
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 24

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself?

Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?

Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

A Graphical Demo of fact(4) : Control Flow

Assume that we invoked fact with argument as the number 4.

A Graphical Demo of fact(5) : Return Values

Assume that we invoked fact with argument as the number 5.

Recursion : Control Flow

Recursion : Control Flow

Recursion Example 2 : The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example 2 : The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example 2 : The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example 2 : The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.

(
n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example 2 : The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example 2 : The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)

Base :
(n
0

)
=
(n
n

)
= 1.

Recursion Example 2 : The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example 2 : The Binomial Coefficient

bin(n,k) =

1 if k = 0
1 if n = k
bin(n-1,k-1) + bin(n-1,k) otherwise

int binom(int n, int k)

{

if(k == 0 || n == k)

return 1;

int s = binom(n-1,k-1);

int t = binom(n-1,k);

return (s+t);

}

#include<stdio.h>

int main()

{

int n,k;

printf("Entern n, k : ");

scanf("%d %d",&n,&k);

printf("%d\n",binom(n,k));

return 0;

}

Recursion Example 2 : The Binomial Coefficient

bin(n,k) =

1 if k = 0
1 if n = k
bin(n-1,k-1) + bin(n-1,k) otherwise

int binom(int n, int k)

{

if(k == 0 || n == k)

return 1;

int s = binom(n-1,k-1);

int t = binom(n-1,k);

return (s+t);

}

#include<stdio.h>

int main()

{

int n,k;

printf("Entern n, k : ");

scanf("%d %d",&n,&k);

printf("%d\n",binom(n,k));

return 0;

}

Recursion Example 2 : The Binomial Coefficient

bin(n,k) =

1 if k = 0
1 if n = k
bin(n-1,k-1) + bin(n-1,k) otherwise

int binom(int n, int k)

{

if(k == 0 || n == k)

return 1;

int s = binom(n-1,k-1);

int t = binom(n-1,k);

return (s+t);

}

#include<stdio.h>

int main()

{

int n,k;

printf("Entern n, k : ");

scanf("%d %d",&n,&k);

printf("%d\n",binom(n,k));

return 0;

}

Exercise : Print the Pascal’s Triangle

(0
0

)
(1
0

) (1
1

)
(2
0

) (2
1

) (2
2

)
(3
0

) (3
1

) (3
2

) (3
3

)
(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)

#include <stdio.h>

int binom (int n, int k);

int main()

{

int i,j,n;

printf("Enter n :");

scanf("%d",&n);

for (i=0;i <= n;i++)

{

for (j = 0;j <= i;j++) {

printf("%6d",binom(i,j));

}

printf("\n");

}

}

Exercise : Print the Pascal’s Triangle

(0
0

)
(1
0

) (1
1

)
(2
0

) (2
1

) (2
2

)
(3
0

) (3
1

) (3
2

) (3
3

)
(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)

#include <stdio.h>

int binom (int n, int k);

int main()

{

int i,j,n;

printf("Enter n :");

scanf("%d",&n);

for (i=0;i <= n;i++)

{

for (j = 0;j <= i;j++) {

printf("%6d",binom(i,j));

}

printf("\n");

}

}

Recursion Example 3: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.

Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example 3: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example 3: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?

Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example 3: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example 3: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example 3: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example 3 : Virahanka Numbers

int Virahanka(int n)

{

if(n == 0) return 1; // V_0

if(n == 1) return 1; // V_1

// returning V_{n-1} + V_{n-2}

return Virahanka(n-1) + Virahanka(n-2);

}

Recursive Thinking : Largest Element in an Array

• Till now - we computed only functions which were taught to
us or known to us recurively.

• We can solve problems that have a recursive structure using
recursive programming. That is more fun !.

• Key Part: Formulate the problem recursively.

Example Task: Finding the largest element in an array.

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking : Take out the first element, find the
largest of the remaining, and return the largest among the
two.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :

• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.

• Find the largest element (call it `) in the remaining array
recursively (with only n − 1 elements in the array)

• Compare between the first and `, and return the larger element
as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)

• Compare between the first and `, and return the larger element
as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :

• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.

• Recursively find the largest element in the first half and second
half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Recursive Thinking (Eg:#1): Largest Element in an Array

Recursive thinking: Find the
largest of elmnts 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Recursive Thinking (Eg:#1): Largest Element in an Array

Recursive thinking: Find the
largest of elmnts 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Recursive Thinking (Eg:#1): Largest Element in an Array

Recursive thinking: Find the
largest of elmnts 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Recursive Thinking (Eg:#1): Largest Element in an Array

Recursive thinking: Find the
largest of elmnts 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

