CS1100 — Introduction to Programming

Lecture 4

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Goals for the day

e Edit, compile and execute the first C program.
® Get simple yet useful tasks done via C programs.

® Add a set of numbers.
® Find roots of a quadratic equation.
® Multiply 2 polynomials.

Goals for the day

e Edit, compile and execute the first C program.
® Get simple yet useful tasks done via C programs.
® Add a set of numbers.
® Find roots of a quadratic equation.
® Multiply 2 polynomials.
® | earn the syntax of C language.
® Basics — structure of a C program, using standard library.
® How to store data — variables, data types.
® How to get inputs, how to print outputs?

Goals for the day

Edit, compile and execute the first C program.
Get simple yet useful tasks done via C programs.
® Add a set of numbers.
® Find roots of a quadratic equation.
® Multiply 2 polynomials.
Learn the syntax of C language.
® Basics — structure of a C program, using standard library.
® How to store data — variables, data types.
® How to get inputs, how to print outputs?

Learn about the working environment (Linux based OS).

® editors — gedit and others.
® compiler — gcc.
® executing a compiled program.

First C program

#include <stdio.h>
/* My first C program */

main() {
printf ("Hello World!\n");

First C program

#include <stdio.h>
/* My first C program */

main() {
printf ("Hello World!\n");

® stdio.h : standard library of input and output.
® main : a function that every C program must have.

® printf : a useful library function to print several things in C.

First C program

#include <stdio.h>
/* My first C program */

main() {
printf ("Hello World!\n");

® stdio.h : standard library of input and output.
® main : a function that every C program must have.
® printf : a useful library function to print several things in C.

To do anything more useful than merely printing we need to have
more operations / commands and storage to store temporary
computations.

Variables in C

Add 2 numbers x and y and store the value in z.
® Define two variables x and y.
® What type of values can x and y take?

Variables in C

Add 2 numbers x and y and store the value in z.
® Define two variables x and y.
® What type of values can x and y take?

integer, positive integers, fractions?

Variables in C

Add 2 numbers x and y and store the value in z.
® Define two variables x and y.
® What type of values can x and y take?

integer, positive integers, fractions?

® What do x and y represent?

Variables in C

Add 2 numbers x and y and store the value in z.
® Define two variables x and y.
® What type of values can x and y take?

integer, positive integers, fractions?
® What do x and y represent?

Say marks in Maths and marks in Physics respectively.

Variables in C

Add 2 numbers x and y and store the value in z.
® Define two variables x and y.
® What type of values can x and y take?

integer, positive integers, fractions?
® What do x and y represent?

Say marks in Maths and marks in Physics respectively.

® Use the + operator defined to sum up the values of x and y.

Variables in C

Add 2 numbers x and y and store the value in z.
® Define two variables x and y.
® What type of values can x and y take?

integer, positive integers, fractions?
® What do x and y represent?

Say marks in Maths and marks in Physics respectively.
® Use the + operator defined to sum up the values of x and y.

® Use an assignment operator to store the value in z.

Sum of 2 numbers

#include <stdio.h>
/* sum 2 integers */

main() {
int x;
int y;
int z;

Z = X+y;
printf ("%d\n", z);

Sum of 2 numbers

#include <stdio.h>

® int : defines that x, y, z are

/* sum 2 integers */
of type integers.

main() { ® z = x+y : evaluates x+y
int x; and stores it in z.
int y;
int z;
Z = X+y;

printf ("%d\n", z);

Sum of 2 numbers

#include <stdio.h>

® int : defines that x, y, z are

/* sum 2 integers */
of type integers.

main() { ® 7z = x+vy : evaluates x+y
int x; and stores it in z.
int y; e What will be output if we
int z; print z?
z = X+y;

printf ("%d\n", z);

Sum of 2 numbers

#include <stdio.h>

® int : defines that x, y, z are

/* sum 2 integers */
of type integers.

main() { ® 7z = x+vy : evaluates x+y
int x; and stores it in z.
int y; e What will be output if we
int z; print z?

® |nitialization or reading of x

z =Xty and y missing.

printf ("%d\n", z);

Sum of 2 numbers

#include <stdio.h>

® int : defines that x, y, z are

/* sum 2 integers */
of type integers.

main() { ® 7z = x+vy : evaluates x+y
int x; and stores it in z.
int y; e What will be output if we
int z; print z?

® |nitialization or reading of x

z =Xty and y missing.

printf ("%d\n", z);

Sum of 2 numbers — with initialization

#include <stdio.h>

/* sum 2 integers */
® int : defines that x, y, z are

main() { of type integers.
int x = 98; ® 7 = x+vy : evaluates x-+vy
int y = 99; and stores it in z.
int z; e What will be output if we
print z?
z = X+y;

printf ("%d\n", z);

Sum of 2 numbers — with initialization

#include <stdio.h>

/* sum 2 integers */
® int : defines that x, y, z are

main() { of type integers.
int x = 98; ® 7 = x+vy : evaluates x-+vy
int y = 99; and stores it in z.
int z; e What will be output if we
print z?
z = X+y;

printf ("%d\n", z);

® Arithmetic operators: +, -, *, /

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Basic operators in C

e Arithmetic operators: +, -, *, /

e Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Input statement: scanf

’ scanf(format-string, &varl, &var2, ... , &var3);

scanf is a function which allows us to accept inputs.

Usually functions take fixed number of parameters/
arguments.

scanf takes variable number of arguments.

Notice the & preceeding the variables.

Weighted sum of 2 numbers

® Recall x denotes marks in Maths, y denotes marks in Physics.

® We wish to calculate weighted total such that Maths marks
are given 30% weightage and Physics marks are given 70%
weightage.
_ 30 70
® z= 56X+ 100V

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
int total;

total = (30/100)#*mathMarks + (70/100)*phyMarks;
printf ("%d\n", total);

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
int total;

total = (30/100)#*mathMarks + (70/100)*phyMarks;
printf ("%d\n", total);

® What is the output of the program?

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
int total;

total = (30/100)#*mathMarks + (70/100)*phyMarks;
printf ("%d\n", total);

® What is the output of the program?
® |s the variable total still guaranteed to be an integer?

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;
printf ("%f\n", total); /* change here */

Weighted sum of 2 numbers

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;
printf ("%f\n", total); /* change here */

® What is the output of the program?

Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;
int phyMarks = 99;
float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;
printf ("%f\n", total); /* change here */

® What is the output of the program?

i%% and i%% evaluate to 0 and therefore total is zero.

Weighted sum of 2 numbers — a correct program

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;
printf ("%f\n", total);

Weighted sum of 2 numbers — a correct program

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;
printf ("%f\n", total);

® What is the output of the program?

Weighted sum of 2 numbers — a correct program

#include <stdio.h>
/* weighted sum 2 integers */

main() {
int mathMarks = 98;
int phyMarks = 99;
float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;
printf ("%f\n", total);

® What is the output of the program?

Learnings so far..

e (C allows different kinds of variables to be declared.

e C defines arithmetic operators, like +, -, *, /,...

® Have meaningful names for variables
mathMarks, phyMarks, total
choose variable names to be indicative — good programming practice

avoid reserved words like int, float, .. as variable names.

Learnings so far..

C allows different kinds of variables to be declared.

C defines arithmetic operators, like +, -, *, /,...

Have meaningful names for variables
mathMarks, phyMarks, total

choose variable names to be indicative — good programming practice
avoid reserved words like int, float, .. as variable names.

C defines arithmetic operators, like +, -, *, /,...

Assignment operator “=": used to change contents of a
variable.

Exercise: Swap two integers

® Two integers x and y contain 10 and 20 respec.

® Need to exchange values in x and y.
swap two integers.

® Write a C program to do the same.

Swap — fill in correct code

#include<stdio.h>

main() {
int x, y;

printf ("Enter x:");
scanf ("%d", &x);
printf ("Enter y:");
scanf ("%d", &y);

/* Fill in code here */

hd\n", x);
Kd\n", y);

printf ("x
printf("y

Variable modification

e A C program is a sequence of commands that modify different
variables using different operators.

® Basic operators in C.
® QOperator precedence and associativity.
® Basic data types in C.

® How much space does a particular data type take?
® How to input and output variables of a particular type?

® Arithmetic operators: +, -, *, /

Basic operators in C

e Arithmetic operators: +, -, *, /

® Modulus operator: %
x % y : remainder when x is divided by y.

Basic operators in C

e Arithmetic operators: +, -, *, /

® Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Basic operators in C

e Arithmetic operators: +, -, *, /

® Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Operator precedence:
e first: parenthesized sub-expression; inner-most to outer-most.
® second: *, /, % ; left to right.
® third: +, - ; left to right.

Basic operators in C

e Arithmetic operators: +, -, *, /

® Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Operator precedence:
e first: parenthesized sub-expression; inner-most to outer-most.
® second: *, /, % ; left to right.
® third: +, - ; left to right.
e total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;

Basic operators in C

Arithmetic operators: +, -, *, /

Modulus operator: %
x % y : remainder when x is divided by y.

Assignment operator: =

Operator precedence:

first: parenthesized sub-expression; inner-most to outer-most.
second: *, /, % ; left to right.

third: +, - ; left to right.

total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;

total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

Basic operators in C

e Arithmetic operators: +, -, *, /

® Modulus operator: %
x % y : remainder when x is divided by y.

® Assignment operator: =

Operator precedence:
e first: parenthesized sub-expression; inner-most to outer-most.
® second: *, /, % ; left to right.
® third: +, - ; left to right.
e total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;

total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

¢z=a+b*c*d%e-f/g

Basic operators in C

Arithmetic operators: +, -, *, /

Modulus operator: %
x % y : remainder when x is divided by y.

Assignment operator: =

Operator precedence:

first: parenthesized sub-expression; inner-most to outer-most.
second: *, /, % ; left to right.

third: +, - ; left to right.

total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;

total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);
z=a+b*c*d%e-f/g

z=a+ ((b*c)*d)%e)-(f/g)

Increment / decrement operators

[] _|-_|_’__

® prefix and post-fix only to a variable.

Increment / decrement operators

[] —|—+’ - -
® prefix and post-fix only to a variable.

#include<stdio.h>

main() {
int x, y;

int n = 10;
X = n++;

y = ++n;
printf(" x = %d, y = %d\n", x, y);

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y

® Xty =12 Incorrect form

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

Multiple assignments.
*x=y=z=(a+b)
® evaluations happen right to left.

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

® Multiple assignments.
*x=y=z=(a+b)
® evaluations happen right to left.
® x = x + 10 can be written as x += 10;
® instead of +, we can also have -, *, /, %

Exercises

Write a program that reads an integer from the input and prints 0
if the integer is even and 1 if the integer is odd.

Write a program that takes as input a 3 digit integer, separates the
digits of the integer and prints the individual digits separated by
spaces.

For example if the input is 194, then your program must print
194

Integers in C and Storage

® We have used int and float data types till now.

Integers in C and Storage

® We have used int and float data types till now.

® An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

Integers in C and Storage

® We have used int and float data types till now.

® An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

® |n the 2s complement form this allows storage of values from

255215 1

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.
What other data type can we use to store integers?

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.
What other data type can we use to store integers?

unsigned int, long, unsigned long.

unsigned int

Typically 4 bytes storage.
Output an unsigned int: printf(" %u”, x);
Input an unsigned int: scanf(” %u”, &x);

Storage: binary format.

The Integers - The detailed Chart

int
unsigned int
short
unsigned short

long

unsigned long

2 or 4 bytes

2 or 4 bytes
2 bytes
2 bytes
4 bytes

4 bytes

-32,768 to 32,767 or -2,147,483,648 t0

2,147,483,647

0to 65,535 or 0 to 4,294,967,295

-32,768 10 32,767

0 to 65,535

-2,147,483,648 t0 2,147 ,483,647

0to 4,294,967,285

char

® Typically 1 byte storage.

® Every character has a unique code assigned to it (ASCII code).
A =65 B =066

char

Typically 1 byte storage.

Every character has a unique code assigned to it (ASCII code).
A =65 B =066

Output a character: printf(" %c", x);

Input a character: scanf(” %c", &x);

float

Typically 4 bytes storage.
Output a float: printf(" %f ", x);
Input a float: scanf("%f ", &x);

How are fractions stored?

Binary vs decimal fractions

° (1011)2=(1x2)+ (0 x 1)+ (1 x 3)+ (1 X %) =(2.75)10

Binary vs decimal fractions

° (1011)2=(1x2)+ (0 x 1)+ (1 x 3)+ (1 X %) =(2.75)10
® (0.90625)10 =()2
° (0.9)10 =)2

Decimal Fraction — Binary Fraction (1)

Convert (0.90625),, to binary fraction

0.90625
X 2

0.8125 + integer part
1 X 2
0.625 + integer part

1 X 2
0.25 + integer part

1 X 2
0.5 + integer part

0 X 2

0 + integer part 1

Thus, (0.90625),, = (0.11101),

SD, PSK, NSN, DK, TAG - CS&E, IIT M

0.90625 = %(1+0.8125)

=51+ %(1+0.625))

= 5(1+ %1+ %(1+0.25)))
=5(1+5(1+ %(1+5(0+0.5))))

= 5(1+5(1+5(1+5(0+5(1+0.0)))))
= 14 +1/22+1/23+0/24 +1/25
=(0.11101),

44

Decimal Fraction — Binary Fraction (2)

Convert (0.9),, to binary fraction

0.9
X 2 .

) For some fractions, we do
0.8 + integer part 1
%2 not get 0.0 at any stage!
0.6 + integerpart 1 These fractions require an
% 2 infinite number of bits!
0.2 + integerpart 1 Cannot be represented
X 2 exactly!
0.4 + integer part 0
X 2

0.8 + integer part 0 Repetition

(0.9),,=0.11100110011001100 ... =0.11100

SD, PSK, NSN, DK, TAG — CS&E, IIT M 45

Binary vs decimal fractions

° (10.11); = (1 x21) + (0% 2%) + (1 x 2) + (1 x &) = (2.75)10
® (0.90625)19 = (0.11101),
® (0.9)10 = (0.111001110011100..),

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.

® |ets say we have 3 digits after radix point.

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point
® 1.20 x (10)7! x 1.20 x (10)~! = 1.44 x (10)~2
® Wider range of numbers can be represented.

o |EEE standard: 32 bits are split as follows:

® First bit for sign.
® Next 8 bits for exponent.
® Next 23 bits for mantissa.

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point
® 1.20 x (10)7! x 1.20 x (10)~! = 1.44 x (10)~2
® Wider range of numbers can be represented.

o |EEE standard: 32 bits are split as follows:

® First bit for sign.

® Next 8 bits for exponent.

® Next 23 bits for mantissa.

® (—39.9);p = (—100111.11100), = (—1.0011111100), x 25.

Floats - different types

Type Storage size Value range
float 4 byte 1.2E-38 to 3.4E+38
double 8 byte 2.3E-308 to 1.7E+308

long double 10 byte 3.4E-4932 to 1.1E+4932

Output floats in C

printf(" Y%w.p f ", x);
® w.p is optional.
® w : total width of the field.

® p: precision (digits after decimal).

Output floats in C

printf(" Y%w.p f ", x);
® w.p is optional.
® w : total width of the field.
® p: precision (digits after decimal).

#include<stdio.h>
main() {

float x = 2.00123;
printf ("x = 5.4f\n", x);
printf ("x = %8.7f\n", x);

Circumference of circle

#include<stdio.h>

main() {
float radius;
float circum;

printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

Circumference of circle

#include<stdio.h>
main() {
float radius;
float circum;
printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

® How to print output only upto 2 decimals?

Circumference of circle — formatted output

#include<stdio.h>

main() {
float radius;
float circum;

printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %5.2f, circum = %5.2f\n", radius, ci:

Output statement

printf (format-string, vari,varo,...,varp)

Output statement

printf (format-string, vari,varo,...,varp)

Format string specifies
® How many variables to expect?
® Type of each variable.
® How many columns to use for printing? (width)
® What is the precision? (if applicable)

Output statement

printf (format-string, vari,varo,...,varp)

Format string specifies
® How many variables to expect?
® Type of each variable.
® How many columns to use for printing? (width)

What is the precision? (if applicable)
e Common mistakes:

® comma missing after the double quotes.
® mismatch in the actual number of variables given and those
expected in the format string.

Formatted output

[printf (““%w.pC", x);

Formatted output

’ printf (‘‘%w.pC", x);

w, p and C are place holders, can take different values.
w: width of the output. (optional)

p: precision of the output. (optional)
C: Conversion character.

Formatted output

’ printf (‘‘%w.pC", x);

w, p and C are place holders, can take different values.

w: width of the output. (optional)

p: precision of the output. (optional)

C: Conversion character.

e 6 6 o o o o
® O X O —h

d:
. float

: character

: hexadecimal

. octal

. unsigned int

. real decimal in exponent form

integer

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Format string specifies
® How many variables to expect?

® Type of each variable.

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Format string specifies
® How many variables to expect?
® Type of each variable.
® Common mistakes:

® comma missing after the double quotes.

® mismatch in the actual number of variables given and those
expected in the format string.

® & missing before the variable.

® Variables in C.

Learnings so far..

® Variables in C.

® Data types in C - how they are stored. Why a programmer
should be worried.

Learnings so far..

® Variables in C.

® Data types in C - how they are stored. Why a programmer
should be worried.

® Arithmetic operators. Precedence of operators.

Learnings so far..

Variables in C.

Data types in C - how they are stored. Why a programmer
should be worried.

Arithmetic operators. Precedence of operators.

Assignment operator “=

Learnings so far..

Variables in C.

Data types in C - how they are stored. Why a programmer

should be worried.
Arithmetic operators. Precedence of operators.

Assignment operator “=

Formatting the input and output - the printf and scanf

Learnings so far..

Variables in C.

Data types in C - how they are stored. Why a programmer
should be worried.
Arithmetic operators. Precedence of operators.

Assignment operator “=

Formatting the input and output - the printf and scanf
What is coming up?

® Compilation and Exection of C-programs.

® More Programming.

