CS6846 – Quantum Algorithms and Cryptography Simon's and Bernstein-Vazirani Algorithms

Instructor: Shweta Agrawal, IIT Madras Email: shweta@cse.iitm.ac.in

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

• f is two-to-one

• $\forall x, y : f(x) = f(y) \iff y = x \oplus s$ for some fixed $s \neq 0^n$

find the value of s.

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

• f is two-to-one

• $\forall x, y : f(x) = f(y) \iff y = x \oplus s$ for some fixed $s \neq 0^n$ find the value of s.

Classical Randomized: $\Theta(2^{n/2})$.

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

• f is two-to-one

• $\forall x, y : f(x) = f(y) \iff y = x \oplus s$ for some fixed $s \neq 0^n$ find the value of s.

Classical Randomized: $\Theta(2^{n/2})$.

Quantum: O(n) queries: exponential speedup!

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ such that:

• f is two-to-one

• $\forall x, y : f(x) = f(y) \iff y = x \oplus s$ for some fixed $s \neq 0^n$ find the value of s.

Classical Randomized: $\Theta(2^{n/2})$.

Quantum: O(n) queries: exponential speedup!

Given a function $f : \{0,1\}^n \to \{0,1\}^n$ such that (i) f is two-to-one, (ii) $\forall x, y : f(x) = f(y) \iff y = x \oplus s$ for some fixed $s \neq 0^n$, find the value of s.

Algorithm:

- Prepare a superposition $H^{\otimes n}(|0^n\rangle) = \frac{1}{2^{n/2}} \sum_{x} |x\rangle$.
- Apply the unitary function U_f to this, with ancillary $\underline{0^n}$ qubits.
- Measure the last *n* registers in the computational basis. Discard.
- Apply the quantum fourier transform $H^{\otimes n}$ to first *n* registers.
- Measure this state. _____1 output
- Repeat above steps "many" times.

Simon's Algorithm: Analysis

1). First Hadamard gives
$$y = f(x_1) = f(x_2)$$
 iff
 $|Y_1\rangle = \frac{1}{2^{n/2}} \sum_{\chi} |\chi\rangle = 10^{n}$. $x_1 = x_{\chi} \oplus s$
2). Apply f:
 $|Y_2\rangle = 2^{-n/2} \sum_{\chi} |\chi, f(\chi)\rangle$.
gnore normalizations.
3). Measure last n bits. Say $g = y$.
 $|Y_3\rangle = (1\times) + 1\times \oplus s\rangle |Y\rangle$.

Simon's Algorithm: Analysis

Simon's Algorithm: Analysis

How many times do
$$3$$
 need to repeat?
Ulaim: $O(n)$ repetitions give constant probability
 $Pr(\Xi_{1}..., \Xi_{k+1})$ are linearly independent) = $1 - \frac{2^{k}}{2^{n-1}}$
 $Pr(\Xi_{1}..., \Xi_{k+1})$ are linearly independent) = $1 - \frac{2^{k}}{2^{n-1}}$
 $Pr(\Xi_{1}..., \Xi_{k+1})$ are linearly independent) = $1 - \frac{2^{k}}{2^{n-1}}$
 $Pr(\Xi_{1}..., \Xi_{k+1})$ are linearly independent) = $1 - \frac{2^{k}}{2^{n-1}}$
 $Pr(\Xi_{1}..., \Xi_{k+1})$ is in span of
 $Pr(\Xi_{1}..., \Xi_{k})$ is in span of
 $Tr(1 - \frac{1}{2^{1}})$ $Tr(1 - \frac{1}{4})$

Exercise

Given oracle access to $f : \{0,1\}^n \to \{0,1\}$ where $f(x) = \langle x, s \rangle \pmod{2}$ for all $x \in \{0,1\}^n$. What is s?

10/12

Scratch Pad

- Applying Hadamard on top n bits: $|\psi_{3}\rangle = \sum_{x} \sum_{z} (-1)^{f(x)+\langle x; z \rangle} |z\rangle |-\rangle$ 2 - Measure top n qubits. Consider amplitude on Z=S. 0 = 1.

Scratch Pad

gutevesting
term: (-1) = (-1) (x; s+z)
What happens when
$$z \neq s$$
?
Amplitude = 0. Why ?
Fix $S \neq z = 1 \neq \# \# \cdots \#$
 $\chi_0 = 0 \chi^1$, $\chi_1 = 1 \chi^1$
 $(-1) \qquad \chi_1 = 1 \chi^1$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = 1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 = -1 \chi^2$
 $(-1) \qquad \chi_1 = -1 \chi^2$
 $(-1) \qquad \chi_2 =$