CS6846 – Quantum Algorithms and Cryptography Going beyond Classical: Deutsch and Deutsch-Jozsa

Instructor: Shweta Agrawal, IIT Madras Email: shweta@cse.iitm.ac.in

Phase Kickback

Now consider superposition of function outputs. Apply C_{ϵ} to $(|+\rangle |0\rangle)$

$$\begin{array}{rcl} \text{Let} & f: \left\{ o, i \right\}^{n} \rightarrow \left\{ o, i \right\}^{n} \\ \text{Recall} & C_{g} \left(\left[x \right\rangle & \left[b \right\rangle \right) \right) \rightarrow \left[x \right\rangle \left[b \oplus f(x) \right\rangle \\ \text{When} & b = 0 & g & f & get & \left[x \right\rangle \left[f(x) \right\rangle \\ & b = 1 & g & get & \left[x \right\rangle \left[1 \oplus f(x) \right\rangle \\ & = \left[x \right\rangle & \left[\neg f(x) \right] \\ \text{Concisely} & \forall & b & \in \left\{ 0, 1 \right\} \\ & C_{f} \left(\left[x \right\rangle \left[b \right\rangle \right) = \left[x \right\rangle & \left[(-1)^{b} f(x) \right\rangle \\ \text{Swap} & b & \text{with} & 1 - \gamma = \frac{10 \gamma - (1)}{\sqrt{2}} \end{array}$$

$$C_{f}(1x) |-\rangle = C_{f}(1x) |0\rangle - C_{f}(1x) |1\rangle$$

$$= \frac{|x|}{\sqrt{2}} + \frac{|x|}{\sqrt{2}} + \frac{|x|}{\sqrt{2}} + \frac{|x|}{\sqrt{2}}$$

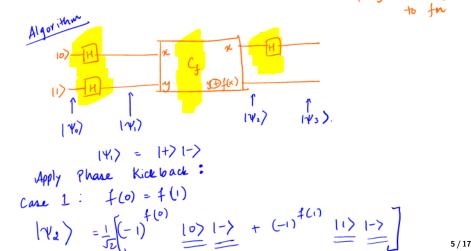
$$= \frac{|x|}{\sqrt{2}} + \frac{|x|}{\sqrt{2}}$$

Deutsch's Algorithm

Quantum computation is ... nothing less than a distinctly new way of harnessing nature ... It will be the first technology that allows useful tasks to be performed in collaboration between parallel universes, and then sharing the results.

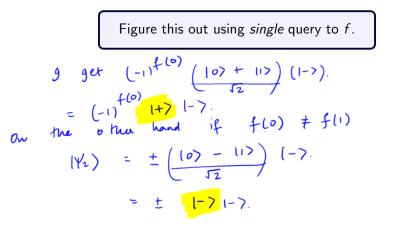
Deutsch's Algorithm

Setup: Consider Boolean function $f : \{0,1\} \rightarrow \{0,1\}$. Given that f is either constant, i.e. f(0) = f(1) or balanced, i.e. $f(0) \neq f(1)$. Which?



Deutsch's Algorithm

Setup: Consider Boolean function $f : \{0,1\} \rightarrow \{0,1\}$. Given that f is either constant, i.e. f(0) = f(1) or balanced, i.e. $f(0) \neq f(1)$. Which?



Apply Hadamand on first qubit,

$$|w_3\rangle = i5 \pm 10\rangle i-7 = if f(0) = f(1)$$

 $\pm 11\rangle i-7 = if f(0) \neq f(1)$.
Note if $f(0) = f(1)$ then $f(0) \oplus f(1) = 0$
else $f(0) \oplus f(1) = 1$.

 $|\psi_{3}\rangle = \pm |f(0) \oplus f(1)\rangle |-\rangle$

Generalizing to *n* bits: Deutsch-Jozsa

Setup: Consider Boolean function $f : \{0,1\}^n \to \{0,1\}$. Given that f is either constant or balanced. Which?

Generalizing to *n* bits: Deutsch-Jozsa

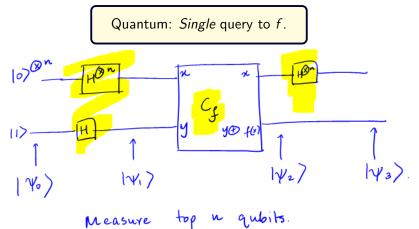
Setup: Consider Boolean function $f : \{0,1\}^n \to \{0,1\}$. Given that f is either constant or balanced. Which?

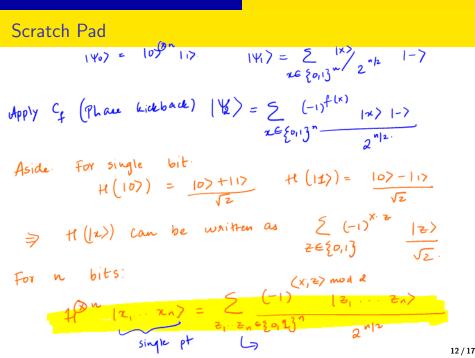
Classical Deterministic: $\Theta(2^n)$. Classical Randomized: constant.

Generalizing to *n* bits: Deutsch-Jozsa

Setup: Consider Boolean function $f : \{0,1\}^n \to \{0,1\}$. Given that f is either constant or balanced. Which?

Classical Deterministic: $\Theta(2^n)$. Classical Randomized: constant.





$$|\Psi_{3}\rangle = \#^{n}(1\times 3) | \Psi \oplus f(x) \rangle$$

$$= \underbrace{\sum}_{x \in \{0,1\}} \#^{n}(1\times 3) | (1-3)|_{(x)}(1-3)|_{(x)}(1-3)|_{(x)}$$

$$= \underbrace{\sum}_{x \in \{0,1\}} \underbrace{\sum}_{x \in \{0,1\}} (1-3) (1-3)|_{(x)}(1-3)|_{($$

hall.

Cryptography Encrypt (PK, m) -> CT Becrypt (sk, ct) → m. Ques not CT. disting non CT(mo) & CT(mi) Reduction. with prob. "somehow" N 500 bits better than 1/2. Factors of N.