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New Idea - Recursive Function Calls

Can a function invoke itself? Yes | - but why would it want to?
Here is a situation :

® \We wish to define the function int fact(int n) : to return
the factorial of a number n.

® We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

® it returns 1, if the argument is 1.

® clse it returns n times the result of itself when called with
argument n-1.
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fact function : lterative vs Recursive

int fact(int n){ int fact(int n){
int i; if (n == 1) return(l);
int result; return (n*xfact(n-1));
result = }

¥

1;
for (i = 1; i <= n; i++)
result = result x* i;
return result;

invocation : £ = fact(4);



fact function : lterative vs Recursive

int fact(int n){ int fact(int n){
int i; if (n == 1) return(l);
int result; return (n*xfact(n-1));
result = 1; }
for (i = 1; i <= n; i++)

result = result * i; ® (n == 1) case is called

return result; the base case. If it not

} provided, it will turn out

to be an infinite
invocation : £ = fact(4); recursion.



A Graphical Demo of fact(4) : Control Flow

Assume that we invoked fact with argument as the number 4.
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A Graphical Demo of fact(5) : Return Values

Assume that we invoked fact with argument as the number 5.
Factorial(5)
return 5 * Factorial(4) = 120

return 4 * Factorial(3) = 24

return 3 * Factorial(2) = 6

return 2 * Factorial(l) = 2



Recursion : Control Flow

void recurse() i

{ recursive
call

recurse(); ——
}

int main()

{

recurse();




Recursion :

void recurse() i

{
recurse(); ——
H
int main()
{

recurse();

recursive
call

Control Flow

RECURSION
RECURSION

Here we go again
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Pascal's Triangle

(1) denotes :

1
® Number of ways of choosing k 1 1
items from a collection of n 1 2 1
items. 13 3 1
e Number of subsets of size kof 1 4 6 4 1
a set of size n. 1 510 10 5 1
e Coefficient of x¥ in the
expansion of (1 + x)". Pascal’s Identity :

<n> B n! . )

k)~ ki(n— k)! " (" n-=
oo () =G0+

Task : Write a function which:

given n and k computes (Z) Base : (8) = (”) =

n
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Recursion Example 2 : The Binomial Coefficient

1lif k=0
bin(n,k) = lifn=k
bin(n-1,k-1) +bin(n-1,k) otherwise

int binom(int n, int k)
{
if(k == 0 || n == k)
return 1;
int s = binom(n-1,k-1);
int t = binom(n-1,k);
return (s+t);

3



Recursion Example 2 : The Binomial Coefficient

1lif k=0
bin(n,k) = lifn=k
bin(n-1,k-1) +bin(n-1,k) otherwise

int binom(int n, int k) #include<stdio.h>
{ int main()

if(k == [l n == k) {

return 1; int n,k;

int s = binom(n-1,k-1);  printf("Entern n, k : ");
int t = binom(n-1,k); scanf ("%d %d",&n,&k);
return (s+t); printf ("%d\n" ,binom(n,k)) ;
} return O;



Print the Pascal’s Triangle

Exercise :
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Exercise : Print the Pascal's Triangle

#include <stdio.h>
int binom (int n, int k);
int main()

{

int i,j,n;

@) printf ("Enter n :");
scanf ("%d",&n) ;
(3) (3) for (i=0;i <= n;i++)
{
@ G @ for (j = 033 <= i;5++) {
printf ("%6d" ,binom(i, j));
2 G @ 6 ¥
printf ("\n");
}

3
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Recursion Example 3: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be V,,.

Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 27
Two answers possible (It could be 1 or it could be 2, but not both).

Number of ways of Number of ways of
Number of ways of building a tower building a tower
building a tower of = of height n with + of height n with
height n hottom-most brick hottom-most brick
of height 1 of height 2.

Thatis, V,=V,_1+ V,_» Nice!. But how do we compute V,



Recursion Example 3 : Virahanka Numbers

int Virahanka(int n)
{
if(n == 0) return 1; // V_0O
if(n == 1) return 1; // V_1
// returning V_{n-1} + V_{n-2}
return Virahanka(n-1) + Virahanka(n-2);

F(5)
Fid) Fi3)
Fi3) F(2) F(2) Fil)

AN ANYAN

F(2) F(1) F(1) F(0) F(1) F(0)

Fi(1) F(0)



Recursive Thinking : Largest Element in an Array

e Till now - we computed only functions which were taught to
us or known to us recurively.

® We can solve problems that have a recursive structure using
recursive programming. That is more fun !.
e Key Part: Formulate the problem recursively.
Example Task: Finding the largest element in an array.

® |terative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

® Recursive Thinking : Take out the first element, find the
largest of the remaining, and return the largest among the
two.
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Recursive thinking: Find the
largest of elmnts 2 to n — 1.
Compare it with first and return
the largest.

int largest(int i, int n)
{

if (i == n) return arrl[il;

int 1;

1 = largest(i+l,n);

if (arr[i]l > 1)
return arr[i];

else return 1;
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the largest. largest of the two.
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{

if (i == n) return arrl[il;

int 1;

1 = largest(i+l,n);
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Recursive Thinking (Eg:#1): Largest Element in an Array

Recursive thinking: Find the (Better) recursive thinking: Find
largest of elmnts 2 to n — 1. the largest of the first half, then in
Compare it with first and return the second half, and then return the
the largest. largest of the two.
int largest(int i, int n) int largest(int i, int j)
{ {
if (i == n) return arrl[il; if (i == j) return arr[i];
int 1; int 11,12;
1 = largest(i+l,n); 11 = largest(i, (i+j)/2);
if (arr[i] > 1) 12 = largest((i+j)/2+1,3);
return arr[i]; if (11 > 12)
else return 1; return 11;
} else return 12;



