CS1100 — Introduction to Programming

Lecture 5: Revision of Main Ideas

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Representing values in Binary

If we have m bits, we can represent 2™ unique different values.

Representing values in Binary

If we have m bits, we can represent 2™ unique different values.
A useful circle :

Representing negative numbers

Sign Magnitude notation

® Use one bit for sign, others for magnitude of the number.

Representing negative numbers

Sign Magnitude notation

® Use one bit for sign, others for magnitude of the number.

Sign Magn.
0
+1
+2
+3
0
-1
-2
-3

=== OOl OolO
R = OO Rk OO
Ol ~RlOlR Ok O

Representing negative numbers

Sign Magnitude notation

® Use one bit for sign, others for magnitude of the number.

Sign Magn.
0 0O 0
0 0 1 +1
01 0 +2
0 1 1 +3
1 0 0 0
1 01 -1
1 1 0 -2
1 11 -3

e using n bits: —(2""t —1)...(2" 1 - 1).

® zero has two representations.

Representing negative numbers

Ones complement notation

e for a negative number n, represent the number by the bit
complement of its binary representation.

Representing negative numbers

Ones complement notation

e for a negative number n, represent the number by the bit
complement of its binary representation.

Sign Magn. | Ones comp.
0 00 0 0
0 0 1 +1 +1
010 +2 +2
0 1 1 +3 +3
1 0 0 0 -3
1 0 1 -1 -2
1 1 0 -2 -1
1 1 1 -3 0

Representing negative numbers

Ones complement notation

e for a negative number n, represent the number by the bit
complement of its binary representation.

Sign Magn. | Ones comp.
0 00 0 0
0 0 1 +1 +1
010 +2 +2
0 1 1 +3 +3
1 0 0 0 -3
1 0 1 -1 -2
1 1 0 -2 -1
1 1 1 -3 0

® zero has two representations.

® not very widely used representation.

Representing negative numbers - Twos complement

Representing negative numbers - Twos complement

Representing negative numbers - Twos complement

Representing negative numbers - Twos complement

® for a negative number —n, compute the number 2k _ p,
where k is the number of bits used to represent the value of
n. The bit that represents the sign is extra.

® Two's complement for —n has first bit 1 (representing minus)
and remaining k bits encoding value 2K — n.

Representing negative numbers - Twos complement

e for a negative number —n, compute the number 2K — n,
where k is the number of bits used to represent the value of
n. The bit that represents the sign is extra.

® Two's complement for —n has first bit 1 (representing minus)
and remaining k bits encoding value 2K — n.

Sign Magn. | Ones comp. | Twos comp.
0 0 O 0 0 0
0 0 1 +1 +1 +1
0 1 0 +2 +2 +2
0 1 1 +3 +3 +3
1 0 O 0 -3 -4
1 0 1 -1 -2 -3
1 10 -2 -1 -2
1 1 1 -3 0 -1

Representing negative numbers - Twos complement

e for a negative number —n, compute the number 2K — n,
where k is the number of bits used to represent the value of
n. The bit that represents the sign is extra.

® Two's complement for —n has first bit 1 (representing minus)
and remaining k bits encoding value 2K — n.

Sign Magn. | Ones comp. | Twos comp.
0 0 O 0 0 0
0 0 1 +1 +1 +1
0 1 0 +2 +2 +2
0 1 1 +3 +3 +3
1 0 O 0 -3 -4
1 0 1 -1 -2 -3
1 10 -2 -1 -2
1 1 1 -3 0 -1

® widely used representation.

Representing negative numbers

Arithmetic with these representations

Sign Magn. | Ones comp. | Twos comp.
0 0 O 0 0 0
0 0 1 +1 +1 +1
0 1 0 +2 +2 +2
0 1 1 +3 +3 +3
1 0 O 0 -3 -4
1 0 1 -1 -2 -3
1 10 -2 -1 -2
1 1 1 -3 0 -1

Representing negative numbers

Arithmetic with these representations

Sign Magn. | Ones comp. | Twos comp.
0 0 O 0 0 0
0 0 1 +1 +1 +1
0 1 0 +2 +2 +2
0 1 1 +3 +3 +3
1 0 O 0 -3 -4
1 0 1 -1 -2 -3
1 10 -2 -1 -2
1 1 1 -3 0 -1

24 (-3)

Representing negative numbers

Arithmetic with these representations

Sign Magn. | Ones comp. | Twos comp.
0 0 O 0 0 0
0 0 1 +1 +1 +1
0 1 0 +2 +2 +2
0 1 1 +3 +3 +3
1 0 O 0 -3 -4
1 0 1 -1 -2 -3
1 10 -2 -1 -2
1 1 1 -3 0 -1
* 2+ (-3)

°*3+(-2)

More examples :

corresp.

dec. oper.
0011 +3
+0100 + +4
0111 = +7 +7
=
correct result

Example (c)

The case of 4 bits

corresp.
dec. oper.

-2
-6

-8

111
InialE

1110
+1010 +

11000 = -8
=

correct result
Example (d)

Some Programs: Sum of 2 numbers

#include <stdio.h>

/* sum 2 integers x*/

® int : defines that x, y, z are

int main() { of type integers.

int x = 98; ¢ 7= xty: luat n
int y = 99; zZ =X y..ev.auaesxy
int z: and stores it in z.

® What will be output if we
z = x+y; print z?
printf ("%d\n", z);
return O;

® Arithmetic operators: +, -, *, /

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Input statement: scanf

’ scanf(format-string, &varl, &var2, ... , &var3);

scanf is a function which allows us to accept inputs.

Usually functions take fixed number of parameters/
arguments.

scanf takes variable number of arguments.

Notice the & preceeding the variables.

Weighted sum of 2 numbers

® Recall x denotes marks in Maths, y denotes marks in Physics.

® We wish to calculate weighted total such that Maths marks
are given 30% weightage and Physics marks are given 70%
weightage.
_ 30 70
® z= 56X+ 100V

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
int total;

total = (30/100)#*mathMarks + (70/100)*phyMarks;
printf ("%d\n", total);

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
int total;

total = (30/100)#*mathMarks + (70/100)*phyMarks;
printf ("%d\n", total);

® What is the output of the program?

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
int total;

total = (30/100)#*mathMarks + (70/100)*phyMarks;
printf ("%d\n", total);

® What is the output of the program?
® |s the variable total still guaranteed to be an integer?

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;
printf ("%f\n", total); /* change here */

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;
printf ("%f\n", total); /* change here */

® What is the output of the program?

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;
int phyMarks = 99;
float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;
printf ("%f\n", total); /* change here */

® What is the output of the program?

i%% and i%% evaluate to 0 and therefore total is zero.

Weighted sum of 2 numbers — a correct program

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;
printf ("%f\n", total);

Weighted sum of 2 numbers — a correct program

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;
printf ("%f\n", total);

® What is the output of the program?

Weighted sum of 2 numbers — a correct program

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;
printf ("%f\n", total);

® What is the output of the program?

® Arithmetic operators: +, -, *, /

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Increment / decrement operators

® 4, --
® prefix and post-fix only to a variable.

Increment / decrement operators
® ++, - -
® prefix and post-fix only to a variable.
#include<stdio.h>

int main() {
int x, y;

int n = 10;

X = nt++;
y = ++n;
printf(" x = %d, y = %d\n", x, y);
return O;

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y

® Xty =12 Incorrect form

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

Multiple assignments.
*x=y=z=(a+b)
® evaluations happen right to left.

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

® Multiple assignments.
*x=y=z=(a+b)
® evaluations happen right to left.
® x = x + 10 can be written as x += 10;
® instead of +, we can also have -, *, /, %

Integers in C and Storage

® We have used int and float data types till now.

Integers in C and Storage

® We have used int and float data types till now.

® An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

Integers in C and Storage

® We have used int and float data types till now.

® An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

® |n the 2s complement form this allows storage of values from

255215 1

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.
What other data type can we use to store integers?

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.
What other data type can we use to store integers?

unsigned int, long, unsigned long.

unsigned int

Typically 4 bytes storage.
Output an unsigned int: printf(" %u”, x);
Input an unsigned int: scanf(” %u”, &x);

Storage: binary format.

The Integers - The detailed Chart

int
unsigned int
short
unsigned short

long

unsigned long

2 or 4 bytes

2 or 4 bytes
2 bytes
2 bytes
4 bytes

4 bytes

-32,768 to 32,767 or -2,147,483,648 t0

2,147,483,647

0to 65,535 or 0 to 4,294,967,295

-32,768 10 32,767

0 to 65,535

-2,147,483,648 t0 2,147 ,483,647

0to 4,294,967,285

char

® Typically 1 byte storage.

® Every character has a unique code assigned to it (ASCII code).
A =65 B =066

char

Typically 1 byte storage.

Every character has a unique code assigned to it (ASCII code).
A =65 B =066

Output a character: printf(" %c", x);

Input a character: scanf(” %c", &x);

float

Typically 4 bytes storage.
Output a float: printf(" %f ", x);
Input a float: scanf("%f ", &x);

How are fractions stored?

Binary vs decimal fractions

° (1011)2=(1x2)+ (0 x 1)+ (1 x 3)+ (1 X %) =(2.75)10

Binary vs decimal fractions

° (1011)2=(1x2)+ (0 x 1)+ (1 x 3)+ (1 X %) =(2.75)10
® (0.90625)10 =()2
° (0.9)10 =)2

Decimal Fraction — Binary Fraction (1)

Convert (0.90625),, to binary fraction

0.90625
X 2

0.8125 + integer part
1 X 2
0.625 + integer part

1 X 2
0.25 + integer part

1 X 2
0.5 + integer part

0 X 2

0 + integer part 1

Thus, (0.90625),, = (0.11101),

SD, PSK, NSN, DK, TAG - CS&E, IIT M

0.90625 = %(1+0.8125)

=51+ %(1+0.625))

= 5(1+ %1+ %(1+0.25)))
=5(1+5(1+ %(1+5(0+0.5))))

= 5(1+5(1+5(1+5(0+5(1+0.0)))))
= 14 +1/22+1/23+0/24 +1/25
=(0.11101),

44

Decimal Fraction — Binary Fraction (2)

Convert (0.9),, to binary fraction

0.9
X 2 .

) For some fractions, we do
0.8 + integer part 1
%2 not get 0.0 at any stage!
0.6 + integerpart 1 These fractions require an
% 2 infinite number of bits!
0.2 + integerpart 1 Cannot be represented
X 2 exactly!
0.4 + integer part 0
X 2

0.8 + integer part 0 Repetition

(0.9),,=0.11100110011001100 ... =0.11100

SD, PSK, NSN, DK, TAG — CS&E, IIT M 45

Binary vs decimal fractions

° (10.11); = (1 x21) + (0% 2%) + (1 x 2) + (1 x &) = (2.75)10
® (0.90625)19 = (0.11101),
® (0.9)10 = (0.111001110011100..),

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.

® |ets say we have 3 digits after radix point.

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point
® 1.20 x (10)7! x 1.20 x (10)~! = 1.44 x (10)~2
® Wider range of numbers can be represented.

o |EEE standard: 32 bits are split as follows:

® First bit for sign.
® Next 8 bits for exponent.
® Next 23 bits for mantissa.

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point
® 1.20 x (10)7! x 1.20 x (10)~! = 1.44 x (10)~2
® Wider range of numbers can be represented.

o |EEE standard: 32 bits are split as follows:

® First bit for sign.

® Next 8 bits for exponent.

® Next 23 bits for mantissa.

® (—39.9);p = (—100111.11100), = (—1.0011111100), x 25.

Floats - different types

Type Storage size Value range
float 4 byte 1.2E-38 to 3.4E+38
double 8 byte 2.3E-308 to 1.7E+308

long double 10 byte 3.4E-4932 to 1.1E+4932

Output floats in C

printf(" Y%w.p f ", x);
® w.p is optional.
® w : total width of the field.

® p: precision (digits after decimal).

Output floats in C

printf(" Y%w.p f ", x);
® w.p is optional.
® w : total width of the field.
® p: precision (digits after decimal).

#include<stdio.h>
main() {

float x = 2.00123;
printf ("x = 5.4f\n", x);
printf ("x = %8.7f\n", x);

Circumference of circle

#include<stdio.h>

main() {
float radius;
float circum;

printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

Circumference of circle

#include<stdio.h>
main() {
float radius;
float circum;
printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

® How to print output only upto 2 decimals?

Circumference of circle — formatted output

#include<stdio.h>

main() {
float radius;
float circum;

printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %5.2f, circum = %5.2f\n", radius, ci:

Output statement

printf (format-string, vari,varo,...,var,)

Output statement

printf (format-string, vari,varo,...,var,)

Format string specifies
® How many variables to expect?
® Type of each variable.
® How many columns to use for printing? (width)

® What is the precision? (if applicable)

Output statement

printf (format-string, vari,varo,...,var,)

Format string specifies
® How many variables to expect?
® Type of each variable.

® How many columns to use for printing? (width)

What is the precision? (if applicable)
¢ Common mistakes:

® mismatch in the actual number of variables given and those
expected in the format string.

Formatted output

[printf (““%w.pC", x);

Formatted output

’ printf (‘‘%w.pC", x);

w, p and C are place holders, can take different values.
w: width of the output. (optional)

p: precision of the output. (optional)
C: Conversion character.

Formatted output

’ printf (‘‘%w.pC", x);

w, p and C are place holders, can take different values.

w: width of the output. (optional)

p: precision of the output. (optional)

C: Conversion character.

e 6 6 o o o o
® O X O —h

d:
. float

: character

: hexadecimal

. octal

. unsigned int

. real decimal in exponent form

integer

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Format string specifies
® How many variables to expect?

® Type of each variable.

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Format string specifies
® How many variables to expect?
® Type of each variable.
® Common mistakes:

® comma missing after the double quotes.

® mismatch in the actual number of variables given and those
expected in the format string.

® & missing before the variable.

