A) (defined in Equation (43)) is negligible in x for all non-uniform adversary .4 such
that Size(.A) = poly(x), we have Advj;(A) = negl(A) for all non-uniform adversary B such that Size(B) = poly(A).

Proof. For the sake of contradiction, suppose that there exists an adversary B = {83, } , such that €,,(A) défAdv%(A)

is non-negligible and t,(A) o Size(B) is polynomial in A. In particular, this implies that there exists an infinite

3Equation (45) includes additional terms {Fﬁ’:j } ju+_, While Equation (43) does not. We ignore this difference, since theses terms can be
efficiently computed from aux;+ and does not affect the indistinguishability.
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set £ C IN and some polynomial p such that €,(A) > 1/p(A) and t,(A) < p(A) forall A € L. We then define
ti(A) (jéfp()\))\”("*i) logA and €;(A) défl/p(/\)/\”(”’i) logA fori =1,...,m — 1. We can also see that #;(A) < x and
€1(A) > 1/« for sufficiently large A. This implies that there exists Ay € IN such that for all A > A, there is no
adversary A, such that Size(A,) < t;(A) and Adv}4A (A) > €1(A). We then consider the following statement that is

parameterized by A and h € [n]:
Statement, j,: There exists an adversary A, such that Size(A)) < t;(A) and Adv’}tA (A) > ex(A).

For each A € LN N, there exists 1} € [2,1] such that Statement/\/h;,l is false and Statement;\,h; is true,
since Statement, 1 is false and Statement) , is true. However, by applying Lemma 7.10 to the adversary guar-
anteed by Statement, j,x being true for the sequence {h} } 1, we obtain another adversary A" = {.A’ }, such that

Size(A))) < t-Q(A") and Advﬁfl (A) > €/ Q(A") — negl(x) > €4+« /2Q(A") for some polynomial Q. In partic-
A
ular, Size(A) < tj+_1(A) and Adv’j,_l()\) > €j+_1(A) for all sufficiently large A, since we have A"1°84 > Q(A")
A

for all sufficiently large A. However, this contradicts the above assertion that Statement A —1 is false. This concludes
the proof. O

The following lemma completes Step 2 of the proof of Theorem 7.8.
Lemma 7.12. If SKE is INDr secure, Equation (38) implies Equation (36).

Proof. We first observe that Equation (38) is equivalent to saying Adv} (A) = negl(x) for all A with Size(A) =
poly(x). By Lemma 7.11, this implies that Adv’y (A) = negl(A) for all A with Size(.A) = poly(A). Namely, we have

aux, {prFE;mpk}ic(,], {fk/ skp, = erEl.skfk}ke[qO]

{SKE.ct], xf, prFE;. 1.5kl bicq 1), {PFE,ct?},
ji€lail
aux, {prFE;.mpk}c(y), {sz skp = erEl.skfk}ke[qO]
e {SKE.ctf, o, erEiH.skfi}ie[n_l],, {5{1" e
ji€lail e
By INDr security of SKE, we have
aux, {prFE;.mpk}ic(,], {sz skp = erEl'Skfk}ke[qg}
i i i in (48)
{SKE.ct], xf, prFE 1.5k }icpy ), {0 e
ji€lail e
aux 4, {prFE;.mpk}c(y), {fk/ skp = erEl.skfk}ke[qO]
o {W?, r, erEi-&-l-Skji}ie[nfl],/ {W}, <]
ji€lai] =t
Combining the above equations, Equation (36) readily follows. O

The above concludes the proof of the former part of Theorem 7.8. We then move to the proof of the latter part of
the theorem (i.e., («, €)-security). The proof for the latter part is almost the same as the former part. In more detail,
Step 1 of the proof is exactly the same. In Step 2, we prove that Equation (38) implies that the two distributions in
Equation (36) is not distinguishable for a PPT adversary with advantage more than A~710gA/2 - Ror doing so, we
strengthen Lemma 7.11 so that we have Advl;(A) = A=2*198A/3 instead of Adv};(A) = negl(A). This is proven in
almost the same manner by setting p(A) to be p(A) = A?*1984/3_ Then, we have that the distributions in Equation (47)
are not distinguishable for any PPT adversary with advantage more than A ~2"1°84/3 By sub-exponential INDr security
of SKE, we have that the distributions in Equation (48) are not distinguishable for any PPT adversary with advantage
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more than negl(x). Combining these, we the two distributions in Equation (36) are not distinguishable for any PPT
adversary with advantage more than A ~"1°84/2_since we have negl(x) + A~ logA/3  \—nlogA/2 This completes
the proof of the theorem. ]

Remark 7.13 (Comparison with [VWW?22]). We note that in high level, overall structure of our security proof above is
similar to that of witness encryption in [VWW22]. In both proofs, the main step considers parameterized distributions
{Dnp} hen)be{o,1} and shows that Dy g ~¢ D11 holds if Dy, g and Dy, 1 are indistinguishable even with subexponentially
small advantage against subexponential time adversary. To show this claim, [VWW22] uses the evasive LWE assumption,
while we use the security of prFE, which in turn is reduced to the evasive LWE assumption. While this difference
stems simply from the fact that we introduce the intermediate primitive of prFE to construct prMIFE instead of directly
constructing it from evasive LWE, there are more fundamental differences as well. In particular, we identify certain
subtle issues in the proof by [VWW22] and fix these by strengthening the assumptions. We elaborate on this in the
following.

On the multiplicative invocation of evasive LWE. To prove D1 g ~. Dj 1, [VWW22] assumes that there exists an
adversary A; that distinguishes them with non-negligible advantage € and polynomial time f for the sake of
contradiction. They then invoke the evasive LWE assumption with respect to an appropriately defined sampler
Samp; to conclude that there exists a distinguishing adversary A, against D, g and D, 1. This process continues
multiple times, where they invoke evasive LWE with respect to the security parameter A; := 2/ A and an adversary
.A]- for the j-th invocation to obtain another adversary A]-H, where Aj is a distinguisher against Dy o and
Dy.1- Denoting the distinguishing advantage against Dj and D;; of A; by €;, we have €1 > €;/ poly]- (Aj)s
where polyj is a polynomial that is determined by the sampler Sampj. Finally, they obtain a distinguisher
A, against D, o and D,, 1, where €, = €/poly;(A1)poly,(Az) - - - poly, (A;) and the running time being
poly; (A1)poly,(Az) - - - poly,, (As). They derive the conclusion by saying

poly; (A1)poly,(A2) - - - poly, (Ax) = poly(A1 - - A) = poly(2"°A") (49)

and setting the parameter so that there is no adversary of this running time and distinguishing advantage against
Dy,o and Dy,1. However, a subtlety is that poly; (A1)poly,(A2) - - - poly, (An) = poly(Ay - -~ Ay) is not
necessarily true. For example, one can consider the setting where we have poly]- (A) = A? . This example
may look a bit artificial, but it does not contradict the evasive LWE assumption, since j is treated as a constant
asymptotically. In words, the issue arises from the fact that even if each polynomial has a constant exponent,
the maximum of the exponents can be arbitrarily large function in A, when we consider non-constant number of
polynomials. In this setting, .4, s distinguishing advantage is too small to derive the contradiction.

The above issue occurs due to the invocations of evasive LWE super-constant times. To resolve the problem,
we consider non-uniform sampler {Samp,,. };+ that hardwires the "best" index /* and invoke the evasive LWE
only with respect to this sampler (See Lemma 7.10 and 7.11). We avoid the above problem, since we invoke the
evasive LWE only once in the proof. However, this solution entails the strengthening of the assumption where we
consider non-uniform samplers. We believe that the same strengthening of the assumption is required for the
proof in [VWW22] as well.

On the additive term of evasive LWE. Here, we also discuss the other subtlety that arises in the proof by [VWW22].
To focus on the issue, we ignore the first issue discussed above and assume polyj (A) = A€ holds for some
fixed ¢ € IN that does not depend on j, which makes Equation (49) correct. In the proof of [VWW22] (and in
our explanation above), we implicitly ignore the negligible additive term when applying evasive LWE. Namely,
when we apply the assumption with respect to .Aj, the lower bound for the advantage €1 of .A]-H should be
€j+1 > €j/poly(A;) — negl(A;) rather than €1 > €;/poly(A;). This does not cause any difference when
we consider the setting where €; is non-negligible in )\]-. However, for larger j, €;j 1s negligible function in
the security parameter A;. Concretely, the lower bound on €,,_1 obtained by ignoring the additive term is

e/ poly(Z("_l)z)\”_l).14 If we apply evasive LWE once more with respect to A,, = 2" A" to complete the proof,

14Namely, the actual value of €,,_; may be even smaller.
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we have €, > €,,_1/poly(A,) — negl(A,). The RHS of the inequality may be negative, since €,_1/poly(Ay)
is some specific negligible function in A, and this may be smaller than the second term negl(A,,). Therefore,
what we can derive here is the trivial bound €, > 0, which is not enough for our purpose. To fix this issue, we
introduce additional parameter x and then modify the assumption so that the additive term is negligibly small in %,
which is set much larger than A. Again, we believe that the same strengthening of the assumption is required for
the proof in [VWW22] as well. Finally, we note that the above problem does not occur when # is constant. This
is because in that case, we have €, is non-negligible and thus the problem of €, may be smaller than negl,, does
not occur.

7.4 Security Proof for Constant n (with Weaker Assumption)

Here, we prove the security of our construction in the case of 7 being a constant. The reason why we consider the
security proof separately for this special case is that we can give a proof from better assumptions than the general case.
In more detail, the security is proven assuming the standard security notion for prFE, rather than the non-uniform and x
version of it. As a result, the security of the prMIFE is reduced to the the (plain) evasive LWE instead of non-uniform
x-evasive LWE. The reason why we can achieve this is that in the case of n being constant, we can avoid all the subtleties
that arise in the general case. We refer to Remark 7.13 for more discussions.

Theorem 7.14. Let SCpmiFe be a sampler class for prMIFE. Suppose prFE; scheme satisfies prCT security as per
Definition 4.2 with respect to the sampler class that contains all SamperE(l/\), induced by Samp 1 pg € SCprmiFe,
as in Equation (44), SKE satisfies INDr security and PRF; is secure, then prMIFE constructed in Section 7.2 for constant
n satisfies security for k¥ = A" as in Definition 7.2.

Proof. The proof of this theorem largely follows that of Theorem 7.8. The crucial difference is that to get the equivalent
of Lemma 7.11, we simply invoke the (non-x, uniform) security of prFE n-times. We sketch the proof below while
highlighting the difference. We consider the same simulator as in the proof of Theorem 7.8 and divide the proof steps
into Step 1 and Step 2 in the same manner.

* We start with Step 1, which consists of proving that Equation (37) implies Equation (38). This is proven in the
same manner as Lemma 7.9. However here, since we set k = A" = poly(A), we do not need subexponential
INDr security and only (polynomial) INDr security suffices for SKE.

* We then move to prove Step 2. The goal here is to prove Equation (38) implies Equation (36).

— We first observe that the uniform version of Lemma 7.10 holds by the same proof, where we only consider
constant ¥ rather than arbitrary sequence 1* = {I} } , and uniform PPT adversaries. Notice that then the
sampler is now uniform, since it no longer has to hardwire the sequence {hf\} A- In this setting, non-uniform
k-prCT security collapses to the (plain) prCT security, since k = A" = poly(A) and the sampler is uniform.
Therefore, plain prCT security is sufficient for the proof. Furthermore, since we set k = A" = poly()\), we
do not need subexponential security for PRF and standard security suffices.

— We then consider an analogue of Lemma 7.11, which asserts that if Adv}4()\) (defined in Equation (43)) is
negligible for all (uniform) PPT adversary that runs in polynomial time in A, then so is Adv’ (A). This
is proven by observing that the indistinguishability of the distributions in Equation (43) for h = h* — 1
implies that for #* by the analogue of Lemma 7.10 explained in the previous item. By applying this n-times,
we obtain the conclusion.

— We finally conclude the proof by the same argument as Lemma 7.12.

This completes the proof of Theorem 7.14. O

8 Multi-Input Predicate Encryption for Polynomial Arity for P

In this section, we provide our construction of multi-input predicate encryption (miPE) for all circuits as an application
of prMIFE. Similarly to Section 7, we consider two settings where the arity is either constant or arbitrary polynomial.
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8.1 Construction

In this section, we give a construction of a miPE scheme using prMIFE and PE. The construction will support functions
with arity n = n(A) where input string for each arity is in {0, 1}% and the output is {0, 1}. We further restrict the depth
of the circuits that implement the function by a parameter dep. We denote this function class by Fprm, where prm is the
set of the parameters 7, L, dep. Namely, Fprm consists of n-ary functions that takes as input strings x1, .. ., X,, where
each x; € {0,1}% and outputs f(x1,...,x,) € {0,1}. The message space for each slot is {0,1}. Namely, we have
Hi,---, 1n € {0,1} in the following.

Building Blocks. Below, we list the building blocks required for our construction.

1. A single input predicate encryption scheme PE = PE.(Setup, KeyGen, Enc, Dec) for function family supporting
functions f : {0,1}"F — {0, 1} that can be represented as circuits with depth at most dep. We denote by this
function class by ]:PrmPE’ where prmpg = (I”L, ldep) is the parameter that specifies the circuit class. We also
assume that the scheme has message space {0,1}" and satisfies sub-exponential INDr security (Definition 3.23).
We can instantiate such a PE by using the construction by [GVW15b] or by the combination of lockable
obfuscation [WZ17] (a.k.a compute-and-compare obfuscation [WZ17]) and ABE for circuits by [BGG ™ 14], for
example. We will generate the PE instance with respect to possibly scaled security parameter A. We will discuss
how to set A in Remark 8.1.

We use C7 pg to denote the ciphertext space, chtE to denote the ciphertext length and d EEC to denote the depth of
the circuit required to compute the PE.Enc algorithm.

2. An+ 1-input FE for pseudorandom functionalities prMIFE = prMIFE.(Setup, KeyGen, Encg, Enc;, . .., Ency,, Dec)
for function family A)APE. consisting of circuits with input space {0, 1}L/ and output space {0, 1} where we
set L' = max{¢EE +nA + A +2,2¢ + 1+ A} for our construction and with maximum depth dEE_. We denote
the parameters that specify J, L/(A),dRE. by prmyvire. We can instantiate it by the construction we obtained in
Section 7.

3. A puncturable pseudorandom function PRF : {0,1}* x {0,1}" — {0,1}Ren, where {0,1}* and {0,1}"* are

the key space and input space respectively and Ry, is the length of randomness used in the PE.Enc algorithm.
We require the puncturable PRF to satsify the sub-exponential security.

Next, we describe our construction.
Setup(1*,1", prm) — (mpk, msk). The setup algorithm does the following.
Generate (prMIFE.mpk, prMIFE.msk) < prMIFE.Setup(1%,1", PrMoeMIFE)-

— Generate (PE.mpk, PE.msk) ¢ PE.Setup(1%, prmpg).

Sample K + {0,1}".

Generate prMIFE.ct,, 1 < prMIFE.Enc;, 1 (prMIFE.msk, (K, 0,0, L)).

— Compute prMIFE.skp <— prMIFE.KeyGen(prMIFE.msk, F[PE.mpk]) where F|PE.mpk] is defined as follows:

Circuit F[PE.mpk]

Input: (K, cnt, flag, PE.ct™), (X1, 1,11, X, 1Y), - - - (Xny s X X, 17,)
1. Define R % (r1,...,1y).
2. It computes PE.ct as follows:

PE.Enc(PE.mpk, (x1,...,Xu), (41,..., 4n); PRF(K,R)) ifcnt <R
PE.ct = ¢ PE.ct* if (ecnt = R) A (flag =1)
PE.Enc(PE.mpk, (x},...,x},), (4}, ..., 1y); PRF(K,R)) else

where R is interpreted as an integer in [2"*] by some bijection between {0,1}"* and [2"] here.
3. Output PE.ct.
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— Output mpk = (prMIFE.mpk, prMIFE.skg, prMIFE.ct, 1, PE.mpk) and msk = (prMIFE.msk, PE.msk).
KeyGen(mpk, msk, f) — sk . The key generation algorithm does the following.

— Parse mpk = (prMIFE.mpk, prMIFE.skg, prMIFE.cty, PE.mpk) and msk = (prMIFE.msk, PE.msk).
— Compute PE.sk; < PE.KeyGen(PE.msk, f).
— Output sky = PE.sky.

Enc;(msk, x;, t;) — ct; for 1 < i < n. The slot i encryption algorithm does the following.

— Parse msk = (prMIFE.msk, PE.msk).
— Sample r; + {0,1}* and compute prMIFE.ct; + prMIFE.Enc;(prMIFE.msk, (x;, i, 1;, L, 1)).
— Output ct; := prMIFE.ct;.

Dec(mpk,skf, f,cty, ..., cty) =y € {0,1}" U {L}. The decryption algorithm does the following.

Parse mpk = (prMIFE.mpk, prMIFE.skg, prMIFE.ct; 1, PE.mpk), skf = PE.skgand {ct; = prMIFE.cti}ie[n].
Compute PE.ct = prMIFE.Dec(prMIFE.mpk, prMIFE.skg, F, prMIFE.cty, . .., prMIFE.ct,, prMIFE.ct, 1 1).
Compute y = PE.Dec(PE.mpk, PE sk, f, PE.ct).

— Output y.

Remark 8.1. Here, we discuss how we set A. Similarly to the case of prMIFE in Section 7, we consider two cases of
parameter settings for the construction. One is the case of 1 being constant. In this case, we simply set A = A. In the
general case of n = poly(A), we assume that PRF and SKE are subexponentially secure. This means that there exists

0 < 6 < 1 such that there is no adversary with size 2" and distinguishing advantage 2N, Similarly to the case of
prMIFE (See Remark 7.5 for further discussion), we set A so that it satisfies 20 > x¢(1) . An example choice would be

to take A := (n?A)1/°,
Correctness. We prove the correctness of our scheme using the following theorem.

Theorem 8.2. Assume PE and prMIFE schemes are correct, and PRF is secure. Then the above construction of miPE
scheme is correct.

Proof. From the correctness of the prMIFE scheme and definition of function F[PE.mpk], we have
prMIFE.Dec(prMIFE.mpk, prMIFE.skg, F, prMIFE.cty, . .., prMIFE.ct,, 1 1) = PE.ct
with probability 1, where
PE.ct = PE.Enc (PE.mpk, (x1,...,Xn), (41,.-., 4n); PRF(K,R)).
If we replace PRF (K, R) with truely random R’, we have
PE.Dec(PE.mpk, PE sk, f, PE.Enc (PE.mpk, (x1,. ., %n), (1, ., tn); R')) = (1, ..., tin)

by the correctness of the PE. The decryption succeeds with all but negligible probability even if the randomness is
replaced with PRF (K, R), by the security of PRF.
O
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8.2 Security

Here, we prove the security of our scheme. The following theorem asserts the security of the scheme for the case of n
being arbitrary polynomial.

Theorem 8.3. Assume prMIFE scheme is (k, €)-IND-secure (as per Definition 7.4) with respect to k¥ = A(n+1)?logA

and € = A~ (m+1)10gA/2 PE gcheme is sub-exponentially secure (Definition 3.23), and the puncturable PRF is
sub-exponentially secure. Then the construction of miPE is secure as per Definition 3.25.

Proof. Suppose the PPT adversary .4 outputs the following:

1. Key Queries. It issues go number of functions f1, ..., fs, for key queries.

2. Ciphertext Queries. It issues g; number of messages for ciphertext queries for slot i. We use (x{"o, 7"?0)' (xf."'l, V£i1)
to denote the j;-th ciphertext query corresponding to the i-th slot, where j; € [g;] and i € [n].

3. Auxiliary Information. It outputs an auxiliary information aux 4.

‘We have to prove
mpk = (prMIFE.mpk, prMIFE.skg, prMIFE.ct,, 1, PE.mpk),
aux 4, {fk,skfk = PE.skfk}

{ct] = prMIFE.Enc; (prMIFE.msk, (xl, iy, o, L, 1)) }

kelqo)”

i€[n],ji€lq;]
mpk = (prMIFE.mpk, prMIFE.sk, prMIFE.ct,, .1, PE.mpk),
k = PE. k
. aux 4, {fk/s i ° fk}ké[%] ’ G0

Ji — i i i
{ctl = prMIFE Enc; (prMIFE.msk, (', ], 7 /L’L))}ie[n],j,ve[qi]

where
(auxa, {fitrs {(xﬁor .uéfo)r (xéflr Vﬂ)}i,]’,‘) — A(1Y),

mpk = (prMIFE.mpk, prMIFE.skg, prMIFE.ct,, . 1, PE.mpk), msk = (prMIFE.msk, PE.msk)) < Setup 14,17, prm),
( +
PE.sks, < PE.KeyGen(PE.msk, fi) for k € [qo],

i A . .
rﬁ «—{0,1}" fori € [n],j; € [gi].
We prove this via the following sequence of hybrids.

Hyb;. This is the LHS of Equation (50). Namely,

aux 4, prMIFE.mpk, prMIFE.skg, PE.mpk, {fk,skfk = PE'Skfk}k e
€lq0

prMIFE.ct, 1 = prMIFE.Enc,, 1 (prMIFE.msk, (K, 0,0, 1)),
{ctl = prMIFE.Enci (prMIFE.msk, (xj, 1l 1l 1, 1)) }

i

i€[n] ji€[q;]

where we arrange the terms.

Hyb,. This hybrid is the same as the previous one except that we change how we compute ct{i for all i € [n] and
ji € [q;]- Namely, we compute

ct)’ = prMIFE.Enc; (prMIFE.msk, (x\o, ulio, ¥f, X1y, ).
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We can see that for all combinations of jy, . . ., j,, the decryption result of prMI FE.ctj1 ,.--,prMIFE. ct]” , PrMIFE.ct; 41
using prMIFE.skp is unchanged from the previous game by the definition of F[PE.mpk]. In particular, F[PE.mpk]

simply ignores the newly added terms (xﬁl, Vﬁl ), since the relevant branch is not triggered. Furthermore, these
decryption results are pseudorandom even for an adversary who runs in polynomial time in k. We show this in
Lemma 8.4 in a generalized form, which gives what we need here as a special case of [* = 0. Therefore, this
game is computationally indistinguishable from the previous game by the («, €)-IND-security of prMIFE.

Hybs. This hybrid is the same as the previous one except that we output a failure symbol when there exist
. ‘ P ,,

(i,--erjn) # (..., fh) such that (¢}},...,1)y) = (},...,10). We show that the probability of this

happening is neghglble in A. To prove this, it suﬂices to show that there are no i € [n], j,j' € [g;] satisfying

j #j and r] r] The probability of this happening can be bounded by <‘71 qn—l) /2" by taking the
union bound with respect to all the combinations of 7, j, j/, which can be bounded by negl(A).

Here, we introduce several notations before describing further hybrids. Each combination of indices j; € [q1],...,jn €
[gn] specifies an element Rivrin = (r/f, ceey r],f) There are g1 - - - g, such elements, and due to the change introduced
in Hybs, we know that they are all distinct. We regard each R/~ as a number in [2"}] via the bijection with {0, 1}",
and we sort them in ascending order. Let Q def q1---qnand {R} Je[q] denote the sorted sequence corresponding to
the set {RIvIn}y o elga)- We also define R? = 0, which impltes RY < R] for any | € [Q]. Foreach | € [Q]
and b € {0,1}, we also define X] (x1 PR ',) and Ml]; = (yjlllb,...,y{zb)), where (ji, ..., jn) is the unique

combination of indices such that R/ = (rl1 . r7 ")
We then define Hybs ; for | € [0, Q] as follows

Hybs ;. This hybrid is the same as Hybs except that we change how we compute prMIFE.ct; 1. Namely, we compute
prMIFE.ct, 1 = prMIFE.Enc,1(prMIFE.msk, (K, R/,0, L)).

Hybs ( is exactly the same as Hybjs, since we defined RO = 0. We then want to prove that Hybs ¢ is computationally
indistinguishable from Hybs . Towards this goal, we show that Hybs ;_; is indistinguishable from Hybs ; for all
J € [Q] with subexponentially small advantage, since there are exponentially many hybrids (i.e., Q + 1 hybrids). To
establish this, we introduce the following additional sub-hybrids.

Hybs ;9. This is the same as Hybs ;.

Hybs ; 1. This is the same as Hybs ; o except that we compute prMIFE.ct; ;1 as

prMIFE.ct,, 1 = prMIFE.Enc,, 41 (prMIFE.msk, (K{R/}, R/, 1, PE.ct*)),

where
PE.ct* = PE.Enc(PE.mpk, X}, M);PRF(K,R))) and K{R'} = Puncture(K, R)).

We can see that for all combinations of jy, . . ., j,, the decryption result of prMI FE.ctjl, .., prMIFE. ct]” prMIFE.ct),+1
using prMIFE.skr is unchanged from the previous game by the correctness of the puncturable PRF and by the

definition of F[PE.mpk]. In particular, for the particular combination of i, ..., j, such that R/ = (r7 Lo 0 )s

the decryption of prMI FE.ct/ 1, .., prMIFE. ct] using prMIFE.skr triggers the branch of the function that outputs
PE.ct* encrypted under prMIFEn_H.ct. However, this PE ciphertext is exactly the same as the one output by the
decryption of the same combination of the ciphertexts and the secret key in the previous game. Furthermore,
these decryption results are pseudorandom even for an adversary who runs in polynomial time in x. To see this,
we apply Lemma 8.4 for the case of |* = |. Therefore, we can conclude that the adversary cannot distinguish
this hybrid from the previous one with advantage more than € = A~ (n+1)logA/2 by the (x, €)-IND-security of
prMIFE.
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Hybs ;. This is the same as Hybs ; 1 except that we replace PRF(K, R)) with real randomness. Namely, we set

PE.ct* < PE.Enc(PE.mpk, X}, M}).

By the subexponential security of the pucturable PRF PRF, this hybrid is computationally indistinguishable from

. . . 5
the previous one. In particular, by our choice of the parameter 2" > k“() we can conclude that the adversary

cannot distinguish this hybrid from the previous one with advantage more than k@) < A~ (n+1)logA/2,

Hybs ; 3. This is the same as Hybg ; , except that PE.ct” is computed as

PE.ct* < PE.Enc(PE.mpk, XJ, M]).

By the subexponential security of PE, this hybrid is computationally indistinguishable from the previous one,

since we have fk(X(])) = fk(X{ ) = 0. In particular, by our choice of the parameter 27 > k@) we can
conclude that the adversary cannot distinguish this hybrid from the previous one with advantage more than
x—w(@1) « A—(n+1)logA/2

Hybs ;4. This is the same as Hyby ; 3 except that PE.ct™ is computed as
PE.ct* < PE.Enc(PE.mpk, XJ, M/; PRF(K, R))).

Similarly to the difference between Hybs ; ; and Hybs ; 5, by the security of the puncturable PRF, this game is
computationally indistinguishable from the previous one with advantage more than A~ (n+1)logA/2

Hyb3 ;5. This game is the same as Hybg ;.1 o. Namely, we unpuncture K and compute prMIFE.ct, 1 as

prMIFE.ct,, 1 = prMIFE.Enc, 1 (prMIFE.msk, (K, R/*1,0, 1)).

Similarly to the difference between Hybs ;g and Hybs j 1, by the correctness of the puncturable PRF and the
(x, €)-IND security of prMIFE, this game is computationally indistinguishable from the previous one with

advantage more than A~ ("t1)1084/2 T invoke the security of prMIFE, we use Lemma 8.4 with [* = ] + 1.
The above shows that the adversary cannot distinguish Hybs ;1 from Hybs ; with advantage more than 5~ (1) logA/2,
This implies that Hybs and Hyb;  is computationally indistinguishable, since we have

Q . (5)\—(7’l+1)10g)\/2) <5 (ﬁ%) A—(?’H—l)log)\/z —5 (ﬁ%‘//\log/\/2> A~ logA/2 _ negl()\)

i=1 i=1

Hyby,. This is the RHS of Equation (50). Namely,

aux 4, prMIFE.mpk, prMIFE.skg, PE.mpk, {fk,skfk - PE.skfk}k o’
€90

prMIFE.ct,.1 = prMIFE.Enc,, 1 (prMIFE.msk, (K,0,0, 1)),

Ji _ Ji i i
{ctl = prMIFEEnc; (prMIFE.msk, (xJ, iy, o, L, L))}ie[m]%e[qi]

We claim that this hybrid is computationally indistinguishable from Hybs 5. To see this, We claim that

for all combinations of ji, ..., ju, the decryption result of prMIFE.ct]!, ..., prtMIFE.ctlf, prMIFE.ct, ;1 using
prMIFE.skr is unchanged from Hybs 5 by the correctness of the puncturable PRF and by the definition of

F[PE.mpk]. In particular, F[PE.mpk] always outputs PE ciphertext for {(xgil, ygil ) }; in both games. Furthermore,
these decryption results are pseudorandom even for an adversary who runs in polynomial time in k. To see this,
we apply Lemma 8.4 for the case of [* = Q. Therefore, we can conclude that this hybrid is computationally

indistinguishable from Hybs ; by the (x, €)-IND-security of prMIFE.
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To complete the proof of the theorem, it remains to prove Lemma 8.4.

Lemma 8.4. For any J* € [0, Q], the following two distributions are computationally indistinguishable

1%, aux 4, PE.mpk, 1%, aux 4, PE.mpk,

{forsks, = PE'Skfk}ke[qo]’ {fisks = PE'Skfk}ke[Q]’

{PE.ctf = PE.Enc(PE.mpk, X{,M{;PRF(K,RJ))}] - e {PE.ctf — CTPE}
e *

7

Je]

{PE.ctI = PE.Enc(PE.mpk, X}, M); PRF(K, RJ))} {PE.ctf - CTPE}

Je[J*+1,Q] JelJ*+1,Q]

where

(auxa, { ficho { Kl 1), Ky i) Yig) = ALY,
(PE.mpk, PE.msk) < PE.Setup(1", prmpg),
PE.sks < PE.KeyGen(PE.msk, fi) for k € [qo].

Proof. We start from the LHS of the above distributions and gradually change it to that of the RHS. Our first step
is to change all the PRF values {PRF(K, R/ )} je|o) used inside the PE encryption to be truly random. This change
is unnoticed by the distinguisher by the sub-exponential security of the PRF and by our choice of the parameter
2A% > (@) I particular, the distinguishing advantage of the adversary is less than x~“(1) even if it runs in time
polynomial in x. We then change all the PE ciphertexts to be chosen from C7 pg. This change is unnoticed by the
distinguisher by the sub-exponential security of the PE and by our choice of the parameter 27 5 1«@() | In more detail,
we may change all the ciphertexts to be random one-by-one, using the security of the PE. The distinguishing advantage
of the adversary for each change is less than x~“() even if it runs in time polynomial in «, by the sub-exponential
security of the PE. There are Q < poly(x) number of ciphertexts and the overall distinguishing advantage is bounded

by poly(x) - k=) = x=«(1) This completes the proof of the lemma. O

This completes the proof of the theorem. O
Constant arity case. In the special case of n being a constant, we can base the security of the scheme on weaker
security requirements for the underlying ingredients. Concretely, we have the following theorem.

Theorem 8.5. Assume prMIFE scheme is x-IND secure (as per Definition 7.4) with respect to x = A", PE scheme is
secure (Definition 3.23) and PRF is secure. Then the construction of miPE is secure as per Definition 3.25.

The proof of the above theorem is exactly the same as Theorem 8.3 except that here ¥ = A”. Since ¥ = poly(A),
we do not need subexponential security for PRF and PE. In addition, since Q = g1 - - - g, = poly(A) for constant 7,
the number of hybrids that appear in the proof is only polynomial in A. Therefore, we do not need (x, €)-IND security
for prMIFE for subexponentially small € here. Since prMIFE for constant arity with x = A" can be constructed from
(plain) evasive LWE, we can base the security of prMIFE on the same assumption with suitably defined sampler. This is
weaker assumption than non-uniform x-version of it that is necessary for the general case.

9 Indistinguishability Obfuscation for Pseudorandom Functionalities

9.1 Definition
Syntax. Anindistinguishability obfuscator for pseudorandom functionalities (prlO) consists of the following algorithms.

i0(1*,C) — C. The obfuscation algorithm takes as input the security parameter A and a circuit C : {0,1}" — {0,1}"
with arbitrary n and m. It outputs an obfuscated circuit C.
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Eval(C,x) — y. The evaluation algorithm takes as input an obfuscated circuit C and an input x € {0,1}". Tt outputs v.

A uniform PPT machine iO is an indistinguishability obfuscator for pseudorandom functionalities w.r.t parameter
k = x(A) if it satisfies the following properties.

Definition 9.1 (Polynomial Slowdown). For all security parameters A € IN, for any circuit C and every input x, the
evaluation time of iO(lA, C) on x is at most polynomially slower than the run time of the circuit C on x.

Definition 9.2 (Correctness). For all security parameters A € IN, for all integers 1, m, all circuits C : {0,1}" — {0,1}",
and all input x € {0, 1}", we have that:

Pr[C' «i0(1,C) : C'(x) =C(x)] =1
where the probability is taken over the coin-tosses of the obfuscator iO.

Definition 9.3 (Indistinguishability for Pseudorandom Functionality). For the security parameter A = A(A), let
Samp be a PPT algorithm that on input 1%, outputs

(Co,C1, aux € {0,1}")

where Cp : {0,1}" — {0,1}" and C; : {0,1}" — {0, 1} have the same description size. We say that a prlO scheme
is secure if for every PPT sampler Samp the following holds.

If <1K, {CO(X)}xe{O,l}n,aUX) . (1K, {Ax < {O,l}m}xe{O,l}n,aUX>
and Cy(x) =Ci(x) Vxe{0,1}",
then (iO(l)‘,CO),aux) S (iO(l)‘,C1),aux)

where x > 2.

Remark 9.4. Note that 1* in the precondition is introduced for the purpose of padding, allowing the distinguisher for
the distributions to run in time polynomial in x. The reason why we require ¥ > 2" is that the input length to the
distinguisher is polynomial in 2" anyway and in order for the padding to make sense, x should satisfy this condition.

Remark 9.5. Note that the above security definition is strictly weaker than the standard security notion for I0 [GGH T 16],
since we require that the obfuscation of the circuits to be indistinguishable only when their truth tables are pseudorandom.

9.2 Construction

Our construction follows the multi-input FE to iO conversion by [GGG™ 14]. To obfuscate a circuit with input domain
{0,1}", we generate a prMIFE instance for arity n + 1. We then let C be encrypted in position # + 1, and the two
inputs 0 and 1 be encrypted in position i for i € [n]. The 21 4 1 ciphertexts together with a secret key for the universal
circuit and the public parameters would form the iO.

Building Blocks. We use a (1 + 1)-input prFE scheme prMIFE = prMIFE.(Setup, KeyGen, {Enc; } 1), Dec) for

the circuit class with fixed input length, bounded depth, and binary output. We require prMIFE to satisfy x-IND-security

defined as per Definition 7.4. We can instantiate the scheme by our construction in Section 7.2 with ¥ = A2 log A,
Next, we describe the construction of prlO = (iO, Eval) for all circuits.

iO(1*,C). Given as input the security parameter 1 and a circuit C : {0,1}" — {0,1}" for arbitrary input length 1,
output length r, and description size L, do the following:

— Run (mpk, msk) < prMIFE.Setup(1*,1"*1, prm), where prm specifies message length L and the maximum
depth d of the circuits supported by the prMIFE instance. We set d to be the depth of the universal circuit U
that, upon input an n-ary circuit C and vector x € {0,1}", outputs U(C,x) = C(x).
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— Compute ct, 1 < prMIFE.Enc,,1(msk, C).

— Fori € [n]and b € {0,1}, compute ct;, = prMIFE.Enc;(msk, b).

— Compute ski; < prMIFE.KeyGen(msk, U), where U is defined in the first item above.
Output C = ( {ct;p }icinpe {01}, Ctut1, sku, mpk )

Eval(C,x). Given as input an obfuscated circuit C and an input x € {0,1}", do the following:
1. Parse C = ( {Cti,b}ie[n],be{o,l}rCthrl/SkUr mpk )
2. Output prMIFE.Dec(mpk, skiy, U, cty,, . . ., Ctx,, Cty41), where x; is the i-th bit of x.

Remark 9.6. We note that the input size of prMIFE scheme varies for slot 0, where we encrypt C, and slot i, where we
encrypt a bit b, for i € [n]. To make the input size consistent throughout the slots, we can pad the bit b with 0 (say) such
that [b0| = |C| and give a prMIFE key for a circuit U which on input (C, b10, ..., b,0), where b; € {0,1}, simply
discards the padding and outputs C(by, ..., by,).

Correctness. The correctness of the scheme follows in a straightforward manner from the correctness of the underlying
prMIFE scheme and the definition of the universal circuit U.

9.3 Security

Theorem 9.7. Suppose prMIFE scheme is k-IND-secure (Definition 7.4). Then the prlO scheme satisfies security as
defined in Definition 9.3 with x = x(A).

Proof. Consider a sampler Samppdo that generates the following:

1. Obfuscation Query. It issues Cy, C1 : {0,1}" — {0, 1}™ with the same size L and the same truth table (i.e., we
have Co(x) = Cy(x) for all x € {0,1}") as an obfuscation query.

2. Auxiliary Information. It outputs the auxiliary information aux 4.

To prove the security as per Definition 9.3, we show that

({Cti,b}ie[n],be{o,l}r ctgﬂ, sk, mpk, auxA) R~ <{Cti,b}ie[n],be{0,1}r ctiﬂ, sky;, mpk, auxA> (51)

if (1%, {Co(x) }xex, auxa) ~c (1% {Ax < Va}ren, auxa) (52)
where
(Co, Cq,auxy) « Sampprlo(lA),
(msk, mpk) < prMIFE.Setup(1*, 1"+, prm),
sky < prMIFE.KeyGen(msk, U),
ct?H_l <+ prMIFE.Enc;, 1(msk, CO),ct}ZH + prMIFE.Enc,,1(msk, Cq),
ctj, = prMIFE.Enc;(msk, b), fori € [n],b € {0,1}.

Equation (51) immediately follows from prMIFE security by considering a sampler SampperFE that outputs

Function: Universal Circuit U
. no_ Jn o dn _ _
Inputs: {xLO =X11 =]l ,xn”,o = xn",l = ]71}jle{O,l},...,an{O,l}’x”"‘l/O =Co, xp111=C1 |
Auxiliary Information: aux 4

since the pseudorandom condition directly follows from Equation (52).
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Full Domain Hash H

Constants: PRF key K, TDP key PK
Input: Message m.

- Output gox (F(K,m)).

Figure 3: Full Domain Hash

10 Instantiating the Random Oracle Using prlO

Hohenberger, Sahai, and Waters [HSW 14] show that some applications of random oracles can be made secure in the
standard model by instantiating the hash functions using iO in a specific manner. In this section, we show that we can
replace full-fledged iO with prlO in these applications. As a concrete example, we show that full-domian hash (FDH)
signatures can be proven secure in the standard model if we instantiate the hash function using prlO in place of iO.

10.1 Full-Domain Hash Signatures (Selectively Secure) from prlO
Ingredients. We make use of the following ingredients.
1. A one-way trapdoor permutation family (TDP).
2. Punctured PRFs
3. A prlO scheme.
The construction follows.
1. Setup(l)‘) : The setup algorithm takes as input the security parameter and does the following:

* It runs the setup of the TDP to obtain a public index PK along with a trapdoor SK, yielding the map
gpk 1 {0,1}" — {0,1}" together with its inverse gs_é

« It chooses a puncturable PRF key K for F where F(K,-) : {0,1}* — {0,1}". Then, it creates a prlO
obfuscation of the program Full Domain Hash in Figure 3. We refer to the obfuscated program as the
function H : {0,1}* — {0,1}". We need the truth table of the PRF to be pseudorandom against an
adversary whose size is polynomial in x, where « is the parameter specified by our prlO. This can be
achieved assuming the subexponential security for the PRF.

* It outputs the verification key VK as the trapdoor index PK as well as the hash function H(+). The secret
key is the trapdoor SK.

2. Sign(SK, m): Output o = ggé(H(m))

3. Verify(VK, m, ) : Check if gpk (0) = H(m) and output “Accept” if and only if this is true.
Correctness follows from the correctness of the TDP. We sketch security next.
Security The security proof closely resembles that of [HSW14], except that we have to make sure that the truth table
of the obfuscated circuit is pseudorandom when we apply the security of prlO.

Theorem 10.1. If the prlO is secure as per Definition 9.3 with respect to a parameter x, F is subexponentially secure
punctured PRF, and the trapdoor permutation scheme TDP is one-way, then the above signature scheme is selectively
secure.
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Full Domain Hash* H
Constants: Punctured PRF key K(m*), m*, z*, TDP key PK
Input: Message m.

o If m = m*, output z* and exit.

* Else output ¢pk (F(K, m)).

Figure 4: Full Domain Hash*

Proof. The proof follows the same sequence of hybrids as [HSW 14]. In the first hybrid, we move to using the obfuscation
of the circuit Full Domain Hash* in Figure 4 with z* = gpk (F(K, m*)), where m* is chosen by the adversary at the
beginning of the game. We claim that this change is unnoticed by the adversary by the security of prlO. To see this,
we observe that the truth tables of the circuits in Figure 3 and Figure 4 are the same. Furthermore, the truth table is
pseudorandom even against an adversary who runs in time poly (k) by the sub-exponential security of PRF. In the next
hybrid, we replace z* hardwired into the obfuscated circuit with truly random point in {0, 1}". This change is unnoticed
by the security of the puncturable PRF. This allows to reduce the security to that of the TDP, exactly as in [HSW 14] since
a valid signature would imply a preimage to z* and other signatures can be simulated using the punctured PRF key. [J

10.2 Discussion about Other Applications.

Hohenberger, Sahai, and Waters [HSW 14] demonstrate that the selective security of the full-domain hash (FDH)
signature based on trapdoor permutations (TDP), the adaptive security of RSA FDH signatures [Cor00], the selective
security of BLS signatures, and the adaptive security of BLS signatures [BL.SO1] can be proven in the standard model
by carefully instantiating the underlying hash function by iO for each application. As shown in Section 10.1, the random
oracle in the FDH signature can be instantiated using prlO instead of full-fledged iO. Similarly, we can instantiate the
random oracle in selectively secure BLS signatures with prlO, following a strategy similar to that in [HSW14]. At a
high level, these proofs follow those in the random oracle model (ROM), where we use iO to obfuscate a derandomized
version of the simulator for the hash function in ROM-based proofs. In these settings, the truth table of the simulated
hash function is pseudorandom, allowing us to follow the same proof strategy using prlO.

For adaptively secure RSA FDH and BLS signatures, the situation is different. In these cases, Hohenberger et
al. adopt an alternative proof strategy that deviates from the high level strategy of obfuscating the simulator for the
proof in the ROM. This is due to the fact that the original proofs [BLSO1, Cor00] are incompatible with the conditions
required for using iO, where the truth table of the hash functions must remain unchanged across game hops. To be
compatible with iO, they introduce a structure for the hash function, making its truth table no longer pseudorandom.
This prevents us from replacing the hash function with prlO following their approach. To instantiate the hash function
with prlO, we may first consider the selectively secure variant of the signature schemes and then use the complexity
leveraging technique. We omit the details.
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A Discussion on the Attack and the Fix for prFE construction (Section 2.2)

First we recall the construction.

— The setup algorithm samples matrices A, and (B, B_l) of appropriate dimensions and outputs mpk := (A, B)
and msk := B~!. Here, B~ is the trapdoor for B which allows to compute short preimages B~ (U) for any target
matrix U.

— The encryptor on input x first samples a GSW secret key s, where s = (ST — 1)T and a PRF seed sd + {0, 1})‘.
It then computes a GSW ciphertext, X = hcts(x,sd), using public key Afme = (Ame 5TAme + €] )T and
randomness R, — followed by a BGG™ encoding of X using randomness s as ], := sT(Aatt — X ® G) + el,. It
additionally computes c]T3 =s8TB + e]T3 and outputs the ciphertext ct = (CB, Catt, X).

— The key generator on input msk = B~! and function f does the following.

(a) Samples a nonce r <~ {0,1}" and defines function F[f, r], with f and r hardwired, as
F[f,r](x,sd) = f(x) |g/2] + PRF(sd, r).

It then computes the FHE evaluation circuit VEvalg w.r.t. the function F[f, r] (this can be computed using the
knowledge of F[f, r]). Note that the circuit VEvalg can be used to compute on a GSW ciphertext encoding an
input, say y, to recover a GSW ciphertext encoding F[f, r](y).

(b) Next, it computes the matrix Hl;\m for the circuit VEvalg using the public matrix A .. Recall that the matrix
Him and Hlj&att,X (which can be computed given VEvalg, A, and X) will satisfy the relation

(Aatt - X ® G)Hiattrx — AattH};\att — VEvaIF(X).

(c) Itsets Ap = At - Hl;;m, samples K <~ B~ (AF) and outputs sk = (K, r).
— The decryption on input sky = (K, r) and ct = (cp, catt, X) work as follows.

(a) It first computes the matrix Hl/iatt,x for the circuit VEvalg using A, and X.
b) Next, it computes z := ¢ - K — ¢l - HE , rounds z co-ordinate wise and output the most significant bits.
p B att " HA_, X P g

Next, we provide a high level outline of the attack.

The Attack. The adversary, given cg, catt, X, and K, computes c]T3 ‘K=l - Hgamx. Simplifying, she obtains
f(x) 1q9/2] + e]-I;K + PRF(sd, 1) — (e;rheRF + e;rttHiatt,X)

By correctness, the adversary recovers f(x) and can therefore strip it away to obtain PRF(sd, 1) + eg K — e Rp —
eaTttHFAatt x» as described in Equation (2). Now, in the proof, the error term e]; K is replaced by i.i.d error ep and is

used to break any correlation between PRF(sd, r) and efTh RF — el Hl;m,x. This allows us to prove the pre-condition
based on just plain LWE.

However, in the real world, eg K cannot be used to break the dependence between the above two terms. Then, by
choosing the circuit implementing F in some contrived way, the authors set it up so that PRF(sd, r) and efTh <R are
correlated, and in particular cancel each other modulo 2. Note that these terms are small, and do not wraparound modulo
g, so computing mod 2 is well defined. Now we are left with e]TgK + e;‘ttHiamX — but these are linear equations with
known coefficients, in the error terms of the original encodings. Using sufficiently many equations, the adversary can
easily recover the error terms. On the other hand, had the term e]T3K been truly random, such a system of equations
would not admit any solution. This leads to a distinguishing strategy.
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Modifying the Construction. We describe an approach that helps us break the problematic correlation even if the
circuit implementation is chosen in a contrived manner — our idea is to use modulus reduction get rid of the problematic
error terms involving efTh -RF so that the correlation is destroyed. Informally, we fix a rounding constant M € Z such
that HefTheRFH < M which implies L(efTh Rg)/ MJ = 0. This gets rid of the problematic error, replacing it with
rounding error which is uncorrelated with the PRF seed. For concreteness, we elaborate the changes that must be made
to our prFE construction to incorporate the above fix.

1. In setup algorithm, we output M as a part of mpk. The encryption algorithm remains the same.

2. The key generation algorithm has the following changes.

— We parse F[f,1](x,sd) = f(x) |q/2] + PRF(sd, ) = M - fuigh(X,sd) + fiow(x,5d), where fhigh(x,sd) €
[0,4/M]" and fi, (x,5d) € [0, M — 1]¢. Next we define functions Fhigh == M - fhigh and Fioy, == M - fiow,
which on input (x, sd) outputs M - fhigh(X,sd) and M - fiow (X, sd), respectively.

— Next, it computes circuits VEvalpigp and VEvalje,, for the functions Fpign and Fjoy,, respectively and then uses

. . . Fhi F; . . .
these circuits to compute the matrices H Aha'fth and H Aha'fth (as described in the previous sketch).
— It sets

Fhigh
Aatt HAatt

Ap= M-
F M

A - HI;;'ZX
M

and outputs sky = (K, r) where K = B~!(Ap).

3. The decryption algorithm is the same except that we compute z differently as

Fhi F
T . high T . low
Catt HAatt/X \‘Catt HAatt/X J

z:=cf - K- M- i i

We expand the correctness of the scheme to see how the above changes helps us get rid of the problematic noise
terms while decryption. Observe that

F i . F i
Clie - HAZf:x = (sT(Aatt — bits(1,X) ® G) + eaTtt)H;af:,x

Fhigh
= 8T Apigh — Fhigh(x,5d) + e Rpign + eJ H,"®

A X
Fpi Fpi
T high T T high
Catt HAatt/X B STAhigh - M- fhigh (X, Sd) + efheRhigh + eattHAatt,X
M M

F .
T high
ST Apigh + e Rhigh + el Hy'®

= i A X | fhigh(x,sd)

Ay,
=sT {X/fth — fhigh(x,sd) w.h.p.

where we set H efTh RF+ e;ttHi“a‘ihx H < M such that the last equation in the above will hold with high probability.

CTtt~HF|°W A
Similarly, we get | “——ppattX | = §T {ﬁJ — flow(x,sd) w.h.p. The rest of correctness follows from the same

argument as in the previous sketch. Note that the final error obtained now is PRF(sd) + err where (please see
Equation (17))

_ . aT T
err=M es,high + es,Iow

Api Ay Ajow Alow
= (r [ ) ([ L ) oo
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where errpigh, erriow € {0, 1}[ are rounding errors and matrices Apigh, Ajow are publicly computable matrices. Notably,
the FHE error e, which is the problematic term that enabled the attack, does not appear here. We conjecture flooding
for appropriately defined sizes.

B Pseudorandom FE with Stronger Security

In this section, we consider a fine-grained variant of Definition 4.2, which we term as x-prCT security, which is useful
in Section 7.

Definition B.1 (Non-uniform x-prCT Security). For a prFE scheme for function family {]—"prm = { f Xorm —

Yorm } }prm, parameter prm = prm(A), and function Kdéfx()\) of A, let Samp = {Samp, }, be a non-uniform
polynomial-time algorithm that on input 1*, outputs

(fl,...,kaey,xl,. e+ s XQpegr AUX € {0,1}%)

where ley is the number of key queries, Qmsg is the number of message queries, and fi € Form Xj € Xprm for all

S [ley]/j € [Qmsg]~
For non-uniform adversaries Ay := { A}, and A; := { A1 )}, we define the following advantage functions:

Advale(/\)défPr [.Ao ( aux, {f;, fi(xj)}ie[ley],jE[QmSg]) = 1]
—Pr [Ao( aux, {fi, Aij < Vorm}ic(Qu,jc(Omes)) = 1]

def
Advljlcl)ST(/\)é Pr [Al(mpk, aux, {fi, ctj Enc(mpk, xj), Skfi}ie[ley],je[Qmsg}) = 1}

— Pr [Al(mpk, aux, {fi/ 5] < CT, Skfi}ie[ley]rjE[Qmsg]) = 1}

where (f1,... ,kaey, X1, e e XQpegs AUX € {0,1}*) « Samp(lA), (mpk, msk) < Setup(1*,prm) and C7 is the
ciphertext space. We say that a prFE scheme for function family Fprm is secure in the non-uniform x setting with respect
to the sampler class SC if for every sampler Samp € SC and an adversary .4; such that Size(Samp) < poly(A’) and
Size(A1) < poly(x) for A’ < «x, there exists another adversary A such that

AdVERE(A) > AdVEDST(1)/Q(V) — negl(x) (53)

and Size(Ag) < Size(A1) - Q(A') for some polynomial Q(+).

Remark B.2 (Comparison between Definition B.1 and Definition 4.2). We remark that Definition B.1 strengthens
Definition 4.2 in two aspects. First of all, it considers non-uniform adversaries instead of uniform adversaries. Secondly, it
is parameterized by x and the additive term negl(A) that appears in Equation (11) is replaced by negl(x) in Equation (53).
By taking x asymptotically larger than A (e.g., k :== A*), we can make the additive term negl(x) much smaller than
negl(A). We note that these changes are introduced to prove the security of our prMIFE in Section 7. We refer to
Remark 7.13 for the discussion on why these changes are necessary for the security proof there.

Next, we propose a variant of the evasive LWE assumption which will be used to prove security of our prFE scheme
as per Definition B.1. This variant strengthens Assumption 3.6 in that it considers non-uniform samplers and replaces
the negligible term in Equation (8) with negligible function in another parameter x, which can be much larger than A.
The reason why we need this strengthened version of the assumption is that we need prFE to satisfy stronger security
notion than prCT security that we call non-uniform x-prCT security for the application to prMIFE.

Assumption B.3 (Non-Uniform x-Evasive LWE). Let n, m, t, m’, g, A € N be parameters defined as in Assumption 3.6
and Samp = {Samp, } be a non-uniform sampler that takes as input 1% and outputs S, P, aux as in Assumption 3.6.

For non-uniform adversaries Ay = {Ag }, and A; = {.Aj ) } 1, we define the advantage functions Advale(/\) and
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Advljﬁ)S’T (A) as in Equation (6) and Equation (7), respectively. For a function x := «(A) of the security parameter A, we
say that the non-uniform x-evasive LWE assumption with respect to the sampler class SC holds if for every non-uniform
sampler Samp € SC and a non-uniform adversary .4; such that Size(Samp) < poly(A’) and Size(.A4;) < poly(k)
for A’(A) < x(A), there exists another non-uniform adversary .Ag and a polynomial Q(-) such that

AQVIRE(1) > AdVEOST(1)/Q(V) — negl(x) and  Size(A) < Q(A') - Size(Ay).

Note that in the case A’ is superpolynomial in A, Samp(l’\) outputs S, P, and aux whose sizes are polynomial in A’
and thus superpolynomial in A. We require the above assumption with ¥ = 2P0ly(A) in our construction.

The following lemma is an adaptation of Lemma 3.8 for the stronger version of evasive LWE assumption defined in
Assumption B.3. The proof is almost the same as that for Lemma 3.8. We provide it here for completeness.

Lemma B.4. Let nn,m, t,m’,q,A € N be parameters defined as in Assumption 3.6 and Samp = {Samp A} A be
a non-uniform sampler that takes as input 1* and outputs S, aux = (auxy,auxy), and P as in Lemma 3.8. For a
non-uniform adversaries A, we define the advantage functions AdvI;lRE, (A) and AdviOST, (A) as in Equation (9) and
Equation (10), respectively. Then, for a function x := x(A) of the security parameter A, under the non-uniform x-evasive
LWE assumption (Assumption B.3), if Size(Samp) < poly(A’) and Size(A;) < poly(x) for A'(A) < x(A), there
exists another non-uniform adversary Ay and a polynomial Q(+) such that

AdVIRE (A) > AdVEOST (1) /Q(A') — negl(x) and  Size(Ag) < Q(A') - Size(Ay).

Proof. Let us consider an adversary A; and a sampler Samp with size being polynomial in x and A respectively
and € = AvaA?ST/. Then, the same adversary is able to distinguish either (1) (B,SB + E, K, auxy, auxp) from
(B, Co, K, auxy, auxy ) with advantage at least € /2 or (2) (B, Cp, K, auxy, auxy) from (B, Cp, K, ¢, aux, ) with advantage
at least €/2. If the latter is the case, then we can obtain an adversary Ay that distinguishes (B, SB + E,SP +
E’, auxy, aux;) from (B, Cy, C’, ¢, auxy) with advantage € /2. This can be seen by observing that .A; can be turned
into an adversary that distinguishes (auxy, aux;) from (c, aux;) and then turned into an adversary that distinguishes
(B, Co, K, auxy, auxy) from (B, Cy, K, c,auxy) by sampling (B, Co, K) by itself, where we sample B with the
corresponding trapdoor and then sample K using it. We therefore assume that the former is the case. Then,
by invoking the non-uniform x-evasive LWE with respect to the sampler Samp, we obtain another adversary Ay
whose size is bounded by Q(A’) - Size(.A; ) and distinguishing advantage against (B, SB + E, SP + E/, auxy, aux, ) and
(B, Co, C’, auxy, auxy) isatleaste /2Q(A). Then, Ay is able to distinguish either (1) (B, SB 4+ E, SP + E’, auxy, aux;)
from (B, Cy, C/, ¢, auxy) with advantage at least €/4Q(A’) or (2) (B, Cy, C/, ¢, auxy) from (B, Cy, C’, auxy, auxy)
with advantage at least €/ 4Q(A’ ) If the former is the case, we are done. If the latter is the case, we are still able to
convert it into a distinguisher against (B, SB + E, SP + E’, auxy, aux, ) and (B, Cg, C’, ¢, aux; ) by the similar argument
to the above. O]

Now we explain how to extend construction in Section 4 to achieve strengthened security notion for pseudorandom
FE that we call non-uniform x-prCT security (Definition B.1), which is required for many of our applications.

B.1 Proof for Non-Uniform x-prCT Security

Theorem B.5. Let x = 21 for some constant c. Assuming non-uniform x-evasive LWE (Assumption B.3), subexponen-
tially secure PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption 3.5), there exists
a prFE scheme satisfying x-prCT security as per Definition B.1.

Proof. We prove that the construction in Section 4.2 with A being replaced by appropriately chosen A = poly(A)
satisfies the security notion. The reason why we need this scaled version of the security parameter is that we have to
consider an adversary whose running time can be x, which is exponential in A. In particular, in the security proof,
we require LWE and PRF to be secure even against an adversary that runs polynomial time in k. To handle such an
adversary, we rely on the subexponential security of LWE and PRF. By our assumption, there exists 0 < § < 1 such

that there is no adversary with size 2" and distinguishing advantage 2N against LWE and PRF for all sufficiently
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large A. To satisfy the requirement, we generate PRF and LWE instances with respect to a larger security parameter A
that satisfies 22" > x“M). An example choice of the parameter would be A := Alet1)/8,

The overall structure of the proof is the same as that of Theorem 4.6.

We start with a sampler Samp ¢ and an adversary A satisfying Size(Samp,,gg) < poly(A’) and Size(A;) <

poly(x) for A’ < x.!5 We denote the size of A; by t and the distinguishing advantage for the distributions in
Equation (19) by €. Assuming non-uniform x-evasive LWE with respect to Samp defined from SamperE as in the
proof of Theorem 4.6, we obtain an adversary Ay whose size is Q(A’)t and the distinguishing advantage against the
distributions in Equation (22) is €/ Q(A’) — negl(x) for some polynomial Q by applying Lemma B.4. We then consider
the same sequence of hybrids as that for the proof of Theorem 4.6. Note that here, the security parameter for the
construction A is replaced by A and Qmsg and Qyey are bounded by poly(A’), since the size of the sampler is poly(A’).
By the definition of the hybrids, the adversary has the distinguishing advantage €/ Q(A’) — negl(x) for Hyb, and Hybg.
Furthermore, we argue that the distinguishing advantage between Hyby and Hyby is only negl(x). We inspect this in the
following:

* The changes from Hyb to Hyby, from Hyb, to Hybs, from Hyb, to Hybs, and from Hybg to Hyb, are statistical,
where each statistical difference is bounded by poly(A’) /27", We have poly(A')/2=" < poly(x) /27" =
negl(x) by our choice of A.

* The change from Hyb, to Hyb, is computational, which is dependent on the hardness of LWE. Since the size of
Ay is bounded by poly(), the distinguishing advantage between Hyb; and Hyb, should be bounded by negl(x)
by the subexponential hardness of LWE and by our choice of A.

* The change from Hybs to Hyb, is computational, which is dependent on the security of PRF. Since the size of
Ay is bounded by poly(), the distinguishing advantage between Hyb; and Hyb, should be bounded by negl(x)
by the subexponential security of PRF.

 The changes from Hybs to Hybg is conceptual and thus they are equivalent.

We therefore conclude that the distinguishing advantage of Ay against Hyb; and Hybg should be €/ Q(A’) — negl(x).
Then, from Ay, it is straightforward to extract a distinguisher A(’) against the distributions in Equation (20) with the
same advantage and almost the same size. This concludes the proof of the theorem. O

Theorem B.6. Let x = 27 for some constant c. Assuming non-uniform x-evasive LWE (Assumption B.3), subexpo-
nentially secure PRF against non-uniform adversary, and non-uniform sub-exponential LWE (Assumption 3.5), there
exists a prFE scheme for function class Fy (1) ¢(1),dep(r) = 1f : {0, 1} — {0,1}¢} satisfying x-prCT security as per
Definition B.1 with efficiency

Impk| =L - poly(dep, A), [sky| =£-poly(dep,A), [ct| =L poly(dep,A).

where dep = poly(A) is the depth bound on the functions supported by the scheme.

C FE for Pseudorandom Functionalities with Unbounded Depth

In this section we provide our construction of a functional encryption scheme for pseudorandom functionalities for
circuit class Cp () = {C : {0,1}* — {0,1}}, which consists of circuits with unbounded polynomial depth, using our
prFE scheme for bounded depth (Section 4.2) and a blind garbling scheme.

SHere, we deviate from our convention that the adversary runs in time polynomial in its input length. The input length of A; is poly(A'), but its
running time is poly(K), which may be super-polynomial in A’.
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C.1 Construction.

Ingredients. Below, we list the ingredients for our construction.

1. A blind garbled circuit scheme bGC = (bGC.Eval, bGC.Garble, bGC.SIM) scheme for circuit class CLiny =

{C:{0,1}* — {0,1}}. We use the decomposability property (Definition 3.18) of the bGC scheme for our
construction, i.e., for C € Cp, we write bGC.Garble = ({bGC.GarbIei}iEHCu, bGC.Garblejnp).

We assume that if C; < bGC.Garble;(1%, C;;st) and {abj b e pefo1) < bGC.Garblein, (14, 15; st), then

ICi| = [laby| = {0,1}cc where laby = (laby,, ..., labyy ) and xj denotes the j-th bit of x for j € [L].
This can be ensured using appropriate padding. We use C7T s to denote the output space of bGC.SIM. Here
CTsim = {0, 1}C1+Dec

2. Abounded depth FE scheme for pseudorandom functionality BD-prFE = (BD.Setup, BD.KeyGen, BD.Enc, BD.Dec).
for circuit class CL/( A (1), (1) consisting of circuits with input length L’(A) = L + A, maximum depth
dgp(A) = O(A) and output length ¢/(A) = fpgc . We denote the ciphertext space of the scheme by
CTep = {0,1}£bGC.

3. A PRF function PRF : {0,1}* x {0,1}* — {0,1}Recc where Ry is the length of randomness used in
bGC.Garble. We assume that PRF can be computed by a circuit of depth at most dgp = O(A).

Next, we describe our construction for unbounded depth prFE scheme prFE = (Setup, KeyGen, Enc, Dec) with
ciphertext space CT prFg.

Setup(1*,1%) — (mpk, msk). The setup algorithm does the following.
— Run (BD.msk, BD.mpk) < BD.Setup(1%,1-).
— Set msk = BD.msk!¢ and mpk = BD.mpk. Output (msk, mpk).
KeyGen(msk, C) — skc. The key generation algorithm does the following.
1. Parse msk = BD.msk and denote C; as the gates of circuit C fori € [|C|].
2. Sample r + {0,1}*.
3. Fori € [|C|] define circuit U[C;, ] as: on input (sd, x)
U|[C;, 1] (sd, x) = C; = bGC.Garble;(1%, C;; PRF(sd, r))
For a dummy gate Cy, define U[Cy, r] as follows. On input (sd, x)
(a) Compute {lab;y}icii)pefo1) = bGC.Garblejnp (11, 1%; PRF(sd, 1)).
(b) Output labx = (labyy,, ..., laby y ), where x; denotes the j-th bit of x for j € [L].
4. Compute BD.sk; <— BD.KeyGen(BD.msk, U[C;, t]) fori € [0, |C|].
5. Output skc = {BD'Ski}iE[O,\C\]'
Enc(mpk, x) — ct. The encryption algorithm does the following.
— Parse mpk = BD.mpk.
— Sample a PRF key sd < {0,1}" and compute BD.ct < BD.Enc(BD.mpk, (sd, x)).
— Output ct = BD.ct.
Dec(mpk, skc, ct). The decryption algorithm does the following.
— Parse mpk = BD.mpk, sk¢ = {BD-Ski}ie[o,\cn and ct = BD.ct.
— Fori € [|C|], compute C; = BD.Dec(BD.mpk, BD.sk;, BD.ct). Set C = {éi}z’GHCH'
— Compute laby = BD.Dec(BD.mpk, BD.skg, BD.ct).
— Compute and output C(x) = bGC.Eval(1*, C, laby).

16W.L.0.G we assume that msk contains mpk.
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Correctness. We prove the correctness of our scheme using the following theorem.

Theorem C.1. Assume that bGC and BD-prFE schemes are correct. Then the above construction of prFE scheme is
correct.

Proof. For skc = {BD.sk;};c[|c|j, where BD.sk; < BD.KeyGen(BD.msk, U[C;,t]) and ct = BD.ct where
BD.ct <+ BD.Enc(BD.mpk, (sd, x)), with probability 1, we have

C; = bGC.Garble; (1%, C;; PRF(sd, 1)) if i € [|C|]

BD.Dec(BD.mpk, BD.sk;, BD.ct) = { lab if i — 0
aby ifi =

from the correctness of prFE scheme and definition of U[C;, r].
Next, setting C = {Ci}ie[\CH and using the correctness of the bGC scheme, with probability 1, we have

bGC.Eval(1%,C, laby) = C(x)

hence the correctness. O

C.2  Security.

We prove the security of our scheme via the following theorem.

Theorem C.2. Assume that the BD-prFE scheme is secure (Definition 4.2) and the bGC scheme satisfies simulation
security (Definition 3.16) and blindness (Definition 3.17). Then the construction of unbounded depth prFE is secure
(Definition 4.2).

Proof. Consider a sampler SamperE that generates the following:
1. Key Queries. Itissues Qiey key queries Cy, ..., Cq, . Weuse |Ck| to denote the size of circuit C for k € [Qyey]-
2. Ciphertext Queries. It issues Qmsg ciphertext queries X1, ..., Xq, ., Where [x1| = --- = |xg |-
3. Auxiliary Information. It outputs the auxiliary information aux 4.

To prove the multi-challenge security as per Definition 4.2, we show

mpk = BD.mpk, aux 4, mpk = BD.mpk, aux 4,

{U[Crir vt tre Queylicl0cil)7 {UICrkir k] bre (Quey Liclo il

{skc, = {BD-skii}ic(o, 0] ke [Quey ) e {skc, = {BD-skyi}ic(o, il Hee Quey )7
{ctj = BD'Ctj}je[Qmsg] {ctj < CTPrFE}]’E[QmSg]

assuming we have
(1%, auxa, {C Cr(%))} jeiQmglkelQu]) Fe (1Y auxa, {Ch Ajk = {0, 1} }jcionl keiOn)) (54

where for i € [|C|], U[Cy;, 1] denotes the function corresponding to i-th gate of the k-th key query, Cy;,
and U[Cyp, 1r¢| denotes the function corresponding to the dummy gate for the k-th key query, as defined in the
KeyGen algorithm. Also, BD.sky ; +— BD.KeyGen(BD.msk, U[Cy ;, r¢]) and BD.ct; <— BD.Enc(BD.mpk, (sd, x)) for

jE [Qmsg]/ ke [ley]/ i€ [O/|CkH'
We invoke the multi-challenge security of BD-prFE with sampler Sampg that outputs

Functions: {U[Cri, 1] e [Qkeyli€[0,|C ]
Inputs: {de/ Xj}jE[Qmsg]'
Auxiliary Information: ~ aux = (auxA, {Cri, rk}ke[ley],ieHCkH)
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By the security guarantee of BD-prFE with sampler Sampg, we have

<BD.mpk, aux,{ll[Ckri, I'k], BD‘Skk,i}ke[ley},ie[0,|Ck])

{BD.ct; <— BD.Enc(BD.mpk, (sdj, X;)) }jc[Qms]

~ BD.mpk, aux,{U[Ck,i, l‘k], BD‘Skkﬂ'}kG[ley},iG[0,|CkH
‘ {4 ¢ CT o0} je(om]

if
aux, {U[Cr;, 1], CL. = bGC.Garble;(1*,Cy;; PRF(sd;, r
{ulc,nd, (O ClipPREGEG )| oo e 5
{Iab’)i/, = (1abf /. 1abf o ) | {1ab by pe o) < BGC.Garbleng (1%, 14 PRF(sd;, rk))}j,k

~e (aux, {UCkixd, €y = {0,115, Iabf, {0,115 Yjcio,  keloue liclicy)

where Ci,i = U[Cy,;, 1¢](sd}, x;) for i € [|Cy|] and Iab’f(j = U[Cyp, 1] (sd}, X;). In the above, Cy ; denotes the i-th gate
of circuit Cy and x; i denotes the j'-th bit of x; for /' € [L],j € [Qmsg]-

Thus to prove the security of the prFE scheme it suffices to prove Equation (55).
We prove Equation (55) via the following sequence of hybrids.

Hybg. This is the LHS distribution of Equation (55). We re-write the distribution as

, ~f_ A ‘
aux, {U[Ck,z,rk], ] = bGC.Garble; (1 ,Ck,PRF(sd],rk))}jE[Qmsg],ke[ley]

{|ab§j = (1ab o tabf ) [ {1abh e pegony bGC.GarbIeinp(lA,lL;PRF(sd]-,rk))}je[Q el
msg |/ ey

where bGC.Garble; (11, C) = {bGC.Garble; (14, Cr,i) tielc,|) for a circuit Cy € Cp.

Hyb,. This hybrid is the same as the previous one except that we replace PRF(sd]-, -), used to compute C,i and Iab],i/_,

with the real random function R/(-) for each j € [qmsg]. Since sd; is not used anywhere else, we can use the
security of PRF to conclude that this hybrid is computationally indistinguishable from the previous one.

Hyb,. This hybrid is same as the previous one except that we output a failure symbol if the set {rk}ke[ley], in aux,
contains a collision. We prove that the probability with which there occurs a collision is negligible in A. To
prove this it suffices to show that there is no k, k' € [Qyey] such that k # k' and ry = rys. The probability of this
happening can be bounded by Qﬁey /2" by taking the union bound with respect to all the combinations of k, k.

Thus the probability of outputting the failure symbol is Qﬁey /2 which is negl(A).

Hybs. In this hybrid we compute Ci and Iab’,‘(]_ using fresh randomness Ry ; <— {0, 1}Recc instead of deriving the

randomness by R/ (r). We claim that this change is only conceptual. To see this, we observe that unless the
failure condition introduced in Hyb, is satisfied, every invocation of the function R/ is with respect to a fresh
input and thus the output can be replaced with a fresh randomness.

In this hybrid, the view of the adversary is

: >/ — bGC.Garbley (11, Cy; Ry ), labk
aux, {U[Cj 1], C| = bGC.Garbler (1%, Cy; Ry ), abxj}je[Qmsg],ke[ley]

k k k k .
{Iabx]_ = (1abf .o 1abf ) [ {13b Y e peqo) < BGC Garbleiny (14,15 Rk,j)}je[gmsg]/ke[%]
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Hyb,. This hybrid is same as the previous one except that we compute (C]];, la b’,‘(],) + bGC.Sim(1%,1%, Cr(x;)) for all

j € [Qmsg), k € [Qkey]- Hybs = Hyb, using the simulation security of the bGC scheme.
In this hybrid, the view of the adversary is

where |C| is the maximum size of a circuit in the circuit class Cy..

Hybs. This hybrid is same as the previous one except that we compute (Ci, Iab],‘(j) + bGC.Sim(1%, 1%, Ajx), where

Ajx < {0,1}, forall j € [Qmsg|, k € [Qkey]- Hyby ¢ Hybs follows from the pseudorandomness of Cy(x;)
(Equation (54)).
In this hybrid, the view of the adversary is

~j k : A
<aux, {u[ck,i,rk}, (CJ,1abf) < bGC.Sim (1 AL, A]-,k> }je[Qmsg]/kE[ley])

where A; < {0,1}.

Hybg. This hybrid is same as the previous one except that we sample (Ci, Iablf(/_) < CT s)m uniformly at random.
Hybs ~. Hybg using the blindness of the bGC scheme. In this hybrid, the view of the adversary is

. ~j k
(aux, {u[ck,zr rk]r (Ck/ labxj) < CTSII\/I }jE[Qmsg],kE[ley})

which is the RHS distribution of Equation (55).

Hence, the proof. O

Instantiation. Instantiating the construction using the bounded depth prFE from Section 4.2, we achieve the following
theorem.

Theorem C.3. Under the LWE assumption and the Evasive LWE assumption, there exists a very selectively secure prFE
scheme for circuits of unbounded depth and input length L with

Impk| = L-poly(A), [skc|=L-[C|-poly(A), [ct| =L poly(A).
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