
CS 6846: Quantum Algorithms 
and Cryptography

Lec 8: Building Cryptography

Shweta Agrawal
IIT Madras



1. How can we build these things?

2. What guarantees can we have ?

3. How do we move from messy real world 
scenarios to clean mathematical definitions?

4. How do theorems in math say anything 
about real world attacks?

Some Questions



1. How can we build these things?

2. What guarantees can we have ?

3. How do we move from messy real world 
scenarios to clean mathematical definitions?

4. How do theorems in math say anything 
about real world attacks?

Some Questions



1. How can we build these things?

2. What guarantees can we have ?

3. How do we move from messy real world 
scenarios to clean mathematical definitions?

4. How do theorems in math say anything 
about real world attacks?

Some Questions



1. How can we build these things?

2. What guarantees can we have ?

3. How do we move from messy real world 
scenarios to clean mathematical definitions?

4. How do theorems in math say anything 
about real world attacks?

Some Questions



Principles of Crypto Design [Katz-Lindell]

1. Formulate a rigorous and precise definition of security for 
cryptosystem – security model.

2. Precisely formulate the mathematical assumption (e.g. factoring) on 
which the security of the cryptosystem relies.

3. Construct cryptosystem (algorithms) and provide proof (reduction)
that cryptosystem satisfying security model in (1) is as hard to break 
as mathematical assumption in (2). 



1: Security Model

Real world attacks Crypto
Proofs

Security Model : Mathematical definition that scheme has to satisfy

Scheme achieves security in given model = Scheme secure against 
attacks captured by that model



§ Every pair of users must share a unique secret key
§ Need key to encrypt and decrypt
§ Intuitively, only holder of secret key should be able to decrypt

Case Study : Secure encryption



We must construct the following algorithms:

1. Keygen : Algorithm that generates secret key K

2. Encrypt(K,m) : Algorithm used by Alice to garble 
message m into “ciphertext” CT

3. Decrypt(K, CT) : Algorithm used by Bob to recover 
message m from ciphertext CT.

Case Study : Secure encryption
Syntax



How should security of encryption be defined? 

Answer 1 : Upon seeing ciphertext, Eve should 
not be able to find the secret key.

Case Study : Secure encryption

But our goal is to protect the message! 

Consider encrypt algorithm that ignores the secret key 
and just outputs the message. An attacker cannot 
learn the key from the ciphertext but learns the entire 
message!



Answer 2 : Upon seeing ciphertext, Eve should 
not be able to find the message.

Case Study : Secure encryption

Is it secure intuitively to find 99% of the mesg?

Answer 3 : Upon seeing ciphertext, Eve should 
not be able to find a single character of the 
message.

Is it ok to leak some property of the mesg, such 
as whether m> k?



Answer 4 : Any function that Eve can compute 
given the ciphertext, she can compute without 
the ciphertext.

Case Study : Secure encryption

Still need to specify : 
• Can Eve see ciphertexts of messages of her 

choice?
• Can Eve see decryptions of some ciphertexts?
• How much power does she have?



Answer 4 : Any function that Eve can compute 
given the ciphertext, she can compute without 
the ciphertext.

Case Study : Secure encryption

Still need to specify : 
• Can Eve see ciphertexts of messages of her 

choice?
• Can Eve see decryptions of some ciphertexts?
• How much power does she have?



2: Mathematical Assumption
• Trivial assumption : my scheme is secure

• Use minimal assumptions
• Existence of one way functions

• Use well studied assumptions
• Examples: factoring, discrete log, shortest vector problem etc…



3: Reduction

Attacker A

Reduction B

Cryptosystem Π

Break on Π

Instance x of hard
Problem X

Solution to x



Show how to use an adversary for breaking primitive 1 in order to 
break primitive 2

Important : 
• Run time: how does T1 relate to T2

• Probability of success: how does Succ1 relate to Succ2
• Access to the system 1 vs. 2

3: Reduction



SKE: The Simplest Construction







Public Key Encryption



What we need…

1. Invertible: It must be possible for Alice to decrypt encrypted messages.

2. Efficient to compute: It must be reasonable for people to encrypt 
messages for Alice.

3. Difficult to invert: Eve should not be able to compute m from the 
“encryption” f(m).

4. Easy to invert given some auxiliary information: Alice should restore m
using SK.



What we need…
1. Invertible

1. Efficient to compute

2. Difficult to invert

3. Easy to invert given 
some auxiliary 
information

One way functions!



What we need…
1. Invertible

1. Efficient to compute

2. Difficult to invert

3. Easy to invert given 
some auxiliary 
information

One way 
permutations!



What we need…
1. Invertible

1. Efficient to compute

2. Difficult to invert

3. Easy to invert given 
some auxiliary 
information

Trapdoor 
permutations!



How to build PKE?



How much power does the adversary have?










