
CS6846 – Quantum Algorithms and Cryptography

Basics of Quantum Information

Instructor: Shweta Agrawal, IIT Madras

Email: shweta@cse.iitm.ac.in
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The Model

The universe is complex, strange and fascinating. Full of diversity –
bacteria to airplanes to trees to planets.
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The Model

Science wants to understand the universe by abstracting out the
principles of observed phenomena in the simplest form.

Achieved by discovering models that help to understand and predict
behaviour.

Information is physical and subject to quantum laws – we start with a
clean mathematical model for quantum information.
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Basic Formalism: Complex Numbers

A complex number is a number of the form a+ bi for a, b 2 R, where
i is the imaginary root of �1, i.e. i =

p
�1.

Real and Imaginary parts:

Polar Co-ordinates:

Figure: Geometric Representation of z = a+ bi , image courtesy: OW lecture
notes.
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Basic Formalism: Complex Numbers

The complex conjugate of a complex number z is denoted by z⇤ or z†.

For z = a+ bi , z⇤ is defined as a� bi . Note that
|z⇤| =

p
a2 + (�b)2 =

p
a2 + b2 = |z |.

Product of two complex numbers z1 = a1 + b1i and z2 = a2 + b2i is:

The product of any complex number z = a+ bi with its complex
conjugate z⇤ = a� bi is
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Basic Formalism: Complex Numbers

A complex vector is an m ⇥ 1 complex matrix. What is the conjugate
transpose A† of the following complex vector?

A =

2

6664

↵
�
...
⌘

3

7775

Two vectors A and B are orthonormal if A†B = 0.

For any m ⇥ n complex matrix M, the conjugate transpose of M
denoted by M† is the matrix obtained by first taking the transpose of
matrix M and then replacing each entry in the resulting matrix by its
complex conjugate.
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Origins: Double Slit Experiment

Figure: Double Slit Experiment, image courtesy Medium.com

A photon beam is passed through two slits – constructive and destructive
interference is demonstrated, suggesting wave like behaviour.
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Origins: Double Slit Experiment

Figure: Double Slit Experiment, image courtesy Medium.com

When passed through one slit at a time, or observed using detectors in
front of each slit, there is no interference pattern. Without observation,
photon was in position of two states “top” and “bottom”, going through
both at same time. Quantum computing uses this “superposition”.
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Origins: Double Slit Experiment

When passed through one slit at a time, or observed using detectors
in front of each slit, light behaves as particle (i.e. no interference
pattern). Observation “collapses” wave function of particle.

Without observation, photon was in position of two states “top” and
“bottom”, going through both at same time.
Quantum computing seeks to use this “superposition” to generate
“parallelism”.

Figure: Quantum Parallelism, image courtesy: Medium.com
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What’s the Catch?

Say that each register simultaneously stores both bits, 0 and 1.

How many bits do n registers store?
Can we run exponentially many threads of computation in parallel?
Then, can we solve NP-complete problems?
Possibly can simultaneously try all possible solutions, but must
quickly concentrate probability on “correct” solution!

Figure: Concentrate Probability, image courtesy: Physics World
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Defining a Qubit

Ket and Bra notation

Inner Product
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Defining a Qubit

Start by writing classical bits as vectors |0i and |1i.

A qubit can be in a ‘superposition’ state

| i = ↵ |0i+ � |1i ,

where |↵|2 + |�|2 = 1, and ↵,� 2 C2 are called the amplitudes on
each of the basis states |0i and |1i.
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Defining a Qubit

Probability of finding | i in either state |0i or |1i is:

Every two-state quantum system can be written as a linear
combination of the basis states.
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Examples
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Useful Bases

Any quantum state can be expressed in terms of an orthonormal basis.

Standard Basis:

|0i =

1
0

�
and |1i =


0
1

�

Hadamard Basis:

|+i = 1p
2
|0i+ 1p

2
|1i

|�i = 1p
2
|0i � 1p

2
|1i

Exercise: represent |0i and |1i in terms of the Hadamard basis.
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Multiple Qubits

Say we have two qubits, A and B – how can we write these?
Construct a basis: perform a mapping from strings to orthonormal vectors.

When considering n qubits, consider vector space C2n where each basis
vector is labelled by an n bit string. A quantum state of n qubits can be
written as:

| i =
X

x2{0,1}n
↵x |xi , where

X

x2{0,1}n
|↵x |2 = 1.
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Multiple Qubits

Example EPR pair:

|EPRi = 1p
2

�
|00i+ |11i

�

Later, we will show that this state is entangled.

How to combine qubits: Given two arbitrary qubits | Ai =

↵A

�A

�
and

|�Bi =

↵B

�B

�
, how to express their combined state?

Tensor Product:
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Examples

Establish that the tensor product is distributive, associative but not
commutative.

Application: generate true randomness!

If we want to measure | i in orthonormal basis {|bji}j , the
probability of observing the outcome |bji is |hbj | i|2.
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Measurement

Measurement of a quantum system collapses the wave function and
results in the state being found in one of the bases states.
In a circuit diagram, a measurement is depicted as

0/1

| i

Figure: A measurement of | i will yield either |0i (”0”) or |1i (”1”).

A measurement will result in a basis state with probability according
to the square of the 2-norm of the associated amplitude. But once a
measurement collapses a wave function, any subsequent measurement
will obtain the same result with probability 1.
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