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How to store multiple related items?

Suppose you want to store information for 10 students. For each
student you need to store, Roll Number, Name, Age, Program
(BTech / DD / MTech)

• A possible way is to define 4 arrays – each of the appropriate
type.

• Arrays allow us to store multiple items but all of them need to
be of the same type.

• Instead it would be good to have a way to store a collection of
different types of data – related to one particular object (in
this case student).

• Structures in C allow us to do the same.
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What is a structure?

• Structures allow us to store variables of different data types
together.

• Useful for logical organization even if all variables are of the
same type.

• Consider storing integer co-ordinates of n points in 2D.
• Can be stored using an array of size 2n.
• But more logical to have x-coordinate in a separated from

y-coordinate.
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Defining a structure : Syntax

struct [structure tag]

{

member definition;

member definition;

...

member definition;

};

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

• struct student is a new data-type.

• We can use struct student in the program just like a basic
data type like int.

• struct student s; - defines a new variable s which is
”type” struct student.

• Note the semicolon after the definition of the structure.
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Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Using structures

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

struct student s;

Accessing values in a structure :
name.member gives you the value
stored in the member.
Eg : s.name

int main() {

struct student S1;

strcpy(S1.rollNumber, "CH17B005");

strcpy(S1.name, "Mahendar");

S1.age = 18;

S1.program = 1;

printf("Name: %s\n", S1.name);

printf("Program: %d\n", S1.program);

}

We can also initialize a structure
by :
struct student S1 =

{"AE18B002","BAKUL",18,1};



Assigning a structure to another

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

int main()

{

struct student S1,S2;

strcpy(S1.rollNumber, "CS15B1");

strcpy(S1.name, "Ameet Deshpande");

S1.age = 18;

S1.program = 1;

S2 = S1;

}

• Assigning one structure to another is supported.

• However checking for equality or not equal of two structures is
not supported by the language. S1 == S2 is syntax error.



Assigning a structure to another

#include<stdio.h>

#include<string.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

int main()

{

struct student S1,S2;

strcpy(S1.rollNumber, "CS15B1");

strcpy(S1.name, "Ameet Deshpande");

S1.age = 18;

S1.program = 1;

S2 = S1;

}

• Assigning one structure to another is supported.

• However checking for equality or not equal of two structures is
not supported by the language. S1 == S2 is syntax error.



Using structures again

Given a rectangle and a point
in 2D, determine if the point is
inside the rectangle.

• Simplifying assumption : Assume rectangle is axis-parallel.

• How do we represent a point?

• How do we represent a rectangle?

• Given a rectangle specified by the endpoints of a diagonal,
how do we determine if a point lies inside the rectangle?
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Define Appropriate Structures

#include<stdio.h>

struct point {

int xCoord;

int yCoord;

};

struct rectangle {

struct point lowerLeft;

struct point upperRight;

};

int IsInside(struct rectangle, struct point);



Check whether point is inside

int IsInside(struct rectangle R, struct point P)

{

// to be filled.

}

Exercise : Complete the function is inside.
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Main Program : Scan the inputs & Invoke fn.

main() {

struct rectangle R;

struct point P;

scanf("%d", &R.lowerLeft.xCoord);

scanf("%d", &R.lowerLeft.yCoord);

scanf("%d", &R.upperRight.xCoord);

scanf("%d", &R.upperRight.yCoord);

scanf("%d", &P.xCoord);

scanf("%d", &P.yCoord);

printf("%d\n", IsInside(R, P));

}



modularize the code further

• Write a function to get a point.

• Write a function to print a point.

void get_point (struct point pt) {

scanf("%d", &pt.xCoord);

scanf("%d", &pt.yCoord);

}

void print_point (struct point pt) {

printf("%d\t", pt.xCoord);

printf("%d\n", pt.yCoord);

}
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Corresponding main file

int main() {

struct rectangle R;

struct point P;

GetPoint(R.lowerLeft);

GetPoint(R.upperRight);

GetPoint(P);

printf("%d\n", IsInside(R, P));

return 0;

}

• Structures are passed by value. When the function is invoked
- the structure R.lowerLeft is copied to the structure pt.

• Changes made to contents of the structure are not visible
outside the function. For that we need to pass by reference.
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How are structures stored?

• When the structure is defined - no memory is allocated.

• Only when it is used to declare a structure variable - memory
is allocated.

• Contiguous memory allocations are assigned but with some
gap filler bytes to fix the memory alignment.

• The total size required to store a structure will depend on
these alignments.
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size of a structure

#include<stdio.h>

struct student {

char rollNumber[6];

char name[20];

int age;

int program;

};

int main() {

printf("size of integer = %ld \n size = %ld\n",

sizeof(int),sizeof(struct student));

}

• What is the output of the program?

• Assume size of int is 4 bytes.

• Why does it print 36 instead of 34?
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