
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 25



Searching and Sorting



Searching for an element

15 8 3 12 30 7 9 17 32 19

Task: Search for a key in the array.

int n, key;

for (int i = 0; i < n; i++) {

if (A[i] == key) {

printf("Found %d at index %d\n", key, i);

break;

}

}

• A linear pass over the array.
• Can this be avoided?

• No! if the input has no other assumptions.
• Yes! for example if input is sorted.



Searching for an element

15 8 3 12 30 7 9 17 32 19

Task: Search for a key in the array.

int n, key;

for (int i = 0; i < n; i++) {

if (A[i] == key) {

printf("Found %d at index %d\n", key, i);

break;

}

}

• A linear pass over the array.
• Can this be avoided?

• No! if the input has no other assumptions.
• Yes! for example if input is sorted.



Searching for an element

15 8 3 12 30 7 9 17 32 19

Task: Search for a key in the array.

int n, key;

for (int i = 0; i < n; i++) {

if (A[i] == key) {

printf("Found %d at index %d\n", key, i);

break;

}

}

• A linear pass over the array.
• Can this be avoided?

• No! if the input has no other assumptions.
• Yes! for example if input is sorted.



Searching for an element

15 8 3 12 30 7 9 17 32 19

Task: Search for a key in the array.

int n, key;

for (int i = 0; i < n; i++) {

if (A[i] == key) {

printf("Found %d at index %d\n", key, i);

break;

}

}

• A linear pass over the array.
• Can this be avoided?

• No! if the input has no other assumptions.
• Yes! for example if input is sorted.



Searching for an element

15 8 3 12 30 7 9 17 32 19

Task: Search for a key in the array.

int n, key;

for (int i = 0; i < n; i++) {

if (A[i] == key) {

printf("Found %d at index %d\n", key, i);

break;

}

}

• A linear pass over the array.
• Can this be avoided?

• No! if the input has no other assumptions.
• Yes! for example if input is sorted.



Searching for an element in a sorted array

32 30 19 17 15 12 9 8 7 3

Task: Search for a key in a sorted array.

Binary Search

• Check the middle
element. If found,
break.

• Else decide which
part of the array is
relevant and repeat.

Can be done since
array is sorted!



Searching for an element in a sorted array

32 30 19 17 15 12 9 8 7 3

Task: Search for a key in a sorted array.

Binary Search

• Check the middle
element. If found,
break.

• Else decide which
part of the array is
relevant and repeat.

Can be done since
array is sorted!



Searching for an element in a sorted array

32 30 19 17 15 12 9 8 7 3

Task: Search for a key in a sorted array.

Binary Search

• Check the middle
element. If found,
break.

• Else decide which
part of the array is
relevant and repeat.

Can be done since
array is sorted!



Searching for an element in a sorted array

32 30 19 17 15 12 9 8 7 3

Task: Search for a key in a sorted array.

Binary Search

• Check the middle
element. If found,
break.

• Else decide which
part of the array is
relevant and repeat.

Can be done since
array is sorted!



Searching for an element in a sorted array

32 30 19 17 15 12 9 8 7 3

Task: Search for a key in a sorted array.

Binary Search

• Check the middle
element. If found,
break.

• Else decide which
part of the array is
relevant and repeat.

Can be done since
array is sorted!

int n, key; scanf("%d", &key);
start = 0; end = n-1;
while (______) {

mid = _______;
if (A[mid] == key) {

printf("Found at %d", mid);
break;

}
if (A[mid] > key) {

start = ______;
} else {

end = ______;
}

}



Searching for an element in a sorted array

32 30 19 17 15 12 9 8 7 3

Task: Search for a key in a sorted array.

Binary Search

• Check the middle
element. If found,
break.

• Else decide which
part of the array is
relevant and repeat.

Can be done since
array is sorted!

int n, key; scanf("%d", &key);
start = 0; end = n-1;
while (______) {

mid = (start + end) / 2;
if (A[mid] == key) {

printf("Found at %d", mid);
break;

}
if (A[mid] > key) {

start = mid+1;
} else {

end = mid-1;
}

}



Searching for an element in a sorted array

32 30 19 17 15 12 9 8 7 3

Task: Search for a key in a sorted array.

Binary Search

• Check the middle
element. If found,
break.

• Else decide which
part of the array is
relevant and repeat.

Can be done since
array is sorted!

int n, key; scanf("%d", &key);
start = 0; end = n-1;
while (start <= end) {

mid = (start + end) / 2;
if (A[mid] == key) {

printf("Found at %d", mid);
break;

}
if (A[mid] > key) {

start = mid+1;
} else {

end = mid-1;
}

}



Linear Search versus Binary Search

Exercise for you:

• Take a large sorted array.

• Use linear search to find an element not present in the array.
needs n comparisons

• Use binary search to find the same element in the array.
count and print the number of comparisons

check performance in terms of time



Coding Binary Search

#include <stdio.h>

int binarySearch(int array[], int x, int low, int high) {
if (high >= low) {

int mid = low + (high - low) / 2;

// If found at mid, then return it
if (array[mid] == x)

return mid;

// Search the left half
if (array[mid] > x)

return binarySearch(array, x, low, mid - 1);

// Search the right half
return binarySearch(array, x, mid + 1, high);

}
return -1;

}

int main(void) {
int array[] = {3, 4, 5, 6, 7, 8, 9};
int n = sizeof(array) / sizeof(array[0]);
int x = 4;
int result = binarySearch(array, x, 0, n - 1);
if (result == -1)

printf("Not found");
else

printf("Element is found at index %d", result);
}


