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Hands-on Example : Referee of Tic-Tac-Toe

X0 ® Two Player Game (X-player & O-player).

O ® The game proceeds when each player

places 'X' or 'O’ in a blank space in the
matrix in alterante turns.

X

Initial configuration : the board is empty.

Winning : if there is a sequence of three

consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player's symbol appears.

Draw : if the board is full, but neither of

the players has reached a winning
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configuration yet.
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Programming the Referee: Four Functions:

We will do this using four functions:

® showconfig() : to print the current configuration of the
board.

® checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

® checklegal(i,j) : to check if putting a symbol in the i,j
the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

® putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol ¢ (which is
either 'X" or 'O’") at the entry board[i] [j].



Pseudo-code of the main program

Now the main prorgam is compact and intuitive.

// Assume 1 and 2 are used for X and O.

p=20

while (checkwin() returns false)

{
showconfig();
read the next move (i,j) of player no: (p+1)
// note that p+l1 is either 1 or 2.

if (checklegal(i,j) == false) continue;
putsymbol(i,j, (p+1));
p = (p+1) % 2.

}

Print "Game Over"



The prototype declarations

#include <stdio.h>

char board[1000] [1000]; int N=3;
char player[2] = {’X’,’0°};

void init();

void showconfig(void) ;

int checkwin(void);

int checklegal(int, int);
int putsymbol(int,int,char);

int main()

{
init(Q);






Implementing showconfig()
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Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf ("\n----------——-—- \n");

for (int i=0; i<N; i++)

{
for (int j=0; j<N; j++)

printf("| %c ",board[i] [j1);

printf (" |\n---——----—---—- \n");

}
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Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.
® | et the board[2] [2] be the character grid.
® Do the character search with s = XXX to determine if
X-player wins.
® Do the character search with s = 000 to determine if
O-player wins.

So we can reuse that code.



Implementing checkwin ()

int checkwin()
{
int i,j; int n=3;
// checking if X won because of a row of Xs
for(i = 0; i < n; i++) {
for(j = 0; j < mn; j++)
if (board[i] [j] != ’X’) break;
if(j == n-1) {
printf ("X won");
return 1;
}
}
// do similar for columns and diagonals.
// do similar for O-symbol
return O;
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A better "modular” design for checkwin ()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player ("X'/'O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

e fori=1to N
e forj=1to N
® |f dir = 1 all checks should be board[i] [j] != ’X’.
® |f dir = 2 all checks should be board[j][i] != ’X’.
® |f dir = 3 all checks should be board[j][j] != ’X’.
® If dir = 4 all checks should be board[j] [N-j-1] != ’X’.

® If any check fails, then try next /. If all succeeds for the full
run of the j-loop, then declare WINNING.



A better "modular” design for checkwin ()

int checkwindir(int dir, char player)

{

}

int s,t,1,j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
switch (dir) {

case 1:
case 2:
case 3:
case 4:

}

s=i;
s=j;
s=j;
s=j;

t=j; break;
t=i; break;
t=j; break;
t=N-j-1; break;

if (board[s][t] !'= player) break;

}

if (j == N) return (1);

}

return(0);

int checkwin(void)

{

}

for (int dir=1; dir<5; dir++)
for (int p=0; p<2; p++)
if (checkwindir(dir,player[p]) == 1)
return (1);

return (0);
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Two more functions to define

® checklegal(i,j) : to check if putting a symbol in the 1, j
the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

® putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol ¢ (which is
either 'X" or 'O’") at the entry board[i] [j].



Reversing an Array

#include <stdio.h>
void print(int arr[], int n)

{

}

for (int i = 0; i < m; i++) {
printf("%d ", arr[il);
}

void reverse(int arr[], int n)

{

int

int aux[n];

for (int i = 0; i < n; i++) {
aux[n - 1 - i] = arr[il;

¥

for (int i = 0; i < n; i++) {
arr[i] = aux[il;

}

main(void)

int arr[] = {1, 2, 3, 4, 5 };
int n = sizeof (arr)/sizeof (arr[0]);

reverse(arr, n);
print(arr, n);

return 0;

: Using Auxiliary Array



Reversing an Array: In Place

#include <stdio.h>
void print(int arr[], int n)

for (int i = 0; i < n; i++) {
printf("%4d ", arr[il);

¥
void reverse(int arr[], int n)
{
for (int low = 0, high = n - 1; low < high; low++, high--)
{
int temp = arr([low];
arr[low] = arr[high];
arr[high] = temp;
s
}

int main(void)

int arr[]l = {1, 2, 3, 4, 5 };
int n = sizeof (arr)/sizeof (arr[0]);

reverse(arr, n);
print(arr, n);

return O;
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define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)
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Macros in C

® A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

® By default, of type integer. Can change datatype by adding
suffixes: 123456789L is a long constant, 123456789ul is an
unsigned long constant etc.

#include <stdio.h>
#define PI 3.1415

int main()

{
float radius, area;
printf("Enter the radius: ");
scanf ("%f", &radius);

// Notice, the use of PI
area = PIxradius*radius;

printf ("Area=%.2f",area);
return 0;
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want to define many?
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Enumerated Constants

Macros let us define a single constant at a time. What if we
want to define many?

Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

When a value is explicitly specified (jan=1) then it starts
counting from there

Values start from 0 unless specified otherwise.

Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

Better than #define, as the constant values are generated for
us.



Enumerated Constants

#include <stdio.h>
enum week {Sun, Mon, Tue, Wed, Thur, Fri, Sat};

int main()

{
// creating today variable of enum week type
enum week today;
today = Wed;
printf("Day %d",today+1);
return O;
}

Output is: Day 4.
® Note that the variable values are treated as integers though
they look like strings!

® In the program, can use Wed > 0 etc. Wed will be treated as
an (unisgned) integer.



Enumerated Constants

#include <stdio.h>
enum escapes {BELL = ’\a’, BACKSPACE = ’\b’, TAB = ’\t’, NEWLINE =’\n’}

int main()

{
// creating today variable of enum week type
enum escapes element;
element = BELL;
printf ("We have %d",element);
return O;
}

Output is: We have 7.
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Declaring Constants

® The qualifier const applied to a declaration specifies that the
value will not be changed.

e |f | declare const int J = 25; , this means that J is a constant
throughout the program.

® Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.



Multi-Dimensional Arrays

Al4][3] B[2][4][3]
0o 1 2 o 1 2 0
0 0
1 1
) 2
3 3
0

Storage and Initialization are row by row
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Multi-Dimensional Arrays

¢ double array3d[100][50][75];

® double array4d[60]{100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

® Find out how many dimensions your system/compiler can
handle.
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Initializing 2D Arrays

int a[3][2] = {{1,4}, {5,2},{6,5}};

Recommended that each value is initialized explicitly.
int a[3][2] = {1,4,5,2,6,5};
Stored in row major order (better not to assume).

int a[3][2] = {{1},{5,2},{6}}; Some elements are not
initialized explicitly — they are initialized to 0.

a[0][1] = 0; a[2][1] = O;

Better not to assume!



Initializing 3D Arrays: Block by Block!

int arr[3][2][2]={0,1,2,3,4,5,6,7,8,9,3,2}

block(l) 0 1 block(2) 4 5 block(3) 8 9
Z 3 67 3 2
2x2 2x2 2x2

int arr[3]1[3][3]=
{ {{10,20,30}, {490,50,60%},{70,80,90}},
{{11,22,33},{44,55,66},{77,88,99}},
{{12,23,34},{45,56,67},{78,89,90}}
1

block(1) 10 20 30 block(2) 11 22 33 block(3) 12 23 34
40 50 60 44 55 66 45 56 67
70 80 90 77 88 99 78 89 90

3x3 3x3 3x3




