
CS 6846
Quantum Algortithms and Cryptography

Shweta Agrawal
IIT Madras



What is a lattice?

2

A set of points with periodic arrangement

Point Lattices and Lattice Parameters

Lattices: Definition

e1
e2

The simplest lattice in n-dimensional
space is the integer lattice

⇤ = Zn

b1
b2

Other lattices are obtained by
applying a linear transformation

⇤ = BZn (B 2 Rd⇥n)
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Point Lattices and Lattice Parameters

Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {b1, . . . ,bn} ⇢ Rn:

L =
nX

i=1

bi · Z = {Bx : x 2 Zn}

The same lattice has many bases

L =
nX

i=1

ci · Z

Definition (Lattice)

A discrete additive subgroup of Rn

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 7 / 43

Lattices and Bases
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Point Lattices and Lattice Parameters

Minimum Distance and Successive Minima

Minimum distance

�1 = min
x,y2L,x6=y

kx� yk

= min
x2L,x6=0

kxk

Successive minima (i = 1, . . . , n)

�i = min{r : dim span(B(r) \ L) � i}

Examples
Zn: �1 = �2 = . . . = �n = 1
Always: �1  �2  . . .  �n

�1
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Shortest Vector Problem

Computational Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice L(B), find a (nonzero) lattice vector Bx (with x 2 Zk) of
length (at most) kBxk  �1

b1

b2
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Approximate Shortest Vector Problem
Computational Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP�)
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Closest Vector Problem

Computational Problems

Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice L(B) and a target point t, find a lattice vector Bx within
distance kBx� tk  µ from the target

t

b1

b2
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Shortest Independent Vectors ProblemComputational Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi kBxik  �n

b1

b2

Bx1

�2

Bx2
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Approximate Shortest Independent 
Vectors Problem

Computational Problems

Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP�)

Given a lattice L(B), find n linearly independent lattice vectors
Bx1, . . . ,Bxn of length (at most) maxi kBxik  ��n

2�2

b1

b2

Bx1

�2

Bx2
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Q-ary Lattices and Cryptography

Random lattices in Cryptography

0

Cryptography typically uses (random) lattices ⇤
such that

⇤ ✓ Zd is an integer lattice
qZd ✓ ⇤ is periodic modulo a small integer q.

Cryptographic functions based on q-ary lattices
involve only arithmetic modulo q.

Definition (q-ary lattice)

⇤ is a q-ary lattice if qZn ✓ ⇤ ✓ Zn
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Q-ary Lattices and Cryptography

Examples of q-ary lattices

Examples (for any A 2 Zn⇥d
q )

⇤q(A) = {x | x mod q 2 ATZn
q} ✓ Zd

⇤?
q (A) = {x | Ax = 0 mod q} ✓ Zd

Theorem
For any lattice ⇤ the following conditions are equivalent:

qZd ✓ ⇤ ✓ Zd

⇤ = ⇤q(A) for some A

⇤ = ⇤?
q (A) for some A

For any fixed A, the lattices ⇤q(A) and ⇤?
q (A) are di↵erent

Daniele Micciancio (UCSD) The Mathematics of Lattices Jan 2020 37 / 43

Random Lattices in Cryptography
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Building Cryptography



RD

One Way Functions

14

x
y

Easy

Hard

𝑓:𝐷 → 𝑅, One Way 

𝑓

Most basic “primitive” in cryptography!
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Ajtai’s One Way Function
Q-ary Lattices and Cryptography

Ajtai’s one-way function (SIS)

Parameters: m, n, q 2 Z
Key: A 2 Zn⇥m

q

Input: x 2 {0, 1}m

Output: fA(x) = Ax mod q

m

xT

⇥

n A

f

Ax

Theorem (A’96)

For m > n lg q, if lattice problems (SIVP) are hard to approximate in the

worst-case, then fA(x) = Ax mod q is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID
schemes [L’08], Signatures [LM’08,GPV’08,. . . ,DDLL’13] . . .
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Regev’s One Way Function
Q-ary Lattices and Cryptography

Regev’s Learning With Errors (LWE)

A 2 Zm⇥k
q , s 2 Zk

q , e 2 Em.

gA(s

; e

) = As

+ e

mod q

Learning with Errors: Given A
and gA(s, e), recover s.

Theorem (R’05)

The function gA(s, e) is hard to

invert on the average, assuming

SIVP is hard to approximate in the

worst-case.

k

sT

⇥

m A

+ e

g

b

Applications: CPA PKE [R’05], CCA PKE [PW’08], (H)IBE
[GPV’08,CHKP’10,ABB’10], FHE [. . . ,B’12,AP’13,GSW’13], . . .
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Public Key Encryption & Signatures



Short Integer Solution Problem

19

Given matrix A, find “short” (low norm) vector x such that 

A
x 0=n

m

m n

Let

mod q

𝐀 ∈ ℤ!"×$, 𝑞 = 𝗉𝗈𝗅𝗒(𝑛),𝑚 = Ω(𝑛 log 𝑞)

𝐀𝐱 = 0 𝑚𝑜𝑑 𝑞 ∈ ℤ!"



Learning With Errors Problem

20

Distinguish “noisy inner products” from uniform

Fix uniform s    Zq
n

a1 , b1 = <a1,s> + e1

a2 , b2 = <a2,s> + e2

am , bm = <am,s>+ em

vs

ai uniform     Zq
n , ei ~ ϕ     Zq ai uniform Zq

n , bi uniform    Zq



Recap:Lattice Based One Way Functions

Based on SIS

• Short x, surjective 
• CRHF if SIS is hard 

[Ajt96…]

21

Public Key 𝐀 ∈ ℤ!"×$ , 𝑞 = 𝗉𝗈𝗅𝗒 𝑛 ,𝑚 = Ω(𝑛log𝑞)

𝑔𝐀(𝐬, 𝐞) = 𝐬&𝐀 + 𝐞&𝑚𝑜𝑑𝑞 ∈ ℤ!$𝑓𝐀 𝐱 = 𝐀𝐱 𝑚𝑜𝑑 𝑞 ∈ ℤ!"

Based on LWE

• Very short e, injective 

• OWF if LWE is hard [Reg05…]

Image Credit: MP12 slides



Public Key Encryption [Regev05]

2222

❖ Encrypt (A, u) : 

❖ Pick random vector s

❖ c0 = AT s + noise 

❖ c1 = uT s + noise + msg

❖ Decrypt (e) : 

❖ eT c0 – c1 = msg + noise

Small only
if  e is small

A e u mod q

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u
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❖ By SIS problem, hard to find short e

❖ By LWE problem, ciphertext appears random

❖ c0 = AT s + noise, looks like random

❖ c1 = uT s + noise + msg , looks like random + msg

❖ Hence hides message “msg”

❖ Recall A (e) = u mod q hard to invert

❖ Secret: e, Public : A, u

Public Key Encryption [Regev05]

A e u mod q



For Signatures, need
Lattice Trapdoors



RD

Trapdoor Functions

25

x
y

Easy

Hard

Easy given T

Generate

𝑓:𝐷 → 𝑅,

(𝑓, 𝑇)

One Way 

𝑓

We will construct trapdoor functions from two lattice problems



Preimage Sampleable Trapdoor Functions!

Inverting functions for Crypto

26

• Given                                     

• Sample 

with prob 

𝐮 = 𝑓𝐀 𝐱 = 𝐀𝐱 𝑚𝑜𝑑𝑞

𝐱' ←= 𝑓𝐀()(𝐮)

∝ exp(−∥ 𝐱' ∥*/𝜎*)

• Given                                     

• Find unique  
𝑔𝐀(𝐬, 𝐞) = 𝐬&𝐀 + 𝐞&𝑚𝑜𝑑𝑞

(𝐬, 𝐞)

And

Generate (x, y) in two equivalent ways

D
R

x y

D
R

x y

Same Distribution (Discrete Gaussian, Uniform) ! 

OR

Latter distribution needs 
lattice trapdoors!



Lattice Trapdoors: Geometric View

Multiple Bases

v1

v2

v’2
v’1



Parallelopipeds 



Parallelopipeds



Good Basis
What’s my 
closest lattice 
point?

“Quite short” and “nearly orthogonal”

T



Good Basis Declared 
closest point

Pretty Accurate…

T

V

Output center of parallelopipid containing T



Bad Basis

32



Bad Basis

33

Closer Lattice 
point

Declared 
closest point

V

Not So Accurate…

Output center of parallelopipid containing T



Basis quality and Hardness
• SVP, CVP, SIS (...) hard given arbitrary 

(bad) basis

• Some hard lattice problems are easy
given a good basis

• Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!



Lattice Trapdoors

35

Recall
Want 

with prob 

𝐮 = 𝑓𝐀 𝐱 = 𝐀 𝐱 𝑚𝑜𝑑𝑞

𝐱' ←= 𝑓𝐀()(𝐮)

∝ exp(−∥ 𝐱' ∥*/𝜎*)

The Lattice

Inverting Our Function

𝚲 = {𝐱: 𝐀𝐱 = 0 𝑚𝑜𝑑 𝑞} ⊆ ℤLM

Short basis for     lets us sample from  
with correct distribution! 

𝑓𝐀&'(𝐮)𝚲



Digital SignaturesDigital,Signatures:,Basic,Idea,

?!

Everybody!knows!Alice’s!public!key!
Only!Alice!knows!the!corresponding!private!key!

private!key!

Goal:!Alice!sends!a!“digitally!signed”!message!
1.  To!compute!a!signature,!must!know!the!private!key!
2.  To!verify!a!signature,!only!the!public!key!is!needed!

public!key!

public!key!

Bob! Alice!
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Digital Signatures from LatticesApplication: Digital Signatures [GentryPeikertVaikuntanathan’08]

I Generate uniform vk = A with secret ‘trapdoor’ sk = T.

I Sign(T, µ): use T to sample a short z 2 Zm s.t. Az = H(µ) 2 Zn
q .

Draw z from a distribution that reveals nothing about secret key:

I Verify(A, µ, z): check that Az = H(µ) and z is su�ciently short.

I Security: forging a signature for a new message µ⇤ requires finding
short z⇤ s.t. Az⇤ = H(µ⇤). This is SIS: hard!
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Summary

• Basics of Lattices
• Hard Problems on Lattices
• Public Key Encryption
• Lattice Trapdoors
• Digital Signatures 
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