
CS1100 – Introduction to Programming

Lecture 5: Revision of Main Ideas

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Representing values in Binary

If we have m bits, we can represent 2m unique different values.

A useful circle :

Representing values in Binary

If we have m bits, we can represent 2m unique different values.
A useful circle :

Representing negative numbers

Sign Magnitude notation

• Use one bit for sign, others for magnitude of the number.

Sign Magn.

0 0 0 0

0 0 1 +1

0 1 0 +2

0 1 1 +3

1 0 0 0

1 0 1 -1

1 1 0 -2

1 1 1 -3

• using n bits: −(2n−1 − 1) . . . (2n−1 − 1).

• zero has two representations.

Representing negative numbers

Sign Magnitude notation

• Use one bit for sign, others for magnitude of the number.

Sign Magn.

0 0 0 0

0 0 1 +1

0 1 0 +2

0 1 1 +3

1 0 0 0

1 0 1 -1

1 1 0 -2

1 1 1 -3

• using n bits: −(2n−1 − 1) . . . (2n−1 − 1).

• zero has two representations.

Representing negative numbers

Sign Magnitude notation

• Use one bit for sign, others for magnitude of the number.

Sign Magn.

0 0 0 0

0 0 1 +1

0 1 0 +2

0 1 1 +3

1 0 0 0

1 0 1 -1

1 1 0 -2

1 1 1 -3

• using n bits: −(2n−1 − 1) . . . (2n−1 − 1).

• zero has two representations.

Representing negative numbers

Ones complement notation

• for a negative number n, represent the number by the bit
complement of its binary representation.

Sign Magn. Ones comp.

0 0 0 0 0

0 0 1 +1 +1

0 1 0 +2 +2

0 1 1 +3 +3

1 0 0 0 -3

1 0 1 -1 -2

1 1 0 -2 -1

1 1 1 -3 0

• zero has two representations.

• not very widely used representation.

Representing negative numbers

Ones complement notation

• for a negative number n, represent the number by the bit
complement of its binary representation.

Sign Magn. Ones comp.

0 0 0 0 0

0 0 1 +1 +1

0 1 0 +2 +2

0 1 1 +3 +3

1 0 0 0 -3

1 0 1 -1 -2

1 1 0 -2 -1

1 1 1 -3 0

• zero has two representations.

• not very widely used representation.

Representing negative numbers

Ones complement notation

• for a negative number n, represent the number by the bit
complement of its binary representation.

Sign Magn. Ones comp.

0 0 0 0 0

0 0 1 +1 +1

0 1 0 +2 +2

0 1 1 +3 +3

1 0 0 0 -3

1 0 1 -1 -2

1 1 0 -2 -1

1 1 1 -3 0

• zero has two representations.

• not very widely used representation.

Representing negative numbers - Twos complement

Representing negative numbers - Twos complement

Representing negative numbers - Twos complement

Representing negative numbers - Twos complement

• for a negative number −n, compute the number 2k − n,
where k is the number of bits used to represent the value of
n. The bit that represents the sign is extra.

• Two’s complement for −n has first bit 1 (representing minus)
and remaining k bits encoding value 2k − n.

Sign Magn. Ones comp. Twos comp.

0 0 0 0 0 0

0 0 1 +1 +1 +1

0 1 0 +2 +2 +2

0 1 1 +3 +3 +3

1 0 0 0 -3 -4

1 0 1 -1 -2 -3

1 1 0 -2 -1 -2

1 1 1 -3 0 -1

• widely used representation.

Representing negative numbers - Twos complement

• for a negative number −n, compute the number 2k − n,
where k is the number of bits used to represent the value of
n. The bit that represents the sign is extra.

• Two’s complement for −n has first bit 1 (representing minus)
and remaining k bits encoding value 2k − n.

Sign Magn. Ones comp. Twos comp.

0 0 0 0 0 0

0 0 1 +1 +1 +1

0 1 0 +2 +2 +2

0 1 1 +3 +3 +3

1 0 0 0 -3 -4

1 0 1 -1 -2 -3

1 1 0 -2 -1 -2

1 1 1 -3 0 -1

• widely used representation.

Representing negative numbers - Twos complement

• for a negative number −n, compute the number 2k − n,
where k is the number of bits used to represent the value of
n. The bit that represents the sign is extra.

• Two’s complement for −n has first bit 1 (representing minus)
and remaining k bits encoding value 2k − n.

Sign Magn. Ones comp. Twos comp.

0 0 0 0 0 0

0 0 1 +1 +1 +1

0 1 0 +2 +2 +2

0 1 1 +3 +3 +3

1 0 0 0 -3 -4

1 0 1 -1 -2 -3

1 1 0 -2 -1 -2

1 1 1 -3 0 -1

• widely used representation.

Representing negative numbers

Arithmetic with these representations

Sign Magn. Ones comp. Twos comp.

0 0 0 0 0 0

0 0 1 +1 +1 +1

0 1 0 +2 +2 +2

0 1 1 +3 +3 +3

1 0 0 0 -3 -4

1 0 1 -1 -2 -3

1 1 0 -2 -1 -2

1 1 1 -3 0 -1

• 2 + (−3)

• 3 + (−2)

Representing negative numbers

Arithmetic with these representations

Sign Magn. Ones comp. Twos comp.

0 0 0 0 0 0

0 0 1 +1 +1 +1

0 1 0 +2 +2 +2

0 1 1 +3 +3 +3

1 0 0 0 -3 -4

1 0 1 -1 -2 -3

1 1 0 -2 -1 -2

1 1 1 -3 0 -1

• 2 + (−3)

• 3 + (−2)

Representing negative numbers

Arithmetic with these representations

Sign Magn. Ones comp. Twos comp.

0 0 0 0 0 0

0 0 1 +1 +1 +1

0 1 0 +2 +2 +2

0 1 1 +3 +3 +3

1 0 0 0 -3 -4

1 0 1 -1 -2 -3

1 1 0 -2 -1 -2

1 1 1 -3 0 -1

• 2 + (−3)

• 3 + (−2)

More examples : The case of 4 bits

Some Programs: Sum of 2 numbers

#include <stdio.h>

/* sum 2 integers */

int main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

return 0;

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Input statement: scanf

scanf(format-string, &var1, &var2, ... , &var3);

• scanf is a function which allows us to accept inputs.

• Usually functions take fixed number of parameters/
arguments.

• scanf takes variable number of arguments.

• Notice the & preceeding the variables.

Weighted sum of 2 numbers

• Recall x denotes marks in Maths, y denotes marks in Physics.

• We wish to calculate weighted total such that Maths marks
are given 30% weightage and Physics marks are given 70%
weightage.

• z = 30
100x + 70

100y .

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

int total;

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%d\n", total);

}

• What is the output of the program?

• Is the variable total still guaranteed to be an integer?

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

int total;

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%d\n", total);

}

• What is the output of the program?

• Is the variable total still guaranteed to be an integer?

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

int total;

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%d\n", total);

}

• What is the output of the program?

• Is the variable total still guaranteed to be an integer?

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%f\n", total); /* change here */

}

• What is the output of the program?

• 30
100 and 70

100 evaluate to 0 and therefore total is zero.

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%f\n", total); /* change here */

}

• What is the output of the program?

• 30
100 and 70

100 evaluate to 0 and therefore total is zero.

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%f\n", total); /* change here */

}

• What is the output of the program?

• 30
100 and 70

100 evaluate to 0 and therefore total is zero.

Weighted sum of 2 numbers – a correct program

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;

printf("%f\n", total);

}

• What is the output of the program?

Weighted sum of 2 numbers – a correct program

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;

printf("%f\n", total);

}

• What is the output of the program?

Weighted sum of 2 numbers – a correct program

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;

printf("%f\n", total);

}

• What is the output of the program?

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Increment / decrement operators

• ++, - -

• prefix and post-fix only to a variable.

#include<stdio.h>

int main() {

int x, y;

int n = 10;

x = n++;

y = ++n;

printf(" x = %d, y = %d\n", x, y);

return 0;

}

Increment / decrement operators

• ++, - -

• prefix and post-fix only to a variable.

#include<stdio.h>

int main() {

int x, y;

int n = 10;

x = n++;

y = ++n;

printf(" x = %d, y = %d\n", x, y);

return 0;

}

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

unsigned int

• Typically 4 bytes storage.

• Output an unsigned int: printf(”%u”, x);

• Input an unsigned int: scanf(”%u”, &x);

• Storage: binary format.

The Integers - The detailed Chart

char

• Typically 1 byte storage.

• Every character has a unique code assigned to it (ASCII code).
A = 65, B = 66

• Output a character: printf(”%c”, x);

• Input a character: scanf(”%c”, &x);

char

• Typically 1 byte storage.

• Every character has a unique code assigned to it (ASCII code).
A = 65, B = 66

• Output a character: printf(”%c”, x);

• Input a character: scanf(”%c”, &x);

float

• Typically 4 bytes storage.

• Output a float: printf(”%f ”, x);

• Input a float: scanf(”%f ”, &x);

• How are fractions stored?

Binary vs decimal fractions

• (10.11)2 = (1 × 2) + (0 × 1) + (1 × 1
2) + (1 × 1

22
) = (2.75)10

• (0.90625)10 = ()2
• (0.9)10 = ()2

Binary vs decimal fractions

• (10.11)2 = (1 × 2) + (0 × 1) + (1 × 1
2) + (1 × 1

22
) = (2.75)10

• (0.90625)10 = ()2
• (0.9)10 = ()2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 44

Convert (0.90625)10 to binary fraction
0.90625

  2

 0.8125 + integer part

1  2

 0 + integer part 1

Thus, (0.90625)10 = (0.11101)2

0.90625 = ½(1+0.8125)

= ½(1+ ½(1+0.625))

= ½(1+ ½(1+ ½(1+0.25)))

= ½(1+½(1+ ½(1+½(0+0.5))))

= ½(1+½(1+½(1+½(0+½(1+0.0)))))

= ½+1/22+1/23+0/24 +1/25

= (0.11101)2

Decimal Fraction  Binary Fraction (1)

 0.625 + integer part

1  2

 0.25 + integer part

1  2

 0.5 + integer part

0  2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 45

Convert (0.9)10 to binary fraction
0.9

 2

 0.8 + integer part 0 Repetition

(0.9)10 = 0.11100110011001100 . . . = 0.11100

For some fractions, we do

not get 0.0 at any stage!

These fractions require an

infinite number of bits!

Cannot be represented

exactly!

Decimal Fraction  Binary Fraction (2)

 0.8 + integer part 1

  2

 0.6 + integer part 1

  2
 0.2 + integer part 1

  2

 0.4 + integer part 0

  2

Binary vs decimal fractions

• (10.11)2 = (1× 21) + (0× 20) + (1× 1
2) + (1× 1

22
) = (2.75)10

• (0.90625)10 = (0.11101)2
• (0.9)10 = (0.111001110011100..)2

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa.
• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa.
• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa.

• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa.
• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Floats - different types

Output floats in C

printf(“ %w.p f ”, x);

• w.p is optional.

• w : total width of the field.

• p : precision (digits after decimal).

#include<stdio.h>

main() {

float x = 2.00123;

printf ("x = %5.4f\n", x);

printf ("x = %8.7f\n", x);

}

Output floats in C

printf(“ %w.p f ”, x);

• w.p is optional.

• w : total width of the field.

• p : precision (digits after decimal).

#include<stdio.h>

main() {

float x = 2.00123;

printf ("x = %5.4f\n", x);

printf ("x = %8.7f\n", x);

}

Circumference of circle

#include<stdio.h>

main() {

float radius;

float circum;

printf("Enter radius : ");

scanf("%f", &radius);

circum = 2* (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

}

• How to print output only upto 2 decimals?

Circumference of circle

#include<stdio.h>

main() {

float radius;

float circum;

printf("Enter radius : ");

scanf("%f", &radius);

circum = 2* (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

}

• How to print output only upto 2 decimals?

Circumference of circle – formatted output

#include<stdio.h>

main() {

float radius;

float circum;

printf("Enter radius : ");

scanf("%f", &radius);

circum = 2* (22.0/7) * radius;

printf ("radius = %5.2f, circum = %5.2f\n", radius, circum);

}

Output statement

printf (format-string, var1, var2, ..., varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• How many columns to use for printing? (width)

• What is the precision? (if applicable)
• Common mistakes:

• mismatch in the actual number of variables given and those
expected in the format string.

Output statement

printf (format-string, var1, var2, ..., varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• How many columns to use for printing? (width)

• What is the precision? (if applicable)

• Common mistakes:
• mismatch in the actual number of variables given and those

expected in the format string.

Output statement

printf (format-string, var1, var2, ..., varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• How many columns to use for printing? (width)

• What is the precision? (if applicable)
• Common mistakes:

• mismatch in the actual number of variables given and those
expected in the format string.

Formatted output

printf (‘‘%w.pC", x);

• w, p and C are place holders, can take different values.

• w: width of the output. (optional)

• p: precision of the output. (optional)
• C: Conversion character.

• d : integer
• f : float
• c : character
• x : hexadecimal
• o : octal
• u : unsigned int
• e : real decimal in exponent form

Formatted output

printf (‘‘%w.pC", x);

• w, p and C are place holders, can take different values.

• w: width of the output. (optional)

• p: precision of the output. (optional)
• C: Conversion character.

• d : integer
• f : float
• c : character
• x : hexadecimal
• o : octal
• u : unsigned int
• e : real decimal in exponent form

Formatted output

printf (‘‘%w.pC", x);

• w, p and C are place holders, can take different values.

• w: width of the output. (optional)

• p: precision of the output. (optional)
• C: Conversion character.

• d : integer
• f : float
• c : character
• x : hexadecimal
• o : octal
• u : unsigned int
• e : real decimal in exponent form

Input Statement

scanf (format-string, &var1,&var2, ...,&varn)

Format string specifies

• How many variables to expect?

• Type of each variable.
• Common mistakes:

• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.
• & missing before the variable.

Input Statement

scanf (format-string, &var1,&var2, ...,&varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• Common mistakes:
• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.
• & missing before the variable.

Input Statement

scanf (format-string, &var1,&var2, ...,&varn)

Format string specifies

• How many variables to expect?

• Type of each variable.
• Common mistakes:

• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.
• & missing before the variable.

