
CS 6846: Quantum Algorithms and Cryptography Oct 11, 2022

Homework 3
Instructor: Shweta Agrawal Due: Oct 22, 5 pm.

Instructions:

1. Please type up your solutions using latex.

2. You may collaborate with other students. Please mention the names of your collaborators or
any other source that you use for the solution.

3. Please type up your solutions individually without any help.

Problem 1: Fun with Grover’s Algorithm (2+3+3 pts).

In class we saw Grover’s algorithm for the case where there was only one accepting input to the
function. This can be generalized to the case where there are multiple accepting inputs. Let us
assume that function F : {0, 1}n → {0, 1}, accepts a δ fraction of its inputs, i.e. Prx

(
f(x) = 1

)
= δ.

Then we can find one accepting input with O(
√
1/δ) evaluation queries to F .

We will consider the application of Grover’s algorithm to collision finding. We are given that a
function G : {0, 1}m → {0, 1}n where m > n, is 2 to 1: for each xi there is exactly one other xj such
that G(xi) = G(xj). Such an (xi, xj) pair is called a collision. Let N = 2n.

1. Suppose S is a randomly chosen set of s elements in the domain of G. What is the probability
that there is a collision in S?

2. Give a classical randomized algorithm that finds a collision (with probability ≥ 2/3) using
O(

√
N) queries to F .

Hint: Use 1− x ≤ e−x for x ∈ [0, 1]. What is the above probability for s = 2
√
N?

3. Give a quantum algorithm that finds a collision (with probability≥ 2/3) usingO(N1/3) queries.
Hint: Choose a set of size s = N1/3 and classically query its elements. If this set does not
contain a collision, use Grover’s algorithm to find one. How will you define a function that is
compatible with Grover’s algorithm?

Problem 2: Generalizing Collisions (5 pts).

A collision can be thought of as follows: two distinct inputs x0, x1 such that G(x0) ⊕ G(x1) = 0n.
Consider the following generalization: given G : {0, 1}m → {0, 1}n for m >> n, find 3 distinct
inputs x0, x1, x2 such that G(x0)⊕G(x1)⊕G(x2) = 0n. Explain how to solve this problem in time
O(N1/4) using Grover’s algorithm.

Problem 3: Breaking Another PKE (6 pts).

Let P : {0, 1}n → {0, 1}n be a permutation; that is, a function without any collisions. Let Q(x) =
P (x ⊕ k0) ⊕ k1 for some secret keys k0, k1. It is known that if you can only make classical queries
to these two functions, then you cannot recover k0, k1. This fact is used in the design of encryption
schemes: P is a public permutation that everyone knows, and you turn it into a private permutation
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Q as above. Then Q can be used to encrypt messages (decryption will require the ability to compute
the inverse of P , but we will ignore it for this problem).

Show that quantum queries to both P and Q allow for the recovery of k0, k1.
Hint: try defining a function f based on P and Q such that f is an instance of Simon’s problem.

Problem 4: Rethinking Shor’s Algorithm (5 pts).

In class, we saw that Shor’s algorithm has the following broad steps: i) create a uniform superposition
of inputs, ii) evaluate the function fa on this superposition, iii) measure the registers containing the
function value to get fa(x) = y, iv) apply QFT on data registers to obtain a superposition of points
that are separated by M/r (ignore the rounding issue for now), v) measure to obtain a multiple of
M/r, vi) repeat to obtain many such multiples and recover r via GCD, since M is known.

Step (iii) gives a superposition of points that are separated by period r. In more detail, for some
x0, we obtained a state:

1√
M/r

M/r−1∑
j=0

|x0 + jr, y >

Suppose we measure the data registers at this stage, i.e. before applying the QFT. The rationale
is that we already have a superposition of points that are separated by r, so why can’t we obtain
many values of x0+ jr, subtract pairs to remove the x0 to obtain many multiples of r and then take
GCD to recover r? Does this work? If so, why? If not, why?

Problem 5: Application of Grover’s Algorithm (4 pts)

Let N = 2n and x0, ..., xN−1 be a sequence of distinct integers (you can think of them as the
outputs in the truth table of some function F ). We can query this function in the usual way, i.e.,
we can apply unitary O : |i, 0⟩ → |i, xi⟩, as well as its inverse. The minimum of F is defined as
min{xi|i ∈ {0, ..., N − 1}}. Give a quantum algorithm that finds (with probability ≥ 2/3) an index
achieving the minimum, using O(

√
N logN) queries.

Hint: start with m = xi for a random i, and repeatedly use Grover’s algorithm to find an index j
such that xj < m and update m = xj. Continue this until you can find no element smaller than m,
and analyze the number of queries of this algorithm. You are allowed to argue about this algorithm
on a high level. Bonus: give a quantum algorithm that uses O(

√
N) queries.

Problem 6: Lattices (4+3 pts)

1. Prove that two bases B1, B2 ∈ Rm×n generate the same lattice, i.e. L(B1) = L(B2) if and
only if B2 = B1U for some unimodular matrix U .

2. In class we saw the random lattices used in cryptography, as well as hard problems on lattices
such as shortest vector and closest vector problem. Express the SIS and LWE problems that
we saw in class as lattice problems.
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