
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 29



How to store multiple related items?

Suppose you want to store information for 10 students. For each
student you need to store, Roll Number, Name, Age, Program
(BTech / DD / MTech)

• A possible way is to define 4 arrays – each of the appropriate
type.

• Arrays allow us to store multiple items but all of them need to
be of the same type.

• Instead it would be good to have a way to store a collection of
different types of data – related to one particular object (in
this case student).

• Structures in C allow us to do the same.



How to store multiple related items?

Suppose you want to store information for 10 students. For each
student you need to store, Roll Number, Name, Age, Program
(BTech / DD / MTech)

• A possible way is to define 4 arrays – each of the appropriate
type.

• Arrays allow us to store multiple items but all of them need to
be of the same type.

• Instead it would be good to have a way to store a collection of
different types of data – related to one particular object (in
this case student).

• Structures in C allow us to do the same.



How to store multiple related items?

Suppose you want to store information for 10 students. For each
student you need to store, Roll Number, Name, Age, Program
(BTech / DD / MTech)

• A possible way is to define 4 arrays – each of the appropriate
type.

• Arrays allow us to store multiple items but all of them need to
be of the same type.

• Instead it would be good to have a way to store a collection of
different types of data – related to one particular object (in
this case student).

• Structures in C allow us to do the same.



How to store multiple related items?

Suppose you want to store information for 10 students. For each
student you need to store, Roll Number, Name, Age, Program
(BTech / DD / MTech)

• A possible way is to define 4 arrays – each of the appropriate
type.

• Arrays allow us to store multiple items but all of them need to
be of the same type.

• Instead it would be good to have a way to store a collection of
different types of data – related to one particular object (in
this case student).

• Structures in C allow us to do the same.



How to store multiple related items?

Suppose you want to store information for 10 students. For each
student you need to store, Roll Number, Name, Age, Program
(BTech / DD / MTech)

• A possible way is to define 4 arrays – each of the appropriate
type.

• Arrays allow us to store multiple items but all of them need to
be of the same type.

• Instead it would be good to have a way to store a collection of
different types of data – related to one particular object (in
this case student).

• Structures in C allow us to do the same.



What is a structure?

• Structures allow us to store variables of different data types
together.

• Useful for logical organization even if all variables are of the
same type.

• Consider storing integer co-ordinates of n points in 2D.
• Can be stored using an array of size 2n.
• But more logical to have x-coordinate in a separated from

y-coordinate.



What is a structure?

• Structures allow us to store variables of different data types
together.

• Useful for logical organization even if all variables are of the
same type.

• Consider storing integer co-ordinates of n points in 2D.
• Can be stored using an array of size 2n.
• But more logical to have x-coordinate in a separated from

y-coordinate.



Defining a structure : Syntax

struct [structure tag]

{

member definition;

member definition;

...

member definition;

};

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

• struct student is a new data-type.

• We can use struct student in the program just like a basic
data type like int.

• struct student s; - defines a new variable s which is
”type” struct student.

• Note the semicolon after the definition of the structure.



Defining a structure : Syntax

struct [structure tag]

{

member definition;

member definition;

...

member definition;

};

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

• struct student is a new data-type.

• We can use struct student in the program just like a basic
data type like int.

• struct student s; - defines a new variable s which is
”type” struct student.

• Note the semicolon after the definition of the structure.



Defining a structure : Syntax

struct [structure tag]

{

member definition;

member definition;

...

member definition;

};

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

• struct student is a new data-type.

• We can use struct student in the program just like a basic
data type like int.

• struct student s; - defines a new variable s which is
”type” struct student.

• Note the semicolon after the definition of the structure.



Defining a structure : Syntax

struct [structure tag]

{

member definition;

member definition;

...

member definition;

};

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

• struct student is a new data-type.

• We can use struct student in the program just like a basic
data type like int.

• struct student s; - defines a new variable s which is
”type” struct student.

• Note the semicolon after the definition of the structure.



Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Assigning a structure to another

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

int main()

{

struct student S1,S2;

strcpy(S1.rollNumber, "CS15B1");

strcpy(S1.name, "Ameet Deshpande");

S1.age = 18;

S1.program = 1;

S2 = S1;

}

• Assigning one structure to another is supported.

• However checking for equality or not equal of two structures is
not supported by the language. S1 == S2 is syntax error.



Assigning a structure to another

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

int main()

{

struct student S1,S2;

strcpy(S1.rollNumber, "CS15B1");

strcpy(S1.name, "Ameet Deshpande");

S1.age = 18;

S1.program = 1;

S2 = S1;

}

• Assigning one structure to another is supported.

• However checking for equality or not equal of two structures is
not supported by the language. S1 == S2 is syntax error.



Using structures again

Given a rectangle and a point
in 2D, determine if the point is
inside the rectangle.

• Simplifying assumption : Assume rectangle is axis-parallel.

• How do we represent a point?

• How do we represent a rectangle?

• Given a rectangle specified by the endpoints of a diagonal,
how do we determine if a point lies inside the rectangle?



Using structures again

Given a rectangle and a point
in 2D, determine if the point is
inside the rectangle.

• Simplifying assumption : Assume rectangle is axis-parallel.

• How do we represent a point?

• How do we represent a rectangle?

• Given a rectangle specified by the endpoints of a diagonal,
how do we determine if a point lies inside the rectangle?



Using structures again

Given a rectangle and a point
in 2D, determine if the point is
inside the rectangle.

• Simplifying assumption : Assume rectangle is axis-parallel.

• How do we represent a point?

• How do we represent a rectangle?

• Given a rectangle specified by the endpoints of a diagonal,
how do we determine if a point lies inside the rectangle?



Using structures again

Given a rectangle and a point
in 2D, determine if the point is
inside the rectangle.

• Simplifying assumption : Assume rectangle is axis-parallel.

• How do we represent a point?

• How do we represent a rectangle?

• Given a rectangle specified by the endpoints of a diagonal,
how do we determine if a point lies inside the rectangle?



Using structures again

Given a rectangle and a point
in 2D, determine if the point is
inside the rectangle.

• Simplifying assumption : Assume rectangle is axis-parallel.

• How do we represent a point?

• How do we represent a rectangle?

• Given a rectangle specified by the endpoints of a diagonal,
how do we determine if a point lies inside the rectangle?



Using structures again

Given a rectangle and a point
in 2D, determine if the point is
inside the rectangle.

• Simplifying assumption : Assume rectangle is axis-parallel.

• How do we represent a point?

• How do we represent a rectangle?

• Given a rectangle specified by the endpoints of a diagonal,
how do we determine if a point lies inside the rectangle?



Define Appropriate Structures

#include<stdio.h>

struct point {

int xCoord;

int yCoord;

};

struct rectangle {

struct point lowerLeft;

struct point upperRight;

};

int IsInside(struct rectangle, struct point);



Check whether point is inside

int IsInside(struct rectangle R, struct point P)

{

// to be filled.

}

Exercise : Complete the function is inside.



Check whether point is inside

int IsInside(struct rectangle R, struct point P)

{

// to be filled.

}

Exercise : Complete the function is inside.



Check whether point is inside

int IsInside(struct rectangle R, struct point P)

{

// to be filled.

}

Exercise : Complete the function is inside.



Check whether point is inside

int IsInside(struct rectangle R, struct point P)

{

// to be filled.

}

Exercise : Complete the function is inside.



Main Program : Scan the inputs & Invoke fn.

main() {

struct rectangle R;

struct point P;

scanf("%d", &R.lowerLeft.xCoord);

scanf("%d", &R.lowerLeft.yCoord);

scanf("%d", &R.upperRight.xCoord);

scanf("%d", &R.upperRight.yCoord);

scanf("%d", &P.xCoord);

scanf("%d", &P.yCoord);

printf("%d\n", IsInside(R, P));

}



modularize the code further

• Write a function to get a point.

• Write a function to print a point.

void get_point (struct point pt) {

scanf("%d", &pt.xCoord);

scanf("%d", &pt.yCoord);

}

void print_point (struct point pt) {

printf("%d\t", pt.xCoord);

printf("%d\n", pt.yCoord);

}



modularize the code further

• Write a function to get a point.

• Write a function to print a point.

void get_point (struct point pt) {

scanf("%d", &pt.xCoord);

scanf("%d", &pt.yCoord);

}

void print_point (struct point pt) {

printf("%d\t", pt.xCoord);

printf("%d\n", pt.yCoord);

}



Corresponding main file

int main() {

struct rectangle R;

struct point P;

GetPoint(R.lowerLeft);

GetPoint(R.upperRight);

GetPoint(P);

printf("%d\n", IsInside(R, P));

return 0;

}

• Structures are passed by value. When the function is invoked
- the structure R.lowerLeft is copied to the structure pt.

• Changes made to contents of the structure are not visible
outside the function. For that we need to pass by reference.



Corresponding main file

int main() {

struct rectangle R;

struct point P;

GetPoint(R.lowerLeft);

GetPoint(R.upperRight);

GetPoint(P);

printf("%d\n", IsInside(R, P));

return 0;

}

• Structures are passed by value.

When the function is invoked
- the structure R.lowerLeft is copied to the structure pt.

• Changes made to contents of the structure are not visible
outside the function. For that we need to pass by reference.



Corresponding main file

int main() {

struct rectangle R;

struct point P;

GetPoint(R.lowerLeft);

GetPoint(R.upperRight);

GetPoint(P);

printf("%d\n", IsInside(R, P));

return 0;

}

• Structures are passed by value. When the function is invoked
- the structure R.lowerLeft is copied to the structure pt.

• Changes made to contents of the structure are not visible
outside the function. For that we need to pass by reference.



Corresponding main file

int main() {

struct rectangle R;

struct point P;

GetPoint(R.lowerLeft);

GetPoint(R.upperRight);

GetPoint(P);

printf("%d\n", IsInside(R, P));

return 0;

}

• Structures are passed by value. When the function is invoked
- the structure R.lowerLeft is copied to the structure pt.

• Changes made to contents of the structure are not visible
outside the function.

For that we need to pass by reference.



Corresponding main file

int main() {

struct rectangle R;

struct point P;

GetPoint(R.lowerLeft);

GetPoint(R.upperRight);

GetPoint(P);

printf("%d\n", IsInside(R, P));

return 0;

}

• Structures are passed by value. When the function is invoked
- the structure R.lowerLeft is copied to the structure pt.

• Changes made to contents of the structure are not visible
outside the function. For that we need to pass by reference.



How are structures stored?

• When the structure is defined - no memory is allocated.

• Only when it is used to declare a structure variable - memory
is allocated.

• Contiguous memory allocations are assigned but with some
gap filler bytes to fix the memory alignment.

• The total size required to store a structure will depend on
these alignments.



How are structures stored?

• When the structure is defined - no memory is allocated.

• Only when it is used to declare a structure variable - memory
is allocated.

• Contiguous memory allocations are assigned but with some
gap filler bytes to fix the memory alignment.

• The total size required to store a structure will depend on
these alignments.



size of a structure

#include<stdio.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

int main() {

printf("size of integer = %ld \n size = %ld\n",

sizeof(int),sizeof(struct student));

}

• What is the output of the program?

• Assume size of int is 4 bytes.

• Why does it print 36 instead of 34?



size of a structure

#include<stdio.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

int main() {

printf("size of integer = %ld \n size = %ld\n",

sizeof(int),sizeof(struct student));

}

• What is the output of the program?

• Assume size of int is 4 bytes.

• Why does it print 36 instead of 34?


