
CS 6846: Quantum Computing 13th September, 2024

Homework 2
Instructor: Shweta Agrawal Due: 23rd Sept, 5 PM

Name Roll No.

Instructions:

1. Please type up your solutions using latex.

2. Please email TA and instructor.

3. You may collaborate with other students. Please mention the names of your
collaborators or any other source that you use for the solution.

4. Please type up your solutions individually without any help.

Problem 1: Superdense Coding (5 points)

Alice and Bob prepare an EPR pair, that is, two qubits in the state 1√
2
(|00⟩+ |11⟩).

They each take one qubit home. Suddenly, Alice decides she wishes to convey one of
4 messages to Bob; in other words, she wants to convey a classical string uv ∈ {0, 1}2
to Bob. Alice does the following in the privacy of her own home: First, if u = 1, she
applies a NOT gate to her qubit (else if u = 0 she does nothing here). Next, if v = 1,
she applies a Z gate to her qubit (else if v = 0, she does nothing here). Finally, she
walks to Bob’s house and silently hands him her qubit. Show that by measuring in
an appropriate basis, Bob can exactly determine Alice’s message uv ∈ {0, 1}2.

Problem 2: Deferred Measurements (3 points)

For 0 ≤ p ≤ 1 let COINp denote a gate that has no input and one output, the output
being a random bit which is 1 with probability p and 0 with probability 1 − p. The
standard way to augment the basic circuit model with randomness is to allow the use
of COIN1/2 gates. In our definition of quantum circuits, we allowed quantum gates,
plus measurement at the very end. We saw in class that CCNOT can simulate the
AND, OR, and NOT gates. To simulate COIN1/2 gates we suggested to pass a |0⟩
qubit through a Hadamard gate and then measure it. However, if we want to use
this random bit within our circuit, we need to augment the quantum circuit model by

1

allowing “intermediate measurements” (i.e., measuring some qubits prior to the end
of the computation). While this is okay both theoretically and physically, it makes
the model somewhat more complicated. Luckily, we can show that any computation
done by a quantum circuit using intermediate measurements can be equivalently and
nearly as efficiently done by a quantum circuit that only has a single measurement at
the end. In this problem you won’t quite prove this in full, but you’ll get the essential
idea. Precisely, suppose C is a randomized circuit with n input bits, a ancilla bits,
r COIN1/2 gates, s CCNOT gates, and m output bits (possibly including garbage).
Describe a straightforward transformation to a quantum circuit C ′ with n input bits,
a+ 2r ancilla bits, s+ 2r CCNOT/CNOT/Hadamard gates, and m+ r output bits,
such that when the output bits are measured at the end of C ′(x) , the probability
distribution on the first m of them is exactly the same as the probability distribution
on the output bits of C(x). (Prove that your circuit indeed produces random bits).

Problem 3: Classical Comparison (3 points)

Give a randomized classical algorithm that makes only two queries to f , and decides
the Deutsch-Jozsa problem with success probability at least 2/3 on every possible
input.

Problem 4: Fun with Deutsch-Jozsa (4 points)

Let N = 2n. Suppose our function f : {0, 1}n → {0, 1} satisfies the following premise:
either (1) the first N/2 bits of the truth table of f are all 0 and the second N/2 bits
are all 1; or (2) the number of 1s in the first half of the truth table of f plus the
number of 0s in the second half, equals N/2. Modify the Deutsch-Jozsa algorithm to
efficiently distinguish these two cases (1) and (2).

Problem 5: Simon’s Algorithm

Suppose we run Simon’s algorithm for the following function f : {0, 1}3 → {0, 1}3:
f(000) = f(111) = 000
f(001) = f(110) = 001
f(010) = f(101) = 010
f(011) = f(100) = 011

Note that f is 2-to-1 and f(x) = f(x⊕ 111) for all x ∈ {0, 1}3, so s = 111.

(a) (1 point) Give the starting state of Simon’s algorithm.

(b) (1 point) Give that state after the first Hadamard transforms on the first 3
qubits.

(c) (2 points) Give the state after applying the oracle.

2

(d) (1 points) Give the state after measuring the second register (suppose the mea-
surement gave |001⟩).

(e) (2 points) Using H⊗n |x⟩ = 1√
2n

∑
z∈{0,1}n(−1)⟨x,z⟩ |z⟩, give the state after the

final Hadamards.

(f) (1 points) Why does a measurement of the first 3 qubits of the final stage give
information about s?

(g) (2 points) Suppose the first run of the algorithm gives z = 011 and a second run
gives z = 101. Show that, assuming s ̸= 000, those two runs of the algorithm
already determine s.

Problem 6: Amplifying Success (4 points)

Let f : {0, 1}n → {0, 1} be a function and C be a randomized (or quantum) circuit
that computes the function f in the sense that for every input x, it holds that

Pr (C(x) = f(x)) ≥ 2

3
.

In class we discussed how by repeating this computation several times, we can make
the probability of successful computation arbitrarily large. Formalize this. In more
detail, design a circuit C ′ such that

Pr (C ′(x) = f(x)) ≥ 1− 2−n.

Problem 7: Leveraging Parity (3 points).

Let N = 2n. A parity query to input x ∈ {0, 1}N corresponds to the (N + 1)-qubit
unitary map Qx : |y, b⟩ → |y, b⊕ (x · y)⟩ where x · y =

∑N−1
i=0 xiyi mod 2. For a fixed

function f : {0, 1}N → {0, 1}, give a quantum algorithm that computes f(x) using
only one such query (i.e., one application of Qx), and as many elementary gates as
you want.

Problem 8: Grover search with multiple satisfying inputs

In this problem, we will generalize Grover’s search to the case when f has more than
one satisfying input.

So suppose we are given an oracle Of for f : {0, 1}n → {0, 1}. Write A = {x :
f(x) = 1} and k = |A|. We will assume k ≥ 1. Also write B = {x : f(x) = 0}, so
|B| = N − k where N = 2n.

(a) (2 points) Explain how we can use the oracle to check if a given string y ∈ {0, 1}n
has f(y) = 1. Explain how we can use this to find an x ∈ A with high probability
in O(1) queries whenever k ≥ N/2. (We henceforth assume k < N/2.)

3

(b) (2 points) Recall Grover’s algorithm, with t repetitions:

Letting |ψ(t)⟩ denotes the state of the circuit after t repetitions, show that we
can write it as

|ψ(t)⟩ = αt
1√
k

∑
x∈A

|x⟩+ βt
1√

N − k

∑
x∈B

|x⟩

where αt, βt ∈ R satisfy α2
t + β2

t = 1. What are α0 and β0?

(c) (2 points) Thinking of (βt, αt) as a point on the unit circle in R2, let us write
θt for its angle from the horizontal axis (so that αt = sin θt, βt = cos θt). Show
that the transformation (βt, αt) 7→ (βt+1, αt+1) is precisely rotation around the
circle by an angle of 2θ0.

(d) (2 points) Assume that the algorithm knows k. Briefly, why would the algorithm

like to choose t = 1
2

(
π
2θ0

− 1
)
, if it could? Show that if it takes t to be the closest

integer to this value, the circuit has the property that it outputs an element of
A with a probability of at least 1/2.

(e) (2 points) Again, assuming the algorithm knows k, show that it can find an
element of A with high probability using O(

√
N/k) queries to the oracle. (You

may want to use that sin θ ≤ θ for all θ ≥ 0.)

Problem 9: Application of Grover’s Algorithm (4 pts)

Let N = 2n and x0, · · · , xN−1 be a sequence of distinct integers (you can think of
them as the outputs in the truth table of some function F). We can query this
function in the usual way, i.e., we can apply unitary O : |i, 0⟩ → |i, xi⟩, as well as its
inverse. The minimum of F is defined as min{xi|i ∈ {0, · · · , N−1}} Give a quantum

4

algorithm that finds (with probability ≥ 2/3) an index achieving the minimum, using
O(

√
N logN) queries.

Hint: start with m = xi for a random i, and repeatedly use Grover’s algorithm to
find an index j such that xj < m and update m = xj . Continue this until you can
find no element smaller than m, and analyze the number of queries of this algorithm.
You are allowed to argue about this algorithm on a high level. Bonus: give a quantum
algorithm that uses O(

√
N) queries.

Problem 10: The necessity of uncomputing (4 points).

Recall the convention that the oracle gate O±
f for a Boolean function f : {0, 1}n →

{0, 1} denotes the unitary transformation |x⟩ 7→ (−1)f(x) |x⟩. When implementing
O±

f in some applications, we might need additional ancilla/garbage bits, in which

case O±
f actually denotes the unitary transformation |x⟩ |0m⟩ 7→ (−1)f(x) |x⟩ |g(x)⟩,

where g(x) is whichever m-bit garbage string produced on input x. In class, we have
insisted that all oracle circuits uncompute their garbage, meaning that g(x) = 0m for
all x ∈ {0, 1}n.

In this problem, we will justify why it is okay to “pretend” the ancilla bits don’t
exist. We will use as our example the Deutsch–Jozsa circuit, including ancilla/garbage
bits; it is drawn as follows.

Suppose O±
f uncomputes its garbage, i.e. g(x) = 0m for all x. For a given Boolean

function f : {0, 1}n → {0, 1} (which need not be all-0’s or balanced), compute the
state of the system after the O±

f gate and after the second HN gate. Show that each
of these states can be written as |ψ1⟩ ⊗ |ψ2⟩, where |ψ1⟩ is the state of the first n
qubits and |ψ2⟩ is the state of the last m qubits. Finally, show that the distribution
on measurement outcomes is the same as it would have been if O±

f had no ancilla
bits.

5

