CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in) Lecture 24

Can a function invoke itself?

Can a function invoke itself? Yes ! - but why would it want to?

Can a function invoke itself? Yes ! - but why would it want to? Here is a situation :

• We wish to define the function int fact(int n) : to return the factorial of a number *n*.

Can a function invoke itself? Yes ! - but why would it want to? Here is a situation :

- We wish to define the function int fact(int n) : to return the factorial of a number *n*.
- We have not written fact function yet, but we want to write it using itself.

Can a function invoke itself? Yes ! - but why would it want to? Here is a situation :

- We wish to define the function int fact(int n) : to return the factorial of a number *n*.
- We have not written fact function yet, but we want to write it using itself.

Here is the idea :

Write the function fact in such a way that :

Can a function invoke itself? Yes ! - but why would it want to? Here is a situation :

- We wish to define the function int fact(int n) : to return the factorial of a number *n*.
- We have not written fact function yet, but we want to write it using itself.

Here is the idea :

Write the function fact in such a way that :

• it returns 1, if the argument is 1.

Can a function invoke itself? Yes ! - but why would it want to? Here is a situation :

- We wish to define the function int fact(int n) : to return the factorial of a number *n*.
- We have not written fact function yet, but we want to write it using itself.

Here is the idea :

Write the function fact in such a way that :

- it returns 1, if the argument is 1.
- else it returns n times the result of itself when called with argument n-1.

```
int fact(int n){
    int i;
    int result;
    result = 1;
    for (i = 1; i <= n; i++)
        result = result * i;
    return result;
}</pre>
```

```
int fact(int n){
    int i;
    int result;
    result = 1;
    for (i = 1; i <= n; i++)
        result = result * i;
    return result;
}</pre>
```

```
invocation : f = fact(4);
```

```
invocation : f = fact(4);
```

```
int fact(int n){
    if (n == 1) return(1);
    return (n*fact(n-1));
}
```

```
int fact(int n){
    int i;
    int result;
    result = 1;
    for (i = 1; i <= n; i++)
        result = result * i;
    return result;
}</pre>
```

```
invocation : f = fact(4);
```

```
int fact(int n){
    if (n == 1) return(1);
    return (n*fact(n-1));
}
```

```
    (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.
```

A Graphical Demo of fact(4) : Control Flow

Assume that we invoked fact with argument as the number 4.

A Graphical Demo of fact(5) : Return Values

Assume that we invoked fact with argument as the number 5.

Recursion : Control Flow

Recursion : Control Flow

 $\binom{n}{k}$ denotes :

 $\binom{n}{k}$ denotes :

• Number of ways of choosing k items from a collection of n items.

 $\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.

 $\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.
- Coefficient of x^k in the expansion of $(1 + x)^n$.

 $\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size *k* of a set of size *n*.
- Coefficient of x^k in the expansion of $(1+x)^n$.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Task : Write a function which: given *n* and *k* computes $\binom{n}{k}$.

 $\begin{array}{r} \begin{array}{r} \begin{array}{r} \text{Pascal's Triangle} \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 1 \\ 1 \\ 4 \\ 6 \\ 4 \\ 1 \\ 5 \\ 10 \\ 10 \\ 5 \\ 1 \end{array}$

 $\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.
- Coefficient of x^k in the expansion of $(1+x)^n$.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Task : Write a function which: given *n* and *k* computes $\binom{n}{k}$.

 $\begin{array}{r} \begin{array}{r} \begin{array}{r} \text{Pascal's Triangle} \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 4 \\ 6 \\ 4 \\ 1 \\ 1 \\ 5 \\ 10 \\ 10 \\ 5 \\ 1 \end{array}$

Pascal's Identity :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

 $\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.
- Coefficient of x^k in the expansion of $(1 + x)^n$.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Task : Write a function which: given *n* and *k* computes $\binom{n}{k}$.

 $\begin{array}{r} \underline{ Pascal's \ Triangle} \\ 1 \\ 1 \ 2 \ 1 \\ 1 \ 2 \ 1 \\ 1 \ 3 \ 3 \ 1 \\ 1 \ 4 \ 6 \ 4 \ 1 \\ 1 \ 5 \ 10 \ 10 \ 5 \ 1 \end{array}$

Pascal's Identity :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Base : $\binom{n}{0} = \binom{n}{n} = 1.$

$$bin(n,k) = \begin{cases} 1 \text{ if } k = 0\\ 1 \text{ if } n = k\\ bin(n-1,k-1) + bin(n-1,k) & \text{otherwise} \end{cases}$$

$$bin(n,k) = \begin{cases} 1 \text{ if } k = 0\\ 1 \text{ if } n = k\\ bin(n-1,k-1) + bin(n-1,k) & \text{otherwise} \end{cases}$$

```
int binom(int n, int k)
{
    if(k == 0 || n == k)
        return 1;
    int s = binom(n-1,k-1);
    int t = binom(n-1,k);
    return (s+t);
}
```

$$bin(n,k) = \begin{cases} 1 \text{ if } k = 0\\ 1 \text{ if } n = k\\ bin(n-1,k-1) + bin(n-1,k) & \text{otherwise} \end{cases}$$

```
int binom(int n, int k)
                           #include<stdio.h>
ł
                            int main()
                            ſ
 if(k == 0 || n == k)
                             int n.k;
    return 1;
                             printf("Entern n, k : ");
 int s = binom(n-1,k-1);
 int t = binom(n-1,k);
                             scanf("%d %d",&n,&k);
return (s+t):
                             printf("%d\n",binom(n,k));
}
                             return 0;
                            }
```

Exercise : Print the Pascal's Triangle

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- $\begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
- $\begin{pmatrix}3\\0\end{pmatrix}\quad\begin{pmatrix}3\\1\end{pmatrix}\quad\begin{pmatrix}3\\2\end{pmatrix}\quad\begin{pmatrix}3\\3\end{pmatrix}$
- $\begin{pmatrix} 4 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 4 \end{pmatrix}$
- $\begin{pmatrix} 5 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 4 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 5 \end{pmatrix}$

Exercise : Print the Pascal's Triangle

.0.						<pre>#include <stdio.h></stdio.h></pre>
$\begin{pmatrix} 0\\ 0 \end{pmatrix}$						<pre>int binom (int n, int k);</pre>
(1)	(1)					int main()
(0)	(1)					ł
(2)	(2)	(2)				int i,j,n;
$\binom{2}{0}$	$\binom{2}{1}$	$\binom{2}{2}$				<pre>printf("Enter n :");</pre>
(2)	(2)	(2)	(2)			<pre>scanf("%d",&n);</pre>
$\binom{3}{0}$	$\binom{3}{1}$	$\binom{3}{2}$	$\binom{3}{3}$			for (i=0;i <= n;i++)
_						{
$\binom{4}{0}$	$\binom{4}{1}$	$\binom{4}{2}$	$\binom{4}{3}$	$\binom{4}{4}$		for (j = 0;j <= i;j++) {
						<pre>printf("%6d",binom(i,j));</pre>
$\binom{5}{0}$	$\binom{5}{1}$	$\binom{5}{2}$	$\binom{5}{3}$	$\binom{5}{4}$	$\binom{5}{5}$	}
(0)	(1)	(2)	(3)	(4)		<pre>printf("\n");</pre>
						}
						}

Suppose you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height *n*. In how many ways can you do this? Let this number be V_n .

Suppose you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height n. In how many ways can you do this? Let this number be V_n .

Right answer comes from the right questions.

Suppose you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height n. In how many ways can you do this? Let this number be V_n .

Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2?

Suppose you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height n. In how many ways can you do this? Let this number be V_n .

Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2?

Two answers possible (It could be 1 or it could be 2, but not both).

Suppose you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height n. In how many ways can you do this? Let this number be V_n .

Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2?

Two answers possible (It could be 1 or it could be 2, but not both).

	Number of ways of	Number of ways of
Number of ways of	building a tower	building a tower
building a tower of $=$	of height n with $+$	of height n with
height n	bottom-most brick	bottom-most brick
	of height 1	of height 2.

Suppose you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height n. In how many ways can you do this? Let this number be V_n .

Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2?

Two answers possible (It could be 1 or it could be 2, but not both).

	Number of ways of	Number of ways of
Number of ways of	building a tower	building a tower
building a tower of $=$	of height n with $+$	of height n with
height n	bottom-most brick	bottom-most brick
	of height 1	of height 2.

That is, $V_n = V_{n-1} + V_{n-2}$ Nice !. But how do we compute V_n

Recursion Example 3 : Virahanka Numbers

```
int Virahanka(int n)
{
    if(n == 0) return 1; // V_0
    if(n == 1) return 1; // V_1
    // returning V_{n-1} + V_{n-2}
    return Virahanka(n-1) + Virahanka(n-2);
}
```


- Till now we computed only functions which were taught to us or known to us recurively.
- We can solve problems that have a recursive structure using recursive programming. That is more fun !.
- Key Part: Formulate the problem recursively.
- Example Task: Finding the largest element in an array.
 - **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.
 - **Recursive Thinking** : Take out the first element, find the largest of the remaining, and return the largest among the two.

• **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.

- **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.
- Recursive Thinking :

- **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.
- Recursive Thinking :
 - Take out the first element.

- **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.
- Recursive Thinking :
 - Take out the first element.
 - Find the largest element (call it ℓ) in the remaining array recursively (with only n-1 elements in the array)

- **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.
- Recursive Thinking :
 - Take out the first element.
 - Find the largest element (call it ℓ) in the remaining array recursively (with only n-1 elements in the array)
 - Compare between the first and $\ell,$ and return the larger element as the largest in the array.

- **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.
- Recursive Thinking :
 - Take out the first element.
 - Find the largest element (call it ℓ) in the remaining array recursively (with only n-1 elements in the array)
 - Compare between the first and ℓ , and return the larger element as the largest in the array.
- (Even Better) Recursive Thinking :

- **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.
- Recursive Thinking :
 - Take out the first element.
 - Find the largest element (call it ℓ) in the remaining array recursively (with only n-1 elements in the array)
 - Compare between the first and ℓ , and return the larger element as the largest in the array.

• (Even Better) Recursive Thinking :

• Divide the array into two.

• **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.

• Recursive Thinking :

- Take out the first element.
- Find the largest element (call it ℓ) in the remaining array recursively (with only n-1 elements in the array)
- Compare between the first and $\ell,$ and return the larger element as the largest in the array.

• (Even Better) Recursive Thinking :

- Divide the array into two.
- Recursively find the largest element in the first half and second half by invoking the same function and let the results by ℓ_1 and ℓ_2 resp.)

• **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.

• Recursive Thinking :

- Take out the first element.
- Find the largest element (call it ℓ) in the remaining array recursively (with only n-1 elements in the array)
- Compare between the first and $\ell,$ and return the larger element as the largest in the array.

• (Even Better) Recursive Thinking :

- Divide the array into two.
- Recursively find the largest element in the first half and second half by invoking the same function and let the results by ℓ_1 and ℓ_2 resp.)
- Compare between the ℓ_1 and ℓ_2 , and return the larger element as the largest in the array.

• **Iterative Thinking** : Keep the current largest, compare it with the next element. Update the largest with the largest among the two. Do this for all elements in the given order.

• Recursive Thinking :

- Take out the first element.
- Find the largest element (call it ℓ) in the remaining array recursively (with only n-1 elements in the array)
- Compare between the first and $\ell,$ and return the larger element as the largest in the array.

• (Even Better) Recursive Thinking :

- Divide the array into two.
- Recursively find the largest element in the first half and second half by invoking the same function and let the results by ℓ_1 and ℓ_2 resp.)
- Compare between the ℓ_1 and ℓ_2 , and return the larger element as the largest in the array.

Recursive thinking: Find the largest of elmnts 2 to n - 1. Compare it with first and return the largest.

Recursive thinking: Find the largest of elmnts 2 to n - 1. Compare it with first and return the largest.

```
int largest(int i, int n)
{
    if (i == n) return arr[i];
    int l;
    l = largest(i+1,n);
    if (arr[i] > l)
        return arr[i];
    else return l;
}
```

Recursive thinking: Find the largest of elmnts 2 to n - 1. Compare it with first and return the largest.

```
int largest(int i, int n)
{
    if (i == n) return arr[i];
    int l;
    l = largest(i+1,n);
    if (arr[i] > l)
        return arr[i];
    else return l;
}
```

(Better) recursive thinking: Find the largest of the first half, then in the second half, and then return the largest of the two.

}

Recursive thinking: Find the largest of elmnts 2 to n - 1. Compare it with first and return the largest.

```
int largest(int i, int n)
{
    if (i == n) return arr[i];
    int l;
    l = largest(i+1,n);
    if (arr[i] > l)
        return arr[i];
    else return l;
}
```

(Better) recursive thinking: Find the largest of the first half, then in the second half, and then return the largest of the two.

```
int largest(int i, int j)
{
    if (i == j) return arr[i];
```

```
int l1,12;
l1 = largest(i,(i+j)/2);
l2 = largest((i+j)/2+1,j);
if (l1 > l2)
    return l1;
else return l2;
```