CS1100 - Introduction to Programming
 Lecture 3

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

The Computing Machine

- The computer is made up of a processor and a memory.

The Computing Machine

- The computer is made up of a processor and a memory.
- The memory can be thought of as a series of locations to store information.

The Computing Machine

- A program is a sequence of instructions assembled for some given task.
- Most instructions operate on data.
- Some instructions control the flow of the operations.

The Computing Machine : von Neuman Architecture

A brief look into the history...

From Abacus to Apple

- Counting frame.
- One of the earliest form of calculator.
- Still used by kids to do fast simple arithmetic.

From Abacus to Apple

- Counting frame.
- One of the earliest form of calculator.
- Still used by kids to do fast simple arithmetic.
- Followed by mechanical calculators by B. Pascal (1642), G. W. Leibniz (1671).
- Used cogs / interlocking gears.
- Performed $+,-, *, / \sqrt{ }$.
- Leibniz is credited of creating the binary system.

Jaquard looms (1804)

Charles Babbage (1791-1871)

- Regarded as the "Father of Computer".
- Conceived of a machine that has all the parts of a modern computer, input, a memory, a processor, and an output (1850).

Difference Engine (1850)

Difference engine built from Babbage's design (London Science Museum).

Ada Lovlace (1815-1852)

- "Wrote" the description of the mechanical computer of Babbage.
- Regarded as the first programmer ever.
- The programming language ADA is named after her.

Alan Turing (1912-1954)

- Father of Theoretical Computer Science (TCS) and Artificial Intelligence (AI).
- Turing machine -a model for a general purpose computer.
- Turing test - how intelligent is a machine?

First Electronic Computer: ENIAC 1946

Electronic Numerical Integerator And Calculator.

- 50,000 vacuum tubes, diodes, relays, resistors, capacitors.
- 5 million hand-soldered joints.
- Weighed 27 tons.
- Covered $167 m^{2}$ area.
- Consumed 150 kW of power.

1946-1976

Integrated Circuits

Transistors

1946-1976

Integrated Circuits

Transistors

Apple Macintosh

Today's World : Core i7 Processor

2008-15: Intel Core i7 Processor
Clock speed: $>2.5 \mathrm{GHz}$
No. of Transistors: $0.731-1.3 B$
Doubles every two years (Moore's law!)
Technology: $45-22 \mathrm{~nm}$ CMOS Area: $263-181 \mathrm{~mm}^{2}$.
Nowadays: Multicore (as clock speed increased) with cooling units!

Modern computing devices

Data Centers: Processing/Storing Huge volume of data

Even Cooling them is a big deal ...

The Computing Machine : von Neuman Architecture

The Computing Machine

- A program is a sequence of instructions assembled for some given task.
- Most instructions operate on data.
- Some instructions control the flow of the operations.

How does the computer represent data?

- To store : Numbers, text, graphics and images, video, audio, program instructions.

How does the computer represent data?

- To store : Numbers, text, graphics and images, video, audio, program instructions.
- In some way, all information is digitized - broken down into pieces and represented as numbers.

How does the computer represent data?

- To store : Numbers, text, graphics and images, video, audio, program instructions.
- In some way, all information is digitized - broken down into pieces and represented as numbers.
- Example: Representing Text Digitally.
- Every character is stored as a number, including spaces, digits, and punctuation.
- Corresponding upper and lower case letters are separate characters.

Hi, Heather.

The ASCII table

American Standard Code for Information Interchange (ASCII).

The ASCII table

American Standard Code for Information Interchange (ASCII).

Source: www.LookupTables.com

But, how does number get stored?

Number Systems.

- Decimal (base 10 - uses 10 symbols $\{0 \ldots 9\}$. Eg : 0, 1, 2, 3, $4,5,6,7,8,9,10,11,12,13 \ldots$.

But, how does number get stored?

Number Systems.

- Decimal (base 10 - uses 10 symbols $\{0 \ldots 9\}$. Eg : 0, 1, 2, 3, $4,5,6,7,8,9,10,11,12,13 \ldots$.
- Unary (base 1 - uses 1 symbol) Eg : 1, 11, 111, 1111,

But, how does number get stored?

Number Systems.

- Decimal (base 10 - uses 10 symbols $\{0 \ldots 9\}$. Eg : 0, 1, 2, 3, $4,5,6,7,8,9,10,11,12,13 \ldots$.
- Unary (base 1 - uses 1 symbol) Eg : 1, 11, 111, 1111,
- Binary (base 2) - uses 2 symbols $\{0,1\}$) Eg : 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, $1010 \ldots$

But, how does number get stored?

Number Systems.

- Decimal (base 10 - uses 10 symbols $\{0 \ldots 9\}$. Eg : 0, 1, 2, 3, $4,5,6,7,8,9,10,11,12,13 \ldots$.
- Unary (base 1 - uses 1 symbol) Eg : 1, 11, 111, 1111,
- Binary (base 2) - uses 2 symbols $\{0,1\}$) Eg : 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, $1010 \ldots$
- Octal (base 8 - uses 8 symbols $\{0 \ldots 7\}$) $\mathrm{Eg}: 0,1,2,3,4,5,6,7,10,11,12,13 \ldots$

But, how does number get stored?

Number Systems.

- Decimal (base 10 - uses 10 symbols $\{0 \ldots 9\}$. Eg: 0, 1, 2, 3, $4,5,6,7,8,9,10,11,12,13 \ldots$.
- Unary (base 1 - uses 1 symbol) Eg : 1, 11, 111, 1111,
- Binary (base 2) - uses 2 symbols $\{0,1\}$) Eg : 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, $1010 \ldots$
- Octal (base 8 - uses 8 symbols $\{0 \ldots 7\}$) Eg : 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, $13 \ldots$
- Hexadecimal(base 16 - uses A-F for 10-15)

Eg : 0, 1, ... 9, A, B, C, D, E, F, 10, 11, ... 19, 1A, 1B, ...

But, how does number get stored?

Number Systems.

- Decimal (base 10 - uses 10 symbols $\{0 \ldots 9\}$. Eg: 0, 1, 2, 3, $4,5,6,7,8,9,10,11,12,13 \ldots$.
- Unary (base 1 - uses 1 symbol) Eg : 1, 11, 111, 1111,
- Binary (base 2) - uses 2 symbols $\{0,1\}$) Eg : 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, $1010 \ldots$
- Octal (base 8 - uses 8 symbols $\{0 \ldots 7\}$) Eg : 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, $13 \ldots$
- Hexadecimal(base 16 - uses A-F for 10-15)

Eg : 0, 1, ... 9, A, B, C, D, E, F, 10, 11, ... 19, 1A, 1B, ...

Quick Primer on Number System: Base n

Take every "digit" and multiply by increasing powers of n and add.

Quick Primer on Number System: Base n

Take every "digit" and multiply by increasing powers of n and add.

Converting from Decimal to Binary

Conver the decimal number 39 to binary (base 2).

$$
\begin{aligned}
& \begin{array}{c|l}
2 & 39 \\
\hline 2 & 1 \overline{9}+\text { Remainder 1 } \\
2 & 9+\text { Remainder 1 } \\
2 & 4 \quad+\text { Remainder } 1 \\
2 & 2 \text { + Remainder } 0 \\
2 & 1 \text { + Remainder } 0 \\
\cline { 2 - 3 } & 0 \text { + Remainder } 1
\end{array} \\
& \begin{aligned}
39 & =2^{*} 19+1 \\
& =2^{*}\left(2^{*} 9+1\right)+1 \\
& =2^{2 *} 9+2^{2 *} 1+1 \\
& =2^{2 *}\left(2^{*} 4+1\right)+2^{1 *} 1+1 \\
& =2^{3 *} 4+2^{2 *} 1+2^{1 *} 1+1 \\
& =2^{3 *}\left(2^{*} 2+0\right)+2^{2 *} 1+2^{1 *} 1+1 \\
& =2^{4 *} 2+2^{3 *} 0+2^{2 *} 1+2^{1 *} 1+1 \\
& =2^{4 *}\left(2^{*} 1+0\right)+\ldots \\
& =2^{5 *} 1+2^{4 *} 0+2^{3 *} 0+2^{2 *} 1+2^{1 *} 1+1
\end{aligned} \\
& (100111)_{2}=\left(1 \times 2^{0}\right)+\left(1 \times 2^{1}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{3}\right)+\left(0 \times 2^{4}\right)+\left(1 \times 2^{5}\right) \\
& =(39)_{10}
\end{aligned}
$$

Which Number System? Binary !

- Devices that store and process information are cheaper and more reliable if they have to represent only two states.

Which Number System? Binary !

- Devices that store and process information are cheaper and more reliable if they have to represent only two states.
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0). Hence representable by even voltage levels in wires.

Which Number System? Binary !

- Devices that store and process information are cheaper and more reliable if they have to represent only two states.
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0). Hence representable by even voltage levels in wires.
- The other number systems can be "encoded in" binary

Which Number System? Binary !

- Devices that store and process information are cheaper and more reliable if they have to represent only two states.
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0). Hence representable by even voltage levels in wires.
- The other number systems can be "encoded in" binary

Representing values in Binary

If we have m bits, we can represent 2^{m} unique different values.

Representing values in Binary

If we have m bits, we can represent 2^{m} unique different values. A useful circle :

Representing negative numbers

Sign Magnitude notation

- Use one bit for sign, others for magnitude of the number.

Representing negative numbers

Sign Magnitude notation

- Use one bit for sign, others for magnitude of the number.

			Sign Magn.
0	0	0	0
0	0	1	+1
0	1	0	+2
0	1	1	+3
1	0	0	0
1	0	1	-1
1	1	0	-2
1	1	1	-3

Representing negative numbers

Sign Magnitude notation

- Use one bit for sign, others for magnitude of the number.

			Sign Magn.
0	0	0	0
0	0	1	+1
0	1	0	+2
0	1	1	+3
1	0	0	0
1	0	1	-1
1	1	0	-2
1	1	1	-3

- using n bits: $-\left(2^{n-1}-1\right) \ldots\left(2^{n-1}-1\right)$.
- zero has two representations.

Representing negative numbers

Ones complement notation

- for a negative number n, represent the number by the bit complement of its binary rep. using k bits.

Representing negative numbers

Ones complement notation

- for a negative number n, represent the number by the bit complement of its binary rep. using k bits.

			Sign Magn.	Ones comp.
0	0	0	0	0
0	0	1	+1	+1
0	1	0	+2	+2
0	1	1	+3	+3
1	0	0	0	-3
1	0	1	-1	-2
1	1	0	-2	-1
1	1	1	-3	0

Representing negative numbers

Ones complement notation

- for a negative number n, represent the number by the bit complement of its binary rep. using k bits.

			Sign Magn.	Ones comp.
0	0	0	0	0
0	0	1	+1	+1
0	1	0	+2	+2
0	1	1	+3	+3
1	0	0	0	-3
1	0	1	-1	-2
1	1	0	-2	-1
1	1	1	-3	0

- using n bits: $-\left(2^{n-1}-1\right) \ldots\left(2^{n-1}-1\right)$.
- zero has two representations.
- not very widely used representation.

Representing negative numbers - A neat trick

Representing negative numbers - A neat trick

Representing negative numbers - A neat trick

Representing negative numbers - A neat trick

Twos complement notation

- for a positive number n, represent the number by its binary rep. using k bits.
- for a negative number $-n$, represent the number as $2^{k}-n$.

Representing negative numbers - A neat trick

Twos complement notation

- for a positive number n, represent the number by its binary rep. using k bits.
- for a negative number $-n$, represent the number as $2^{k}-n$.

			Sign Magn.	Ones comp.	Twos comp.
0	0	0	0	0	0
0	0	1	+1	+1	+1
0	1	0	+2	+2	+2
0	1	1	+3	+3	+3
1	0	0	0	-3	-4
1	0	1	-1	-2	-3
1	1	0	-2	-1	-2
1	1	1	-3	0	-1

Representing negative numbers - A neat trick

Twos complement notation

- for a positive number n, represent the number by its binary rep. using k bits.
- for a negative number $-n$, represent the number as $2^{k}-n$.

			Sign Magn.	Ones comp.	Twos comp.
0	0	0	0	0	0
0	0	1	+1	+1	+1
0	1	0	+2	+2	+2
0	1	1	+3	+3	+3
1	0	0	0	-3	-4
1	0	1	-1	-2	-3
1	1	0	-2	-1	-2
1	1	1	-3	0	-1

- using n bits: $-\left(2^{n-1}\right) \ldots\left(2^{n-1}-1\right)$.
- widely used representation.

Representing negative numbers

Arithmetic with these representations

			Sign Magn.	Ones comp.	Twos comp.
0	0	0	0	0	0
0	0	1	+1	+1	+1
0	1	0	+2	+2	+2
0	1	1	+3	+3	+3
1	0	0	0	-3	-4
1	0	1	-1	-2	-3
1	1	0	-2	-1	-2
1	1	1	-3	0	-1

Representing negative numbers

Arithmetic with these representations

			Sign Magn.	Ones comp.	Twos comp.
0	0	0	0	0	0
0	0	1	+1	+1	+1
0	1	0	+2	+2	+2
0	1	1	+3	+3	+3
1	0	0	0	-3	-4
1	0	1	-1	-2	-3
1	1	0	-2	-1	-2
1	1	1	-3	0	-1

- $2+(-3)$

Representing negative numbers

Arithmetic with these representations

			Sign Magn.	Ones comp.	Twos comp.
0	0	0	0	0	0
0	0	1	+1	+1	+1
0	1	0	+2	+2	+2
0	1	1	+3	+3	+3
1	0	0	0	-3	-4
1	0	1	-1	-2	-3
1	1	0	-2	-1	-2
1	1	1	-3	0	-1

- $2+(-3)$
- $3+(-2)$

More examples: The case of 4 bits

	corresp. dec. oper.	
0100		+4
+1001	$+$	
$1101=-3$		-3
correct result		
Example (b)		

More examples: The case of 4 bits

	corresp. dec. oper.	
0011		+3
+0100	+	
$0111=+7$		+7
correct result		
Example (c)		

$\begin{aligned} & 111 \\ & \square \neg 7 / 7 \end{aligned}$	corresp. dec. oper.
1110	-2
+1010	+ -6
$11000=-8$	8 -8
correct result	
Example (d)	

More examples: The case of 4 bits

1 dect	corresp.
\cdots	
1101	-3
+1010	+ -6
$10111=+7$	$7 \quad-9$
incorre	rect result
Examp	ple (e)

1	corresp. dec. oper.
0101	+5
+0110	+ +6
$1011=$	$-5+11$
	rect result
	ple (f)

Overflow Detection Rule : If two numbers with the same sign (both positive or both negative) are added, then overflow occurs if and only if the binary representation of the result has the opposite sign.

What to do?

How to Detect it? : The technique of overflow detection is easily implemented in electronic circuitry, and it is a standard feature in digital adder circuits.
How to Prevent it?: Use more bits!

