CS1100 - Introduction to Programming
Trimester 3, April — June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 21

Hands-on Example : Referee of Tic-Tac-Toe

X0 ® Two Player Game (X-player & O-player).

o

X

Hands-on Example : Referee of Tic-Tac-Toe

X0 ® Two Player Game (X-player & O-player).

O ® The game proceeds when each player

places 'X' or 'O’ in a blank space in the
X -
matrix in alterante turns.

Hands-on Example : Referee of Tic-Tac-Toe

X0 ® Two Player Game (X-player & O-player).

O ® The game proceeds when each player

places 'X' or 'O’ in a blank space in the
matrix in alterante turns.

X

Initial configuration : the board is empty.

Winning : if there is a sequence of three

consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player's symbol appears.

Draw : if the board is full, but neither of

the players has reached a winning

SEEEREER

x|o[x o |x
Q| Xx| O

configuration yet.

Programming the Referee: Four Functions:

We will do this using four functions:

® showconfig() : to print the current configuration of the
board.

Programming the Referee: Four Functions:

We will do this using four functions:

® showconfig() : to print the current configuration of the
board.

® checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

Programming the Referee: Four Functions:

We will do this using four functions:

® showconfig() : to print the current configuration of the
board.

® checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

® checklegal(i,j) : to check if putting a symbol in the i,j
the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

Programming the Referee: Four Functions:

We will do this using four functions:

® showconfig() : to print the current configuration of the
board.

® checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

® checklegal(i,j) : to check if putting a symbol in the i,j
the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

® putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol ¢ (which is
either 'X" or 'O’") at the entry board[i] [j].

Pseudo-code of the main program

Now the main prorgam is compact and intuitive.

// Assume 1 and 2 are used for X and O.

p=20

while (checkwin() returns false)

{
showconfig();
read the next move (i,j) of player no: (p+1)
// note that p+l1 is either 1 or 2.

if (checklegal(i,j) == false) continue;
putsymbol(i,j, (p+1));
p = (p+1) % 2.

}

Print "Game Over"

The prototype declarations

#include <stdio.h>

char board[1000] [1000]; int N=3;
char player[2] = {’X’,’0°};

void init();

void showconfig(void) ;

int checkwin(void);

int checklegal(int, int);
int putsymbol(int,int,char);

int main()

{
init(Q);

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf ("\n----------——-—- \n");

for (int i=0; i<N; i++)

{
for (int j=0; j<N; j++)

printf("| %c ",board[i] [j1);

printf (" |\n---——----—---—- \n");

}

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.
® | et the board[2] [2] be the character grid.
® Do the character search with s = XXX to determine if
X-player wins.
® Do the character search with s = 000 to determine if
O-player wins.

So we can reuse that code.

Implementing checkwin ()

int checkwin()
{
int i,j; int n=3;
// checking if X won because of a row of Xs
for(i = 0; i < n; i++) {
for(j = 0; j < mn; j++)
if (board[i] [j] != ’X’) break;
if(j == n-1) {
printf ("X won");
return 1;
}
}
// do similar for columns and diagonals.
// do similar for O-symbol
return O;

A better "modular” design for checkwin ()

Idea 2 : Think Modular !

A better "modular” design for checkwin ()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player ("X'/'O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

A better "modular” design for checkwin ()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player ("X'/'O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

e fori=1to N
e forj=1to N
® |f dir = 1 all checks should be board[i] [j] != ’X’.
® |f dir = 2 all checks should be board[j][i] != ’X’.
® |f dir = 3 all checks should be board[j][j] != ’X’.
® If dir = 4 all checks should be board[j] [N-j-1] != ’X’.

® If any check fails, then try next /. If all succeeds for the full
run of the j-loop, then declare WINNING.

A better "modular” design for checkwin ()

int checkwindir(int dir, char player)

{

}

int s,t,1,j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
switch (dir) {

case 1:
case 2:
case 3:
case 4:

}

s=i;
s=j;
s=j;
s=j;

t=j; break;
t=i; break;
t=j; break;
t=N-j-1; break;

if (board[s][t] !'= player) break;

}

if (j == N) return (1);

}

return(0);

int checkwin(void)

{

}

for (int dir=1; dir<5; dir++)
for (int p=0; p<2; p++)
if (checkwindir(dir,player[p]) == 1)
return (1);

return (0);

Two more functions to define

® checklegal(i,j) : to check if putting a symbol in the 1, j
the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

Two more functions to define

® checklegal(i,j) : to check if putting a symbol in the 1, j
the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

® putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol ¢ (which is
either 'X" or 'O’") at the entry board[i] [j].

Reversing an Array

#include <stdio.h>
void print(int arr[], int n)

{

}

for (int i = 0; i < m; i++) {
printf("%d ", arr[il);
}

void reverse(int arr[], int n)

{

int

int aux[n];

for (int i = 0; i < n; i++) {
aux[n - 1 - i] = arr[il;

¥

for (int i = 0; i < n; i++) {
arr[i] = aux[il;

}

main(void)

int arr[] = {1, 2, 3, 4, 5 };
int n = sizeof (arr)/sizeof (arr[0]);

reverse(arr, n);
print(arr, n);

return 0;

: Using Auxiliary Array

Reversing an Array: In Place

#include <stdio.h>
void print(int arr[], int n)

for (int i = 0; i < n; i++) {
printf("%4d ", arr[il);

¥
void reverse(int arr[], int n)
{
for (int low = 0, high = n - 1; low < high; low++, high--)
{
int temp = arr([low];
arr[low] = arr[high];
arr[high] = temp;
s
}

int main(void)

int arr[]l = {1, 2, 3, 4, 5 };
int n = sizeof (arr)/sizeof (arr[0]);

reverse(arr, n);
print(arr, n);

return O;

Macros in C

® A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

Macros in C

® A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

® By default, of type integer. Can change datatype by adding
suffixes: 123456789L is a long constant, 123456789ul is an
unsigned long constant etc.

Macros in C

® A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

® By default, of type integer. Can change datatype by adding
suffixes: 123456789L is a long constant, 123456789ul is an
unsigned long constant etc.

#include <stdio.h>
#define PI 3.1415

int main()

{
float radius, area;
printf("Enter the radius: ");
scanf ("%f", &radius);

// Notice, the use of PI
area = PIxradius*radius;

printf ("Area=%.2f",area);
return 0;

Enumerated Constants

® Macros let us define a single constant at a time. What if we
want to define many?

Enumerated Constants

® Macros let us define a single constant at a time. What if we
want to define many?

¢ Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

Enumerated Constants

® Macros let us define a single constant at a time. What if we
want to define many?

¢ Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

® enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

Enumerated Constants

Macros let us define a single constant at a time. What if we
want to define many?

Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

When a value is explicitly specified (jan=1) then it starts
counting from there

Enumerated Constants

Macros let us define a single constant at a time. What if we
want to define many?

Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

When a value is explicitly specified (jan=1) then it starts
counting from there

Values start from 0 unless specified otherwise.

Enumerated Constants

Macros let us define a single constant at a time. What if we
want to define many?

Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

When a value is explicitly specified (jan=1) then it starts
counting from there

Values start from 0 unless specified otherwise.

Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

Enumerated Constants

Macros let us define a single constant at a time. What if we
want to define many?

Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

When a value is explicitly specified (jan=1) then it starts
counting from there

Values start from 0 unless specified otherwise.

Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

Better than #define, as the constant values are generated for
us.

Enumerated Constants

#include <stdio.h>
enum week {Sun, Mon, Tue, Wed, Thur, Fri, Sat};

int main()

{
// creating today variable of enum week type
enum week today;
today = Wed;
printf("Day %d",today+1);
return O;
}

Output is: Day 4.
® Note that the variable values are treated as integers though
they look like strings!

® In the program, can use Wed > 0 etc. Wed will be treated as
an (unisgned) integer.

Enumerated Constants

#include <stdio.h>
enum escapes {BELL = ’\a’, BACKSPACE = ’\b’, TAB = ’\t’, NEWLINE =’\n’}

int main()

{
// creating today variable of enum week type
enum escapes element;
element = BELL;
printf ("We have %d",element);
return O;
}

Output is: We have 7.

Declaring Constants

® The qualifier const applied to a declaration specifies that the
value will not be changed.

Declaring Constants

® The qualifier const applied to a declaration specifies that the
value will not be changed.

e |f | declare const int J = 25; , this means that J is a constant
throughout the program.

Declaring Constants

® The qualifier const applied to a declaration specifies that the
value will not be changed.

e |f | declare const int J = 25; , this means that J is a constant
throughout the program.

® Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.

Multi-Dimensional Arrays

Al4][3] B[2][4][3]
0o 1 2 o 1 2 0
0 0
1 1
) 2
3 3
0

Storage and Initialization are row by row

Multi-Dimensional Arrays

¢ double array3d[100][50][75];

Multi-Dimensional Arrays

¢ double array3d[100][50][75];

® double array4d[60]{100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

Multi-Dimensional Arrays

¢ double array3d[100][50][75];

® double array4d[60]{100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

® Find out how many dimensions your system/compiler can
handle.

Initializing 2D Arrays

e int a[3][2] = {{1,4},{5,2},{6,5}};

Recommended that each value is initialized explicitly.

Initializing 2D Arrays

e int a[3][2] = {{1,4},{5,2},{6,5}};

Recommended that each value is initialized explicitly.
* int a[3][2] ={1,4,5,2,6,5};
Stored in row major order (better not to assume).

Initializing 2D Arrays

e int a[3][2] = {{1,4},{5,2},{6,5}};

Recommended that each value is initialized explicitly.
* int a[3][2] ={1,4,5,2,6,5};
Stored in row major order (better not to assume).

e int a[3][2] = {{1},{5,2},{6}}; Some elements are not
initialized explicitly — they are initialized to 0.

Initializing 2D Arrays

int a[3][2] = {{1,4},{5,2},{6,5}};

Recommended that each value is initialized explicitly.
int a[3][2] = {1,4,5,2,6,5};

Stored in row major order (better not to assume).

int a[3][2] = {{1},{5,2},{6}}; Some elements are not
initialized explicitly — they are initialized to 0.

a[0][1] = 0; a[2][1] = O;

Initializing 2D Arrays

int a[3][2] = {{1,4}, {5,2},{6,5}};

Recommended that each value is initialized explicitly.
int a[3][2] = {1,4,5,2,6,5};
Stored in row major order (better not to assume).

int a[3][2] = {{1},{5,2},{6}}; Some elements are not
initialized explicitly — they are initialized to 0.

a[0][1] = 0; a[2][1] = O;

Better not to assume!

Initializing 3D Arrays: Block by Block!

int arr[3][2][2]={0,1,2,3,4,5,6,7,8,9,3,2}

block(l) 0 1 block(2) 4 5 block(3) 8 9
Z 3 67 3 2
2x2 2x2 2x2

int arr[3]1[3][3]=
{ {{10,20,30}, {490,50,60%},{70,80,90}},
{{11,22,33},{44,55,66},{77,88,99}},
{{12,23,34},{45,56,67},{78,89,90}}
1

block(1) 10 20 30 block(2) 11 22 33 block(3) 12 23 34
40 50 60 44 55 66 45 56 67
70 80 90 77 88 99 78 89 90

3x3 3x3 3x3

