
CS 6846: Quantum Algorithms and Cryptography Sep 13, 2022

Homework 2
Instructor: Shweta Agrawal Due: Sep 23, 5 pm.

Instructions:

1. Please type up your solutions using latex.

2. You may collaborate with other students. Please mention the names of your collaborators or
any other source that you use for the solution.

3. Please type up your solutions individually without any help.

Problem 1: Negligible Functions (2+16+3 pts)

In cryptography, we usually define security by requiring that the probability of some undesirable
event (e.g. Eve guesses the message) be so small that one would never notice it. To that end, we
define a negligible function as follows:

Definition 1. (Negligible function) A function ν(k) : N 7→ [0, 1] is called negligible if for every
polynomial p, there exists some k0 ≥ 1 such that for all k > k0, ν(k) < |1/p(k)|.

In this problem we will develop some intuition for this useful concept and how to work with it.

a. Give an example of a negligible function ν(k) where ν(k) > 0 for all k.

b. Suppose that ν is a negligible function. Let p be a polynomial such that p(k) ≥ 0 for all k > 0.
Which of the following functions are negligible?

1) ν(p(k))

2) p(ν(k))

3)
∑p(k)

i=1 νi(k), where each νi is negligible

4) ν(k) ∗ p(k)

5) ν(k)
1

p(k)

6) ν(k)
1
c , for some positive constant c

7) 1
p(k) − ν(k)

8) ν(k)−c, for some positive constant c

c. Suppose that ϵ : N 7→ [0, 1] is not a negligible function. Does it follow that for some polynomial
p (where p(k) > 0 for all k) and some k0, ϵ(k) > 1/p(k) for all k > k0? If your answer is yes,
prove it. If your answer is no, give a counter-example.
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Problem 2: One-Way Function: Definition (3+3 pts)

Recall the standard definition for a one-way function: A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if the following two conditions hold:

1. Easy to compute: There exists a deterministic polynomial-time algorithm A such that on
input x, algorithm A outputs f(x) (i.e. (A(x) = f(x)).

2. Hard to invert: For every probabilistic polynomial-time algorithm A, there exists a negligible
function ν such that :

Pr
(
A(1k, f(x))→ x′ | x R← {0, 1}k ∧ f(x′) = f(x)

)
≤ ν(k)

Notation: The above notation x
R← {0, 1}k means that x of length k is chosen uniformly at

random from the set of k bit strings. The notation A(1k, f(x)) → x′ denotes that A takes
as input (1k, f(x)) and returns x′. The probability that A succeeds (i.e. f(x′) = f(x)) is
negligible.

Suppose we define the “hard to invert” part differently: A function f : {0, 1}∗ → {0, 1}∗ is called
uninvertible if it is easy to compute f (as defined above), but there does not exist a probabilistic
polynomial-time algorithm A such that, for every string x, on input (1k, f(x)), A outputs x′ such
that f(x) = f(x′).

a. Show that if f is a one-way function, then it is an uninvertible function.

b. Below is a proof that an uninvertible function is also one-way. Is this proof correct? If not,
describe where it went wrong (potentially in more than one place).

Reduction: We show that an algorithm A that breaks the “one-wayness” of f also breaks
that “uninvertibleness” of A. Thus, the reduction accomplishes the contrapositive: not one-
way implies not uninvertible.

The reduction proceeds as follows: on input y = f(x), run A, giving it input y. With non-
negligible probability, A outputs x′ such that f(x′) = y = f(x). If A outputs such x′, output
it. Else, run A again until it does.

Analysis of the reduction: Correctness follows because the reduction does not halt until it
finds a correct x′. Expected polynomial-time follows because A outputs a correct x′ with
non-negligible probability ϵ(k), and ϵ(k) ≥ 1/p(k) for some polynomial p(k), so we need to run
A 1/ϵ(k) ≤ p(k) times before it produces a correct x′.

Therefore, if f is an uninvertible function, then it is also a one-way function.

Problem 3: Combining OWF (3+3+3 pts)

Let f, g be length preserving one way functions, i.e. |f(x)| = |x|. We will construct new functions
f ′ using arbitrary one-way f, g. Prove or disprove that f ′ is one way for each of the following
constructions. If it is, prove it, else provide a counter example.

a. f ′(x) = f(x)⊕ g(x)

b. f ′(x) = f(f(x))

c. f ′(x1||x2) = f(x1)||g(x2) (here || denotes concatenation)
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Problem 4: RSA(4 pts)

Recall the textbook RSA encryption scheme that we saw in class. Recall that we have a public
modulus n = p · q where p, q are large primes. A user’s public key is e ∈ Z∗

ϕ(n) and secret key is d s.t.

e · d = 1 mod ϕ(n). To encrypt a message m, a user computes the ciphertext as CT = me mod n
and to decrypt she computes CTd mod n.

Assume that Anita and Brijesh have RSA keys with the same public modulus n but with dif-
ferent public exponents es and er respectively where es and er are relatively prime. Say that RSA
encryption is used to send the same message m to both Anita and Brijesh. Prove that if Esha knows
n, es, er and sees the two ciphertexts cs = mes mod n and cr = mer mod n, she can reconstruct
the message m.

Problem 5: More RSA (4 pts)

This problem shows why it is unsafe to use a very small public key in RSA. Suppose Ananya, Bharat
and Chandra have the following RSA public keys — (3, NA), (3, NB), and (3, NC) respectively. Divya
sends the message m to each one of them, encrypted using their respective public keys. Suppose
that Esha is eavesdropping on the conversation and gets the three encrypted messages. Show how
she can use these to reconstruct the original message m.

Problem 6: Inverting ElGamal (4 pts)

Consider (a variant of) an ElGamal cryptosystem, where SK = (p, g, y, x) where p is a large prime of
size polynomial in the security parameter τ , g is a generator of group Z∗

p, x is a random number in
Zp−1, and y = gx mod p1. The public key used for encryption is PK = (p, q, y) and SK = (p, q, y, x)
is used to decrypt.

The encryption works as follows. The input message is broken-down into blocks m s.t. each
m ∈ Z∗

p and then each m is encrypted individually as follows:

1. Enc(PK,m) = (c1, c2) = (gr mod p, yr ∗ m mod p), where r is a random number in Zp−1

picked by the encryption algorithm. (Each ciphertext is a pair of (c1, c2) ∈ (Z∗
p,Z∗

p).)

2. m = Dec(SK, (c1, c2)) = c2/(c1)
x mod p.

Assume that someone creates an (efficient) algorithmA which decrypts ElGamal ciphertexts knowing
just the public key, but only if c1 starts with at least 5 leading zeroes, i.e. c1 = 00000.... What’s the
advantage of A in breaking the one-wayness of ElGamal? Is it negligible?

Problem 7: Clarifying Advantage (8 pts)

The purpose of this problem is to clarify the concept of advantage. Consider the following two
experiments EXP(0) and EXP(1):

• In EXP(0) the challenger flips a fair coin (probability 1/2 for HEADS and 1/2 for TAILS) and
sends the result to the adversary A.

• In EXP(1) the challenger always sends TAILS to the adversary A.
1Recall that Z∗

p = {1, . . . , p− 1}, Zp−1 = {0, . . . , p− 2}, and that if g is a generator then for every element y ∈ Z∗
p

there is a unique element x ∈ Zp−1 s.t. y = gx mod p. Therefore, in particular, if you pick x at random in Zp−1,
element y = gx mod p is itself random, i.e. uniformly distributed, in Z∗

p.
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The adversary’s goal is to distinguish these two experiments: at the end of each experiment
the adversary outputs a bit 0 or 1 for its guess for which experiment it is in. For b = 0, 1 let Wb

be the event that in experiment b the adversary output 1. The adversary tries to maximize its
distinguishing advantage, namely the quantity

Adv = |Pr[W0]− Pr[W1]| ∈ {0, 1}

The advantage Adv captures the adversary’s ability to distinguish the two experiments. If the
advantage is 0 then the adversary behaves exactly the same in both experiments and therefore does
not distinguish between them. If the advantage is 1 then the adversary can tell perfectly what
experiment it is in. If the advantage is negligible for all efficient adversaries (as defined in the class)
then we say that the two experiments are indistinguishable.

1. Calculate the advantage of each of the following adversaries:

• A1: Always output 1.

• A2: Ignore the result reported by the challenger, and randomly output 0 or 1 with even
probability.

• A3: Output 1 if HEADS was received from the challenger, else output 0.

• A4: Output 0 if HEADS was received from the challenger, else output 1.

• A5: If HEADS was received, output 1. If TAILS was received, randomly output 0 or 1
with even probability.

2. What is the maximum advantage possible in distinguishing these two experiments? Explain
why.

Problem 8: Random Oracle (9 pts)

Let b denote a given “message block size” (e.g. b = 512 bits). For this problem, assume all messages
are exactly k blocks long, for some moderate k (e.g. k = 1000). Each message has length bk bits.
Let n denote a given desired hash output size, in bits (e.g. n = 160).

Let Maps(t, u) denote the set of all possible functions with domain {0, 1}t and range {0, 1}u A
randomly chosen function from Maps(t, u) may be viewed as a “random oracle” (from t-bit strings
to u-bit strings). Ideally, a hash function should be indistinguishable from a random oracle with the
same domain and range. However, in practice this may not be the case, due to the manner in which
the hash function is constructed.

1. Suppose f is a random oracle drawn from Maps(bk, n). Suppose you draw values x1, x2, . . .
uniformly at random from {0, 1}bk, and for each such xi you compute f(xi). How many such
x’s do you expect to have to try before you find a “collision” (a pair of distinct xi, xj values
such that f(xi) = f(xj))? (No need for proof here. Also, your answer does not need to be
exact, just a reasonable approximation.)

2. Now suppose that hash function h mapping {0, 1}bk to {0, 1}n is constructed in a serial fashion
from the random oracle g drawn from Maps(b + n, n), as follows. To compute h(M) where
M = m1||m2|| . . . ||mk (and each mi is b-bits long):

• Let v0 = 0n.

• Let vi = g(vi−1||mi) for i = 1, 2, . . . , k. The function g takes n+ b bits and hashes them
down to n bits.

4



• Let h(M) = vk.

Argue that an adversary can distinguish such a hash function h from a random oracle such as
the one in Part (1) having the same domain and range, by looking for collisions in a certain
way. Assume that the adversary can perform an arbitrary number of evaluations of h but
cannot evaluate g.
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