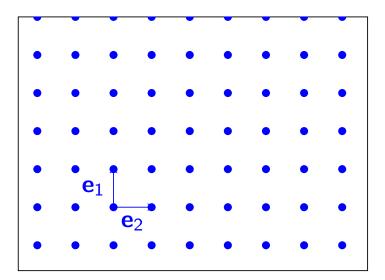


CS 6846 Quantum Algortithms and Cryptography

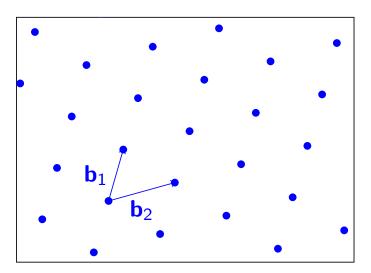
Shweta Agrawal IIT Madras

What is a lattice?



The simplest lattice in *n*-dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$



Other lattices are obtained by applying a linear transformation

$$\Lambda = \mathbf{B}\mathbb{Z}^n \qquad (\mathbf{B} \in \mathbb{R}^{d imes n})$$

A set of points with periodic arrangement

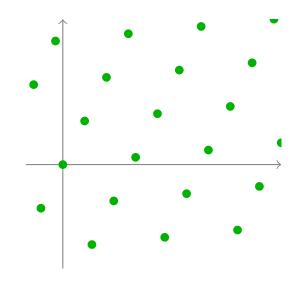
Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $\mathbf{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n} \subset \mathbb{R}^n$:

$$\mathcal{L} = \sum_{i=1}^{n} \mathbf{b}_{i} \cdot \mathbb{Z} = \{ \mathbf{B}\mathbf{x} \colon \mathbf{x} \in \mathbb{Z}^{n} \}$$

The same lattice has many bases

$$\mathcal{L} = \sum_{i=1}^{n} \mathbf{c}_{i} \cdot \mathbb{Z}$$



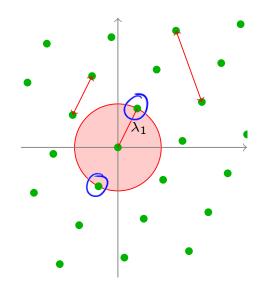
Minimum Distance and Successive Minima

• Minimum distance

$$\lambda_{1} = \min_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y} \\ \mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}}} \|\mathbf{x} - \mathbf{y}\|$$

• Successive minima (i = 1, ..., n)

 $\lambda_i = \min\{r : \dim \operatorname{span}(\mathcal{B}(r) \cap \mathcal{L}) \ge i\}$



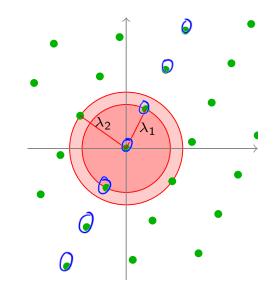
Minimum Distance and Successive Minima

• Minimum distance

$$\lambda_{1} = \min_{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y} \\ \mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}}} \|\mathbf{x} - \mathbf{y}\|$$

• Successive minima (i = 1, ..., n)

$$\lambda_i = \min\{r : \dim \operatorname{span}(\mathcal{B}(r) \cap \mathcal{L}) \ge i\}$$



• Examples

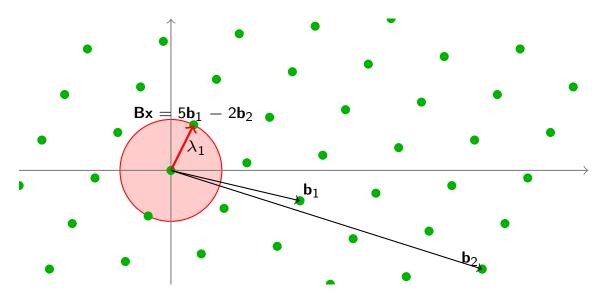
•
$$\mathbb{Z}^n$$
: $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 1$

• Always: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

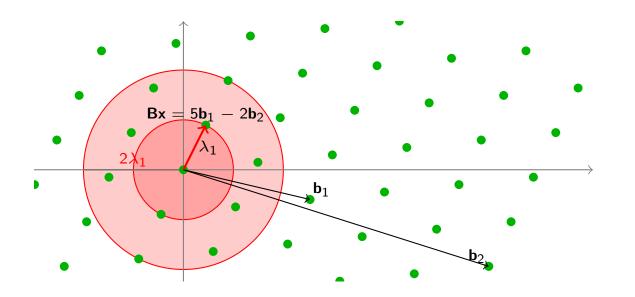
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \lambda_1$



Approximate Shortest Vector Problem

Definition (Shortest Vector Problem, SVP_{γ})

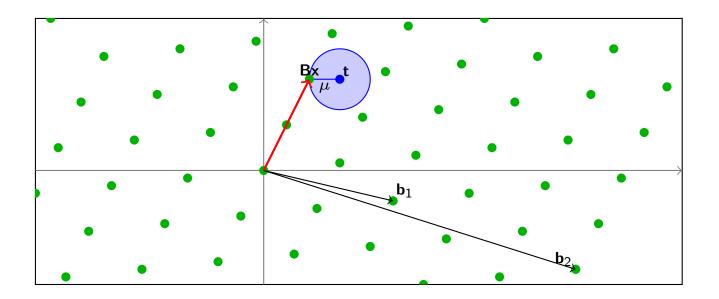
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \gamma \lambda_1$



Closest Vector Problem

Definition (Closest Vector Problem, CVP)

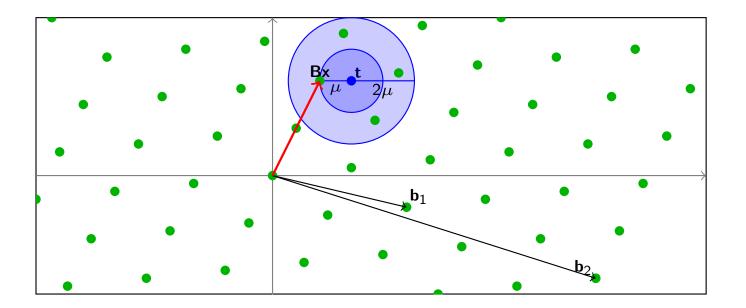
Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \le \mu$ from the target



Approximate Closest Vector Problem

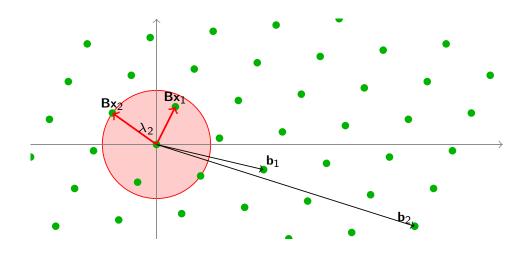
Definition (Closest Vector Problem, CVP_{γ})

Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector $\mathbf{B}\mathbf{x}$ within distance $\|\mathbf{B}\mathbf{x} - \mathbf{t}\| \leq \gamma \mu$ from the target



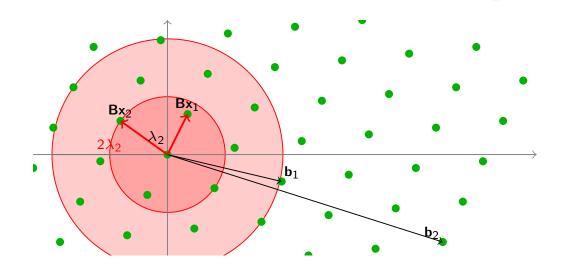
Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP) Given a lattice $\mathcal{L}(\mathbf{B})$, find *n* linearly independent lattice vectors $\mathbf{Bx}_1, \ldots, \mathbf{Bx}_n$ of length (at most) $\max_i ||\mathbf{Bx}_i|| \le \lambda_n$

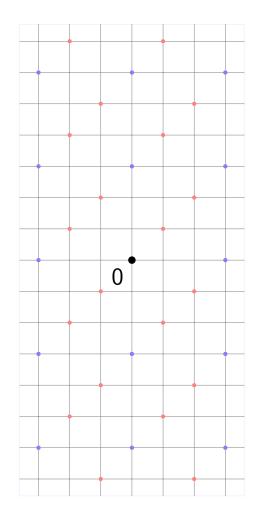


Approximate Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, $SIVP_{\gamma}$) Given a lattice $\mathcal{L}(\mathbf{B})$, find *n* linearly independent lattice vectors $\mathbf{Bx}_1, \ldots, \mathbf{Bx}_n$ of length (at most) $\max_i ||\mathbf{Bx}_i|| \leq \gamma \lambda_n$



Random Lattices in Cryptography



 Cryptography typically uses (random) lattices Λ such that

- $\Lambda \subseteq \mathbb{Z}^d$ is an integer lattice
- $q\mathbb{Z}^d \subseteq \Lambda$ is periodic modulo a small integer q.
- Cryptographic functions based on <u>q-ary</u> lattices involve only arithmetic modulo q.

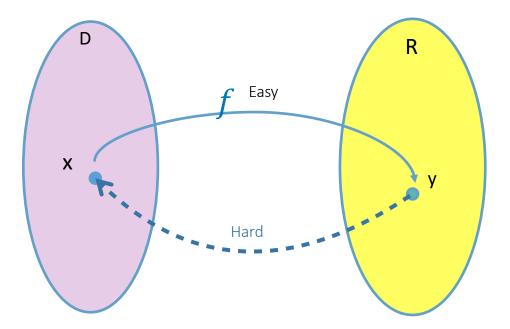
Definition (*q*-ary lattice) Λ is a *q*-ary lattice if $q\mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n$

Examples (for any $\mathbf{A} \in \mathbb{Z}_q^{n \times d}$) • $\Lambda_q(\mathbf{A}) = \{\mathbf{x} \mid \mathbf{x} \mod q \in \mathbf{A}^T \mathbb{Z}_q^n\} \subseteq \mathbb{Z}^d$ • $\Lambda_q^{\perp}(\mathbf{A}) = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \mod q\} \subseteq \mathbb{Z}^d$ Perp

Building Cryptography

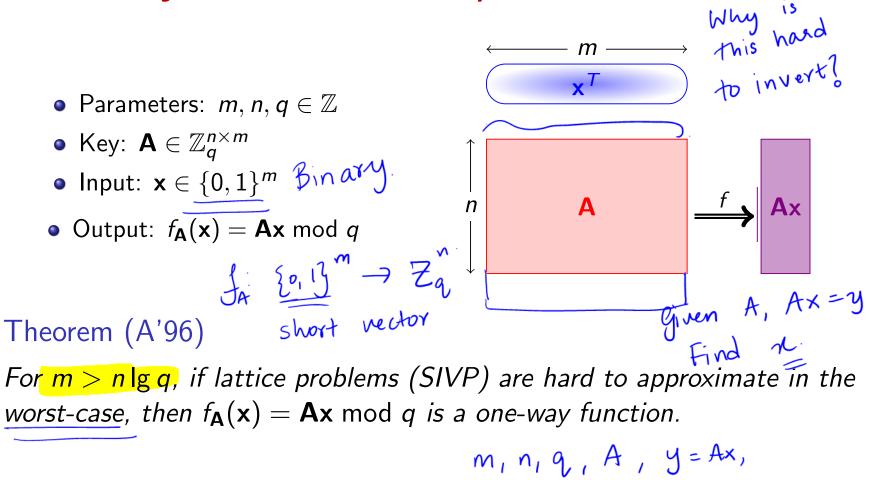
One Way Functions

 $f: D \rightarrow R$, One Way



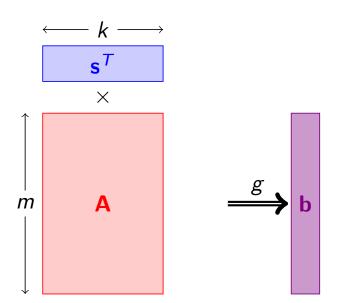
Most basic "primitive" in cryptography!

Ajtai's One Way Function



Regev's One Way Function

•
$$\mathbf{A} \in \mathbb{Z}_q^{m \times k}$$
, $\mathbf{s} \in \mathbb{Z}_q^k$, $\mathbf{e} \in \mathcal{E}^m$,
• $g_{\mathbf{A}}(\mathbf{s}) = \mathbf{As} \mod q$



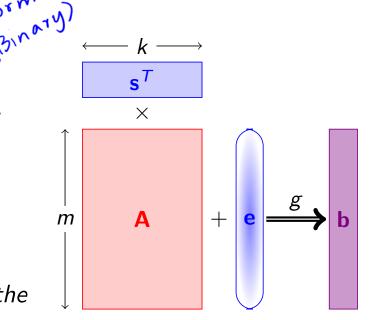
Regev's One Way Function

•
$$\mathbf{A} \in \mathbb{Z}_q^{m imes k}$$
, $\mathbf{s} \in \mathbb{Z}_q^k$, $\mathbf{e} \in \mathcal{E}^m$.

- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \underline{\mathbf{As}} + \underline{\mathbf{e}} \mod q$
- Learning with Errors: Given A and g_A(s, e), recover s.

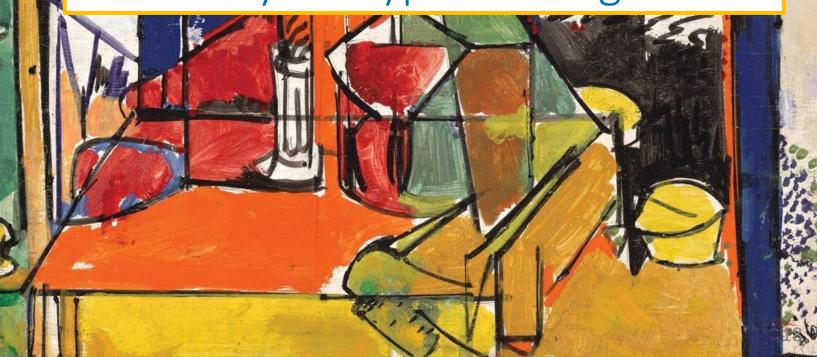
Theorem (R'05)

The function $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case.



Public Key Encryption & Signatures

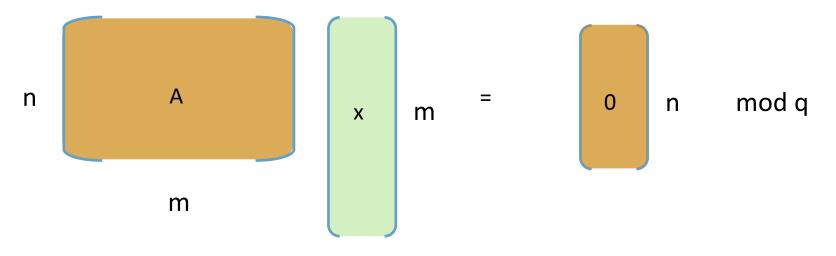
-5500



Short Integer Solution Problem

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, q = poly(n), $m = \Omega(n \log q)$

Given matrix **A**, find "short" (low norm) vector **x** such that $\mathbf{A}\mathbf{x} = \underbrace{\mathbf{0}} \mod q \in \mathbb{Z}_q^n \qquad || \mathbf{x} || \leq \mathbf{\beta}$



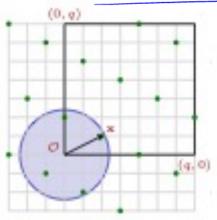
Learning With Errors Problem Distinguish "noisy inner products" from uniform Fix uniform $s \in Z_q''$ $a_1, b_1 = \langle a_1, s \rangle + e_1$ $a_2, b_2 = \langle a_2, s \rangle + e_2$ a'₁, b'₁ a'_{2}, b'_{2} VS a'_m , b'_m a_m , $b_m = \langle a_m, s \rangle + e_m$ a_i uniform $\in Z_a^n$, $e_i \sim \phi \in Z_a$ a_i uniform $\in Z_q^n$, b_i uniform $\in Z_q$

Recap:Lattice Based One Way Functions

Public Key
$$A \in \mathbb{Z}_q^{n \times m}, q = poly(n), m = \Omega(nlogq)$$
Ajtai'sRegev'sBased on SISBased on LWE

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q \in \mathbb{Z}_q^n$$

- Short x, surjective
- CRHF if SIS is hard



 $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \underbrace{\mathbf{s}^{t}}_{\mathbf{e}} \mathbf{A} + \underbrace{\mathbf{e}^{t}}_{m} modq \in \mathbb{Z}_{q}^{m}$

- Very short e, injective
- OWF if LWE is hard [Reg05...]

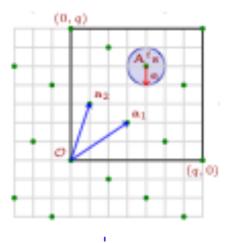


Image Credit: MP12 slides

Public Key Encryption [Regev05]

- Recall A (e) = u mod q hard to invert
- ✤ Secret: e, Public : A, u

$$\left\{ A \right\} e = \left[u \right] \mod q$$

Small only

if e is small

- ✤ Encrypt (A, u) :
 - Pick random vector s

•
$$c_0 = A^T s + noise$$

•
$$c_1 = u^T s + noise + msg$$

Decrypt (e) :

•
$$e^T c_0 - c_1 = msg + noise$$

Public Key Encryption [Regev05]

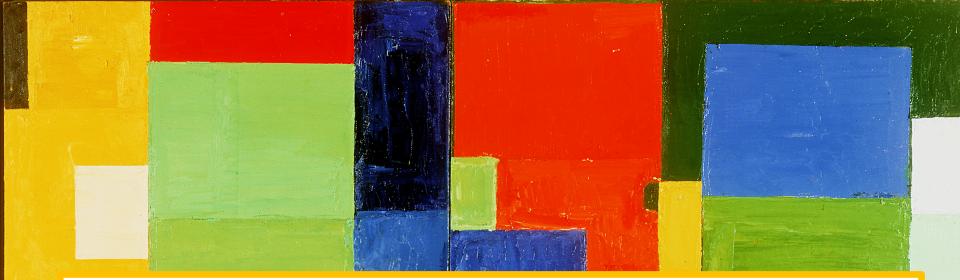
Recall A (e) = u mod q hard to invert

• Secret: e, Public : A, u
$$\{A\}e \equiv u \mod q$$

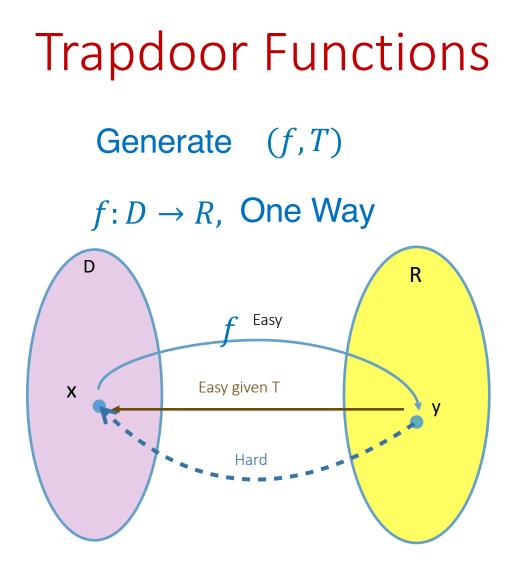
✤ By SIS problem, hard to find short e

- By LWE problem, ciphertext appears random
 - $c_0 = A^T s + noise$, looks like random

 - Hence hides message "msg"

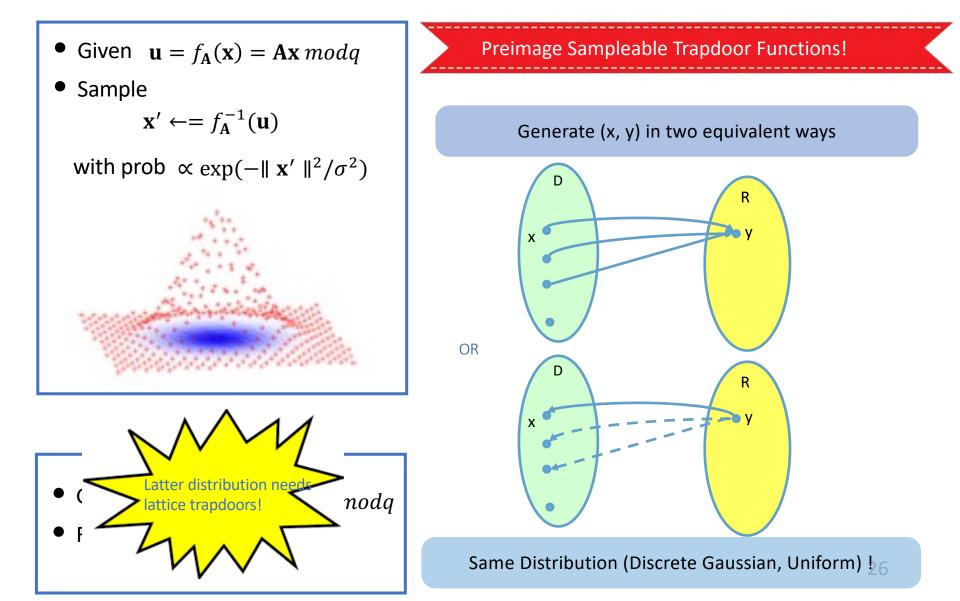


For Signatures, need Lattice Trapdoors

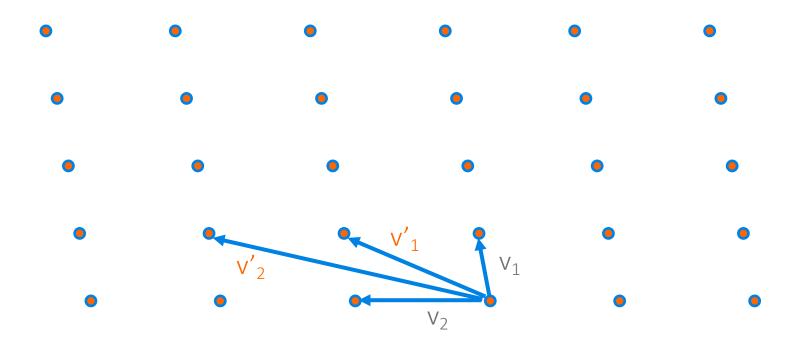


We will construct trapdoor functions from two lattice problems

Inverting functions for Crypto

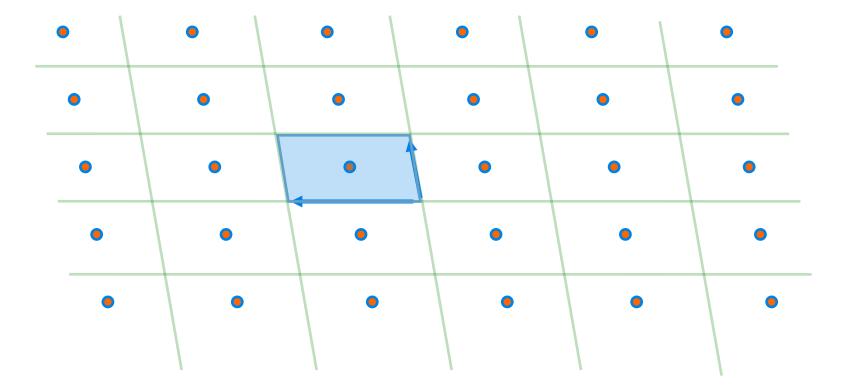


Lattice Trapdoors: Geometric View

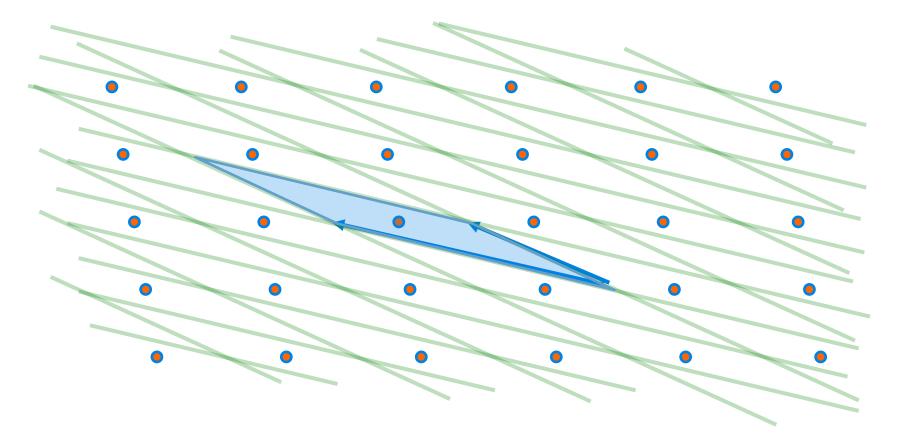


Multiple Bases

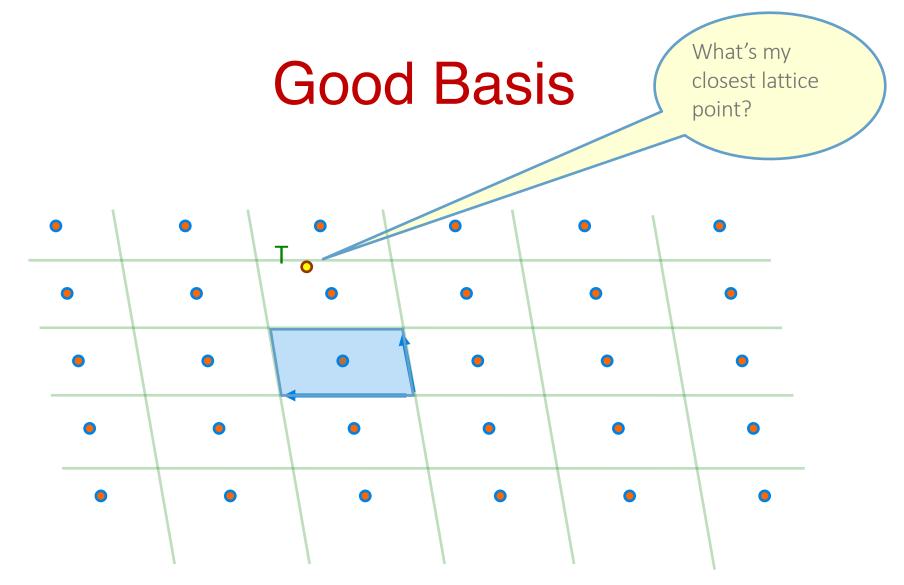
Parallelopipeds



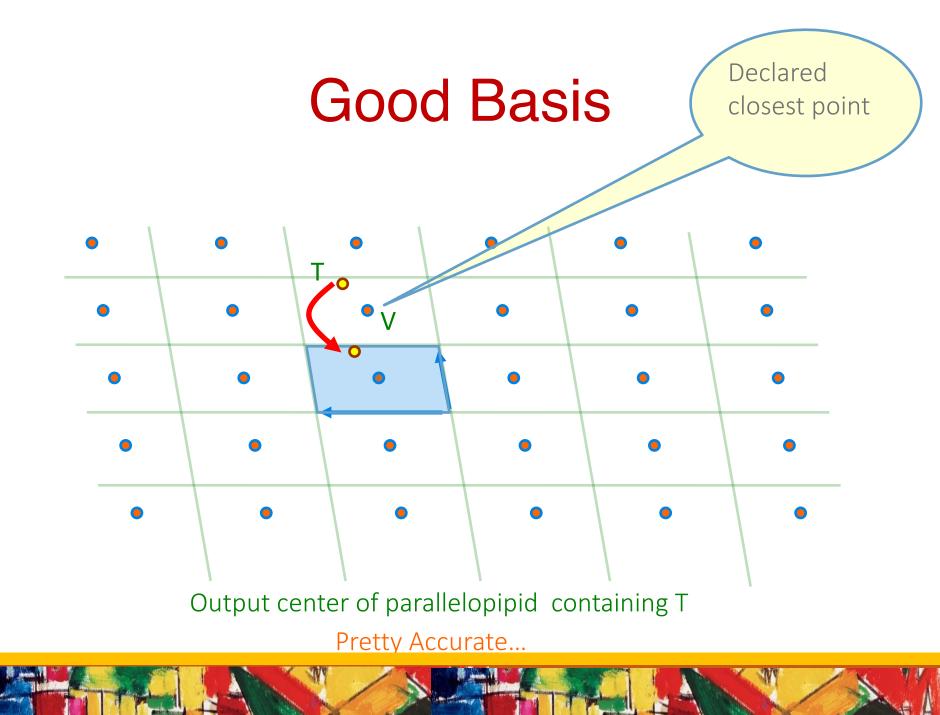
Parallelopipeds



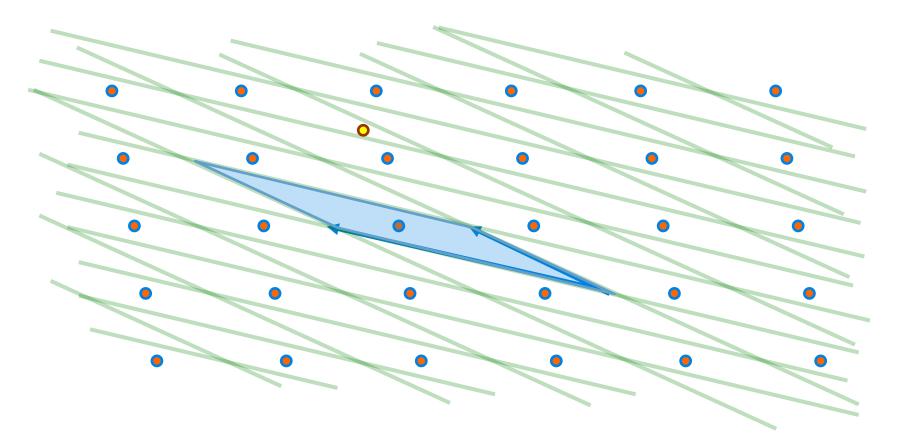
W



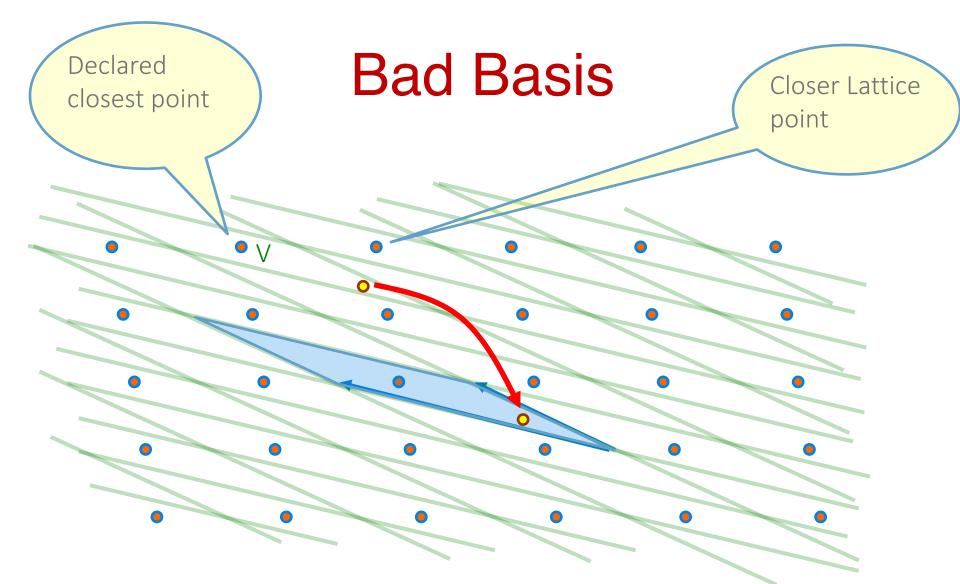
"Quite short" and "nearly orthogonal"



Bad Basis



W L



Output center of parallelopipid containing T

Not So Accurate...

Basis quality and Hardness SVP, CVP, SIS (...) hard given arbitrary (bad) basis

- Some hard lattice problems are easy given a good basis
- Will exploit this asymmetry

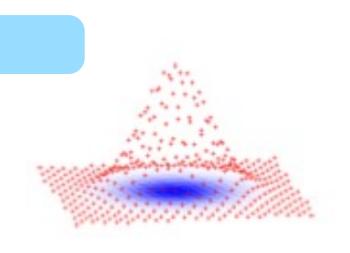
Use Short Basis as Cryptographic Trapdoor!

Lattice Trapdoors

Inverting Our Function

Recall $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \mod q$ Want

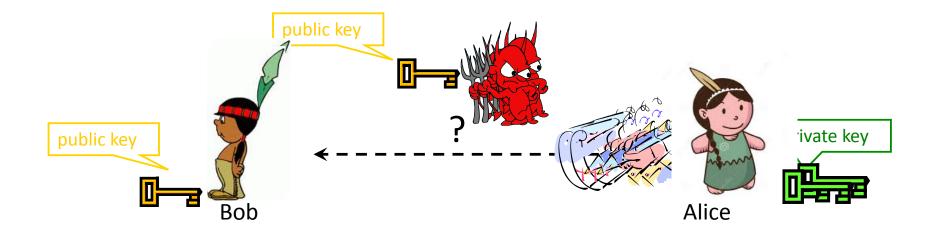
 $\mathbf{x}' \leftarrow = f_{\mathbf{A}}^{-1}(\mathbf{u})$ with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$



The Lattice

 $\Lambda = \{\mathbf{x} : \mathbf{A}\mathbf{x} = 0 \mod q\} \subseteq \mathbb{Z}_q^m$ Short basis for Λ lets us sample from $f_A^{-1}(\mathbf{u})$ with correct distribution!

Digital Signatures

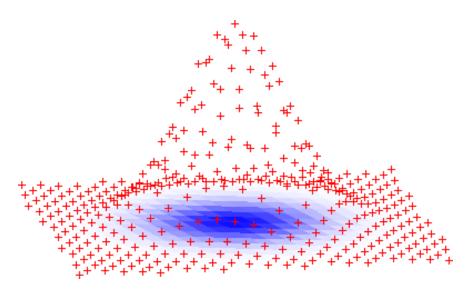


Everybody knows Alice's public key Only Alice knows the corresponding private key

<u>Goal</u>: Alice sends a "digitally signed" message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

Digital Signatures from Lattices

- Generate uniform $vk = \mathbf{A}$ with secret 'trapdoor' $sk = \mathbf{T}$.
- Sign (\mathbf{T}, μ) : use \mathbf{T} to sample a short $\mathbf{z} \in \mathbb{Z}^m$ s.t. $\mathbf{A}\mathbf{z} = H(\mu) \in \mathbb{Z}_q^n$. Draw \mathbf{z} from a distribution that reveals nothing about secret key:



- ► Verify($\mathbf{A}, \mu, \mathbf{z}$): check that $\mathbf{A}\mathbf{z} = H(\mu)$ and \mathbf{z} is sufficiently short.
- Security: forging a signature for a new message µ* requires finding short z* s.t. Az* = H(µ*). This is SIS: hard!

Summary

- Basics of Lattices
- Hard Problems on Lattices
- Public Key Encryption
- Lattice Trapdoors
- Digital Signatures

Thank You

Images Credit: Hans Hoffman

Slides Credit: Daniele Micciancio, Chris Peikert