CS1100 - Introduction to Programming

Instructor:
Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 26

Recursive Thinking: Largest Element in an Array

(Better) recursive thinking: Find the largest of the first half, then in the second half, and then return the largest of the two.

Recursive Thinking: Largest Element in an Array

(Better) recursive thinking: Find the largest of the first half, then in the second half, and then return the largest of the two.

```
int largest(int i, int j)
{
    if (i == j) return arr[i];
    int l1,l2;
    l1 = largest(i,(i+j)/2);
    12 = largest((i+j)/2+1,j);
    if (l1 > l2)
        return 11;
    else return 12;
}
```


Why is this algorithm better?

- We divide the array into two equal halves, recursively call largest on each half, and perform one comparison after they return.

Why is this algorithm better?

- We divide the array into two equal halves, recursively call largest on each half, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.

Why is this algorithm better?

- We divide the array into two equal halves, recursively call largest on each half, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=2 T(n / 2)+C$.

Why is this algorithm better?

- We divide the array into two equal halves, recursively call largest on each half, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=2 T(n / 2)+C$.
- Depth of the recursion tree is $\log n$, and total time taken is $\approx n \times K$ for some constant K.

Why is this algorithm better?

- We divide the array into two equal halves, recursively call largest on each half, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=2 T(n / 2)+C$.
- Depth of the recursion tree is $\log n$, and total time taken is $\approx n \times K$ for some constant K.

What happens in the older algorithm?

- We divide the array into two unequal parts of size 1 and $n-1$, recursively call largest on the sub-array, and perform one comparison after they return.

What happens in the older algorithm?

- We divide the array into two unequal parts of size 1 and $n-1$, recursively call largest on the sub-array, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.

What happens in the older algorithm?

- We divide the array into two unequal parts of size 1 and $n-1$, recursively call largest on the sub-array, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n-1)+C$.

What happens in the older algorithm?

- We divide the array into two unequal parts of size 1 and $n-1$, recursively call largest on the sub-array, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n-1)+C$.
- Depth of the recursion tree is n, and total time taken is again $\approx n \times K$ for some constant K.

What happens in the older algorithm?

- We divide the array into two unequal parts of size 1 and $n-1$, recursively call largest on the sub-array, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n-1)+C$.
- Depth of the recursion tree is n, and total time taken is again $\approx n \times K$ for some constant K.
- So total time is roughly the same. But depth of recursion tree is larger in one case.

What happens in the older algorithm?

- We divide the array into two unequal parts of size 1 and $n-1$, recursively call largest on the sub-array, and perform one comparison after they return.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n-1)+C$.
- Depth of the recursion tree is n, and total time taken is again $\approx n \times K$ for some constant K.
- So total time is roughly the same. But depth of recursion tree is larger in one case.
- The space complexity of recursive algorithm is proportinal to maximum depth of recursion tree generated. So this is how the second algorithm is better than the first.

Recall: Coding Binary Search

```
#include <stdio.h>
#define SIZE 1000000
int deepmax(int arr[], int start, int end) {
    if (start == end) return arr[start];
    else {
            int l = deepmax(arr, start+1, end);
            if (arr[start] > l) return arr[start];
            else return l;
        }
}
int shallowmax(int arr[], int start, int end) {
    if (start == end) return arr[start];
    else {
            int mid = (start+end)/2;
            int l1 = shallowmax(arr, start, mid);
            int l2 = shallowmax(arr, mid+1, end);
            if (l1 > 12) return l1;
            else return 12;
    }
}
main() {
    int arr[SIZE];
    for (int i=O; i<SIZE; i++) {
        arr[i] = i;
    }
    int max1 = shallowmax(arr, 0, SIZE-1);
    printf("shallowmax answer = %d\n", max1);
    int max2 = deepmax(arr, 0, SIZE-1);
    printf("deepmax answer = %d\n", max2);
}
```


Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n / 2)+C$.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n / 2)+C$.
- This gives us $T(n) \approx \log _{2}(n)$.

The relations with $T(n)$ in LHS are called recurrence relations

Recall: Coding Binary Search

```
#include <stdio.h>
int binarySearch(int array[], int x, int low, int high) {
    if (high >= low) {
        int mid = low + (high - low) / 2;
        // If found at mid, then return it
        if (array[mid] == x)
                return mid;
        // Search the left half
        if (array[mid] > x)
            return binarySearch(array, x, low, mid - 1);
        // Search the right half
        return binarySearch(array, x, mid + 1, high);
    }
    return -1;
}
int main(void) {
    int array[] = {3, 4, 5, 6, 7, 8, 9};
    int n = sizeof(array) / sizeof(array[0]);
    int x = 4;
    int result = binarySearch(array, x, 0, n - 1);
    if (result == -1)
        printf("Not found");
    else
        printf("Element is found at index %d", result);
}
```


Sorting an array in decreasing order

Task: Given array of $n(n \leq 1000)$ numbers. Sort them in decreasing order of numbers.

15	8	3	12	30	7	9	17	32	19

Sorting an array in decreasing order

Task: Given array of $n(n \leq 1000)$ numbers. Sort them in decreasing order of numbers.

15	8	3	12	30	7	9	17	32	19

One possible way: An algorithm

- Find max, place it at first location.
- Sort the array from second location to end.

Called Selection Sort.

Selection sort

15	8	3	12	30	7	9	17	32	19

Selection sort

15	8	3	12	30	7	9	17	32	19
32	8	3	12	30	7	9	17	15	19

Selection sort

15	8	3	12	30	7	9	17	32	19
32	8	3	12	30	7	9	17	15	19
32	30	3	12	8	7	9	17	15	19

Selection sort

15	8	3	12	30	7	9	17	32	19
32	8	3	12	30	7	9	17	15	19
32	30	3	12	8	7	9	17	15	19
\vdots									
32	30	19	17	15	12	9	8	7	3

Pseudo-code :

- while ($i \leq n$)
- maxindex $=$ index of the max element in the part of the array indexed from i to n. Find maxindex.

Selection sort

15	8	3	12	30	7	9	17	32	19
32	8	3	12	30	7	9	17	15	19
32	30	3	12	8	7	9	17	15	19
\vdots									
32	30	19	17	15	12	9	8	7	3

Pseudo-code :

- while ($i \leq n$)
- maxindex $=$ index of the max element in the part of the array indexed from i to n. Find maxindex. (We have solved this !!)

Selection sort

15	8	3	12	30	7	9	17	32	19
32	8	3	12	30	7	9	17	15	19
32	30	3	12	8	7	9	17	15	19
\vdots									
32	30	19	17	15	12	9	8	7	3

Pseudo-code :

- while ($i \leq n$)
- maxindex $=$ index of the max element in the part of the array indexed from i to n. Find maxindex. (We have solved this !!)
- swap elements array[i] and array[maxindex];

Selection sort

15	8	3	12	30	7	9	17	32	19
32	8	3	12	30	7	9	17	15	19
32	30	3	12	8	7	9	17	15	19
\vdots									
32	30	19	17	15	12	9	8	7	3

Pseudo-code :

- while ($i \leq n$)
- maxindex $=$ index of the max element in the part of the array indexed from i to n. Find maxindex. (We have solved this !!)
- swap elements array[i] and array[maxindex]; (We have solved this too !!)

Selection sort - from the pseudocode to the program

Pseudo-code :

for i ranging from 1 to n

- maxindex $=$ the index of the max element in the part of the array indexed from i to n. Find maxindex.
- swap elements array[i] and array[maxindex];

Selection sort - from the pseudocode to the program

Pseudo-code :

for i ranging from 1 to n

- maxindex $=$ the index of the max element in the part of the array indexed from i to n. Find maxindex.
- swap elements array[i] and array[maxindex];

Program Segment:

```
for (i=0; i<n; i++)
{
    max = i;
    for (j=i+1; j<n; j++)
    {
        if (a[j] > a[max])
            max = j;
    }
    temp = a[i];
    a[i] = a[max];
    a[max] = temp;
}
```


Selection sort - number of comparisons

- Which input do we consider?

Selection sort - number of comparisons

- Which input do we consider?
- Do number of comparisons depend on the particular array values?

Selection sort - number of comparisons

- Which input do we consider?
- Do number of comparisons depend on the particular array values?
- How does the method perform when the array is nearly sorted?

Selection sort - number of comparisons

- Which input do we consider?
- Do number of comparisons depend on the particular array values?
- How does the method perform when the array is nearly sorted?
- Consider a "worst-case" input.

Selection sort - number of comparisons

- Which input do we consider?
- Do number of comparisons depend on the particular array values?
- How does the method perform when the array is nearly sorted?
- Consider a "worst-case" input.
- Irrespective of whether the array is sorted or not, the method always needs $\frac{n(n-1)}{2}$ comparisons.

From Modular Perspective: Selection Sort

Selection Sort: Sort n numbers in descending order

Pseudo-code :

for i ranging from 1 to n

- maxindex $=$ the index of the max element in the part of the array indexed from i to n. Find maxindex.
- swap elements array[i] and array[maxindex];

From Modular Perspective: Selection Sort

Subtasks identified:

Selection Sort: Sort n numbers in descending order

Pseudo-code :

for i ranging from 1 to n

- maxindex $=$ the index of the max element in the part of the array indexed from i to n. Find maxindex.
- swap elements array[i] and array[maxindex];
findmax (i, n) : find the index of maxelement in the subarray from i to n.
$\operatorname{swap}(i, j): \operatorname{swap} i^{\text {th }}$ and $j^{\text {th }}$ elements of A.

From Modular Perspective: Selection Sort

Subtasks identified:

Selection Sort: Sort n numbers in descending order

Pseudo-code :

for i ranging from 1 to n

- maxindex $=$ the index of the max element in the part of the array indexed from i to n. Find maxindex.
- swap elements array[i] and array[maxindex];
index of maxelement in the subarray from i to n.
$\operatorname{swap}(i, j): \operatorname{swap} i^{\text {th }}$ and $j^{\text {th }}$ elements of A.

Once this is done (and solved), here is the remaining code.

```
for i = 1 to n
{
    max = findmax(i,n);
    swap(i,max);
```

\}

Insertion Sort

Insertion Sort

15	8	3	12	30	7	9	17	32	19				

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	12	8	3	30	7	9	17	15	19

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	12	8	3	30	7	9	17	15	19
\vdots									
32	30	19	17	15	12	9	8	7	3

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	12	8	3	30	7	9	17	15	19
\vdots									
32	30	19	17	15	12	9	8	7	3

- Although final result is the same, intermediate steps are different from selection sort.

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++)\{$
$j=\mathrm{i}$;
if $(A[j]<=A[j-1])$
continue;
// Now $A[j]>A[j-1]$
// swap $A[j]$ with $A[j-1]$ till...?

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$) $\{$ $\mathrm{j}=\mathrm{i}$;
if $(A[j]<=A[j-1])$

continue;

$/ /$ Now $A[j]>A[j-1]$ while $(A[j]>A[j-1])$ \{
// Swap $A[j]$ and $A[j-1]$
$j=j-1$;
\}

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$) $\{$ $\mathrm{j}=\mathrm{i}$;
if $(A[j]<=A[j-1])$

continue;

$/ /$ Now $A[j]>A[j-1]$
while $(\mathrm{A}[\mathrm{j}]>\mathrm{A}[\mathrm{j}-1])$ \{

$$
\begin{aligned}
& / / \text { Swap } A[j] \text { and } A[j-1] \\
& j=j-1 ;
\end{aligned}
$$

\}

What happens for $\mathrm{j}=4$?

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $\quad(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$) $\{$ $j=\mathrm{i}$;
while $(A[j]>A[j-1] \& \& j>0)$ \{
// Swap $A[j]$ and $A[j-1]$ $j=j-1$;
\}

Insertion Sort

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	12	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $\quad(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \mathrm{i}++$) $\{$ $j=\mathrm{i}$;
while $(A[j]>A[j-1]$ \&\& $j>0)$ \{

$$
\begin{aligned}
& / / \text { Swap } A[j] \text { and } A[j-1] \\
& j=j-1 ;
\end{aligned}
$$

\}

Insertion Sort

// Array index starts from 0.

```
for (i=1; i<= n-1; i++) {
    j = i;
        while (j>0 && A[j]>A[j-1]) {
            // Swap A[j] and A[j-1]
                j = j -1;
    }
}
```

- Need to check $(j>0)$ before checking $A[j]>A[j-1]$!
- Note the use of short-circuiting.

Insertion Sort - another way

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19

Insertion Sort - another way

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	3	3	30	7	9	17	32	19

Insertion Sort - another way

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	3	3	30	7	9	17	32	19
15	8	8	3	30	7	9	17	32	19

Insertion Sort - another way

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	3	3	30	7	9	17	32	19
15	8	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \quad \mathrm{i}++)$ \{
$\mathrm{x}=\mathrm{A}[\mathrm{i}]$;
$\mathrm{j}=\mathrm{i}-1$;
while (-------) \{ $A[j+1]=A[j] ;$
$\mathrm{j}=\mathrm{j}-1$;
\}
$\}$

Insertion Sort - another way

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	3	3	30	7	9	17	32	19
15	8	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \quad \mathrm{i}++)$ \{

$$
x=A[i] ;
$$

$$
\mathrm{j}=\mathrm{i}-1
$$

while ($j>=0 \& \& x>A[j])$ \{

$$
\begin{aligned}
& A[j+1]=A[j] ; \\
& j=j-1
\end{aligned}
$$

\}
$A[j+1]=x ;$

Insertion Sort - another way

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	3	3	30	7	9	17	32	19
15	8	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $\quad(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \quad \mathrm{i}++)\{$

$$
x=A[i] ;
$$

$j=\mathrm{i}-1 ; \quad$ - Note $\mathrm{j} \geq 0$ while $(j>=0 \& \& x>A[j])$ \{ (line 6).

$$
\begin{aligned}
& A[j+1]=A[j] ; \\
& j=j-1 ;
\end{aligned}
$$

\}
$A[j+1]=x$;

Insertion Sort - another way

15	8	3	12	30	7	9	17	32	19
15	8	3	12	30	7	9	17	32	19
15	8	3	3	30	7	9	17	32	19
15	8	8	3	30	7	9	17	32	19
15	12	8	3	30	7	9	17	32	19

// Array index starts from 0.
for $\quad(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n}-1 ; \quad \mathrm{i}++)\{$

$$
x=A[i] ;
$$

$$
\mathrm{j}=\mathrm{i}-1
$$

while ($j>=0 \& \& x>A[j])$ \{

$$
A[j+1]=A[j] ;
$$

$$
\mathrm{j}=\mathrm{j}-1
$$

\}
$A[j+1]=x$;

- Note $\mathrm{j} \geq 0$ (line 6).
- See line 10 .

