CS6846 - Quantum Algorithms and Cryptography Computation and No-Cloning

Instructor: Shweta Agrawal, IIT Madras Email: shweta@cse.iitm.ac.in

What Operations can we do on Quantum States?

Phase Shifts: Changing material in double slit experiment might change phase of diffraction pattern. Represented by multiplying one of the amplitudes by $e^{i \theta}$, where θ is the angle by which the pattern is shifted

$$
\frac{|0\rangle+|1\rangle}{\sqrt{2}} \longrightarrow \frac{|0\rangle+e^{i \theta}|1\rangle}{\sqrt{2}} .
$$

What Operations can we do on Quantum States?

Phase Shifts: Changing material in double slit experiment might change phase of diffraction pattern. Represented by multiplying one of the amplitudes by $e^{i \theta}$, where θ is the angle by which the pattern is shifted

$$
\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \longrightarrow\left(\frac{|0\rangle+e^{i \theta}|1\rangle}{\sqrt{2}} .\right)
$$

Represent using matrix:

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]^{\text {matrix: }}} \\
C_{\text {operator }}^{\alpha} \\
\beta
\end{array}\right]_{s+a t r}=\left[\begin{array}{ll}
\alpha & \\
e^{i \theta} & \beta
\end{array}\right] .
$$

$$
\begin{aligned}
& \text { Examples: If } \theta=\pi e^{i \theta}=-1 \\
& \alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|0\rangle-\beta|1\rangle \\
& \text { If } \theta=\frac{\pi}{2}, e^{i \theta}=i \\
& \alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|0\rangle+i \beta|1\rangle
\end{aligned}
$$

What Operations can we do on Quantum States?

Bit Flips: $|0\rangle \longrightarrow|1\rangle$ and $|1\rangle \longrightarrow|0\rangle$.

What Operations can we do on Quantum States?

Bit Flips: $|0\rangle \longrightarrow|1\rangle$ and $|1\rangle \longrightarrow|0\rangle$.
Matrix Representation:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

Pauli X Matrix - computational NOT gate

$$
\begin{array}{c|c}
|A\rangle & |\bar{A}\rangle \\
\hline 0 & 1 \\
1 & 0
\end{array}
$$

What Operations can we do on Quantum States?

Hadamard Transform: changes Standard to Hadamard Basis

What Operations can we do on Quantum States?

Hadamard Transform: changes Standard to Hadamard Basis

$$
\begin{gathered}
|0\rangle-|+\rangle \\
|0\rangle=|-\rangle \\
|1\rangle\rangle=\frac{H}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
|1\rangle \\
|0\rangle
\end{gathered}
$$

What Operations can we do on Quantum States?

Hadamard Transform: changes Standard to Hadamard Basis

$|1\rangle-H \quad-\quad H \quad$
Matrix Representation: $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
What happens when we multiply two Hadamard matrices?

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

What Operations can we do on Quantum States?
Arbitrary Transforms

$$
\begin{aligned}
& |0\rangle \longrightarrow U_{00}|0\rangle+U_{01}|1\rangle \\
& |1\rangle \longrightarrow U_{10}|0\rangle+U_{11}|1\rangle \\
& u=\left[\begin{array}{ll}
u_{00} & u_{10} \\
u_{01} & u_{11}
\end{array}\right], \quad|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
\end{aligned}
$$

Now For any $|\psi\rangle, u|\psi\rangle$ is a valid quit.

$$
\begin{aligned}
& u|\psi\rangle=\left[\begin{array}{l}
u_{00} \alpha+u_{10} \beta \\
u_{01} \alpha+u_{11} \beta
\end{array}\right]=\phi \\
& \text { For being valid }|\phi\rangle^{+}|\phi\rangle=1, \quad(u|\psi\rangle)^{\dagger}(u|\psi\rangle)=1
\end{aligned}
$$

Special Matrices

- Unitary: A matrix U which satisfies $U^{\dagger} U=\mathbb{I}$ is called a unitary matrix. Note that

$$
U^{\dagger} U=\mathbb{I} \Longleftrightarrow U^{\dagger}=U^{-1}
$$

Special Matrices

- Unitary: A matrix U which satisfies $U^{\dagger} U=\mathbb{I}$ is called a unitary matrix. Note that

$$
U^{\dagger} U=\mathbb{I} \Longleftrightarrow U^{\dagger}=U^{-1}
$$

- Hermitian: A matrix U is called Hermitian if $U=U^{\dagger}$.

Exercise: If U is unitary matrix then it preserves norm.

$$
\begin{aligned}
\|u \phi\|^{2} & =\langle u \phi \mid u \phi\rangle \\
& =\langle\phi \mid \underbrace{u^{+} u} \phi\rangle \\
& =\|\phi\|^{2}
\end{aligned}
$$

Any unitary matrix constitutes a valid operation on a quit.

Multiple Qubits: Partial Measurement

Let $|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$.

Multiple Qubits: Partial Measurement

Let $|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$.
Can perform partial measurement: measure only one of the two.

Multiple Qubits: Partial Measurement
Let $|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$.
Can perform partial measurement: measure only one of the two. What is probability of first quit being $|0\rangle ? \quad\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}$

What remains?
Drop terms where first quit is 1 and renormalize.

Post-measurement state: $\left|\Psi^{\prime}\right\rangle=\frac{\alpha_{00}|00\rangle+\alpha_{01}|01\rangle}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}}$

Multiple Quits: Entanglement
Consider the state

$$
\begin{aligned}
|E P R\rangle= & \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \begin{array}{r}
\text { Entangled } \\
\text { state }
\end{array} \\
& \text { If measure } \\
& \longrightarrow \text { wipe } \frac{1}{2}, \text { get } 0
\end{aligned}
$$

Multiple Quits: Entanglement
Consider the state

$$
\left[|\mathrm{EPR}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right]=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

Cannot be written as a tensor product of two quits: why?

$$
\underset{\text { omer }}{\mathrm{Assum}_{\text {omer }}^{\text {wise }}}
$$

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left(\begin{array}{l}
\alpha_{1} \alpha_{2} \\
\alpha_{1} \\
\beta_{2} \\
\beta_{1} \\
\alpha_{2} \\
\beta_{1}
\end{array} \beta_{2}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

contradiction
REPRESENT EPR as $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ Rank 2.
Entanglement
A system of two quits $|\phi\rangle$ is entangled when it cannot be written as the tensor product of two quits $\left|\phi_{0}\right\rangle$ and $\left|\phi_{1}\right\rangle$.

Multiple Qubits: Entanglement

Suppose we measure the first quit. What do we get?

$$
\begin{aligned}
& w p \frac{1}{2} \rightarrow|0\rangle \\
& w \cdot p \cdot \frac{1}{2} \rightarrow|1\rangle .
\end{aligned}
$$

Now, suppose we measure the second quit - what do we get?
Same as when I measured the first quit

Multiple Qubits: Entanglement

Spooky Action at a Distance!

Measuring the first tells us something about the second, no matter how far apart the qubits are - no speed-of-light delay!

No Cloning

Weakened) No Cloning
There does not exist any unitary transformation U such that for all $|\Psi\rangle$, we have that

$$
U(|\Psi\rangle \otimes|0\rangle) \rightarrow|\Psi\rangle \otimes|\Psi\rangle)
$$

Suppose that there does exist such u.

$$
\begin{aligned}
& u(10\rangle \otimes|0\rangle)=100\rangle \\
& u(11\rangle \times|0\rangle)=111
\end{aligned}
$$

By linearity $u\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right.$
(x) $|0\rangle)=\frac{|00\rangle+|11\rangle}{\sqrt{2}}$

Consider LHS: $u(1+\rangle \otimes|0\rangle)=|+\rangle|+\rangle$

$$
\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \neq \frac{|00\rangle+|11\rangle}{\sqrt{2}} \text { contra } \text { diction } \begin{gathered}
19 / 47
\end{gathered}
$$

No Cloning: Blessing or Curse?

Implications to eavesdropping attacks?

No Cloning: Blessing or Curse?

Implications to digital money?

So far..

- How to represent quantum information - single and multi-bit.

So far..

- How to represent quantum information - single and multi-bit.
- How to measure a quantum system - single and multi-bit.

So far..

- How to represent quantum information - single and multi-bit.
- How to measure a quantum system - single and multi-bit.
- How to compute on a qubit - single. How?

So far..

- How to represent quantum information - single and multi-bit.
- How to measure a quantum system - single and multi-bit.
- How to compute on a qubit - single. How?

What about computing on multiple bits?

So far..

- How to represent quantum information - single and multi-bit.
- How to measure a quantum system - single and multi-bit.
- How to compute on a qubit - single. How?

What about computing on multiple bits?
Even classical computers can do that!

So far..

- How to represent quantum information - single and multi-bit.
- How to measure a quantum system - single and multi-bit.
- How to compute on a qubit - single. How?

What about computing on multiple bits?
Even classical computers can do that!

How to perform classical computation?

Let's start with some simple multi-bit operations....

How to perform classical computation?

Let's start with some simple multi-bit operations.... Control NOT gate: Flips the "data" bit if "control" bit is set to 1 .

CNOT Gate

Consider a general quantum state:

$$
\left.|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10} \leqq 10\right\rangle+\alpha_{11}|11\rangle
$$

What is CNOT $|\psi\rangle ?=\alpha_{00}|00\rangle+\alpha_{0,}|01\rangle+\alpha_{10}|11\rangle+\alpha_{11}|10\rangle$.

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{l}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{10} \\
\alpha_{11}
\end{array}\right)=\left(\begin{array}{l}
\alpha_{00} \\
\alpha_{01} \\
\alpha_{11} \\
\alpha_{10}
\end{array}\right)
$$

Represent in matrix form:

$$
\mathrm{CNOT}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

CCNOT or Toffoli Gate

What about three qubit gates?

Toffoli Gate (CCNOT)

Target flipped if both control bits are set to 1 . Which gate is this?

CCNOT or Toffoli Gate

Claim: Toffoli is an implementation of the AND gate

CCNOT or Toffoli Gate

Claim: Toffoli is an implementation of the AND gate

Inputs			Outputs		
a	b	c	a^{\prime}	b^{\prime}	c^{\prime}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	$\underline{0}$

How to simulate NAND?

$$
c=1
$$

CCNOT or Toffoli Gate

Recall the definition of fanin and fanout

CCNOT or Toffoli Gate

Recall the definition of fanin and fanout

Claim: Toffoli gate can be used to simulate fanout

CCNOT or Toffoli Gate

Recall the definition of fanin and fanout

Claim: Toffoli gate can be used to simulate fanout

