
CS1100 – Introduction to Programming

Trimester 3, April – June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 21

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Programming the Referee: Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Programming the Referee: Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Programming the Referee: Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Programming the Referee: Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Pseudo-code of the main program

Now the main prorgam is compact and intuitive.

// Assume 1 and 2 are used for X and O.

p = 0

while (checkwin() returns false)

{

showconfig();

read the next move (i,j) of player no:(p+1)

// note that p+1 is either 1 or 2.

if (checklegal(i,j) == false) continue;

putsymbol(i,j,(p+1));

p = (p+1) % 2.

}

Print "Game Over"

The prototype declarations

#include <stdio.h>

char board[1000][1000]; int N=3;

char player[2] = {’X’,’O’};

void init();

void showconfig(void);

int checkwin(void);

int checklegal(int, int);

int putsymbol(int,int,char);

int main()

{

init();

....

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf("\n-------------\n");

for (int i=0; i<N; i++)

{

for (int j=0; j<N; j++)

printf("| %c ",board[i][j]);

printf("|\n-------------\n");

}

}

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf("\n-------------\n");

for (int i=0; i<N; i++)

{

for (int j=0; j<N; j++)

printf("| %c ",board[i][j]);

printf("|\n-------------\n");

}

}

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf("\n-------------\n");

for (int i=0; i<N; i++)

{

for (int j=0; j<N; j++)

printf("| %c ",board[i][j]);

printf("|\n-------------\n");

}

}

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.

• Let the board[2][2] be the character grid.

• Do the character search with s = XXX to determine if
X-player wins.

• Do the character search with s = OOO to determine if
O-player wins.

So we can reuse that code.

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.

• Let the board[2][2] be the character grid.

• Do the character search with s = XXX to determine if
X-player wins.

• Do the character search with s = OOO to determine if
O-player wins.

So we can reuse that code.

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.

• Let the board[2][2] be the character grid.

• Do the character search with s = XXX to determine if
X-player wins.

• Do the character search with s = OOO to determine if
O-player wins.

So we can reuse that code.

Implementing checkwin()

int checkwin()

{

int i,j; int n=3;

// checking if X won because of a row of Xs

for(i = 0; i < n; i++) {

for(j = 0; j < n; j++)

if (board[i][j] != ’X’) break;

if(j == n-1) {

printf("X won");

return 1;

}

}

// do similar for columns and diagonals.

// do similar for O-symbol

return 0;

}

A better ”modular” design for checkwin()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player (’X’/’O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

• for i=1 to N
• for j=1 to N

• If dir = 1 all checks should be board[i][j] != ’X’.
• If dir = 2 all checks should be board[j][i] != ’X’.
• If dir = 3 all checks should be board[j][j] != ’X’.
• If dir = 4 all checks should be board[j][N-j-1] != ’X’.

• If any check fails, then try next i . If all succeeds for the full
run of the j-loop, then declare Winning.

A better ”modular” design for checkwin()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player (’X’/’O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

• for i=1 to N
• for j=1 to N

• If dir = 1 all checks should be board[i][j] != ’X’.
• If dir = 2 all checks should be board[j][i] != ’X’.
• If dir = 3 all checks should be board[j][j] != ’X’.
• If dir = 4 all checks should be board[j][N-j-1] != ’X’.

• If any check fails, then try next i . If all succeeds for the full
run of the j-loop, then declare Winning.

A better ”modular” design for checkwin()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player (’X’/’O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

• for i=1 to N
• for j=1 to N

• If dir = 1 all checks should be board[i][j] != ’X’.
• If dir = 2 all checks should be board[j][i] != ’X’.
• If dir = 3 all checks should be board[j][j] != ’X’.
• If dir = 4 all checks should be board[j][N-j-1] != ’X’.

• If any check fails, then try next i . If all succeeds for the full
run of the j-loop, then declare Winning.

A better ”modular” design for checkwin()

int checkwindir(int dir, char player)

{

int s,t,i,j;

for (i=0; i<N; i++) {

for (j=0; j<N; j++) {

switch (dir) {

case 1: s=i; t=j; break;

case 2: s=j; t=i; break;

case 3: s=j; t=j; break;

case 4: s=j; t=N-j-1; break;

}

if (board[s][t] != player) break;

}

if (j == N) return (1);

}

return(0);

}

int checkwin(void)

{

for (int dir=1; dir<5; dir++)

for (int p=0; p<2; p++)

if (checkwindir(dir,player[p]) == 1)

return (1);

return (0);

}

Two more functions to define

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Two more functions to define

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Reversing an Array: Using Auxiliary Array

#include <stdio.h>

void print(int arr[], int n)

{

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

}

void reverse(int arr[], int n)

{

int aux[n];

for (int i = 0; i < n; i++) {

aux[n - 1 - i] = arr[i];

}

for (int i = 0; i < n; i++) {

arr[i] = aux[i];

}

}

int main(void)

{

int arr[] = { 1, 2, 3, 4, 5 };

int n = sizeof(arr)/sizeof(arr[0]);

reverse(arr, n);

print(arr, n);

return 0;

}

Reversing an Array: In Place

#include <stdio.h>

void print(int arr[], int n)

{

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

}

void reverse(int arr[], int n)

{

for (int low = 0, high = n - 1; low < high; low++, high--)

{

int temp = arr[low];

arr[low] = arr[high];

arr[high] = temp;

}

}

int main(void)

{

int arr[] = { 1, 2, 3, 4, 5 };

int n = sizeof(arr)/sizeof(arr[0]);

reverse(arr, n);

print(arr, n);

return 0;

}

Macros in C

• A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

• By default, of type integer. Can change datatype by adding
suffixes: 123456789L is a long constant, 123456789ul is an
unsigned long constant etc.

#include <stdio.h>

#define PI 3.1415

int main()

{

float radius, area;

printf("Enter the radius: ");

scanf("%f", &radius);

// Notice, the use of PI

area = PI*radius*radius;

printf("Area=%.2f",area);

return 0;

}

Macros in C

• A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

• By default, of type integer. Can change datatype by adding
suffixes: 123456789L is a long constant, 123456789ul is an
unsigned long constant etc.

#include <stdio.h>

#define PI 3.1415

int main()

{

float radius, area;

printf("Enter the radius: ");

scanf("%f", &radius);

// Notice, the use of PI

area = PI*radius*radius;

printf("Area=%.2f",area);

return 0;

}

Macros in C

• A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

• By default, of type integer. Can change datatype by adding
suffixes: 123456789L is a long constant, 123456789ul is an
unsigned long constant etc.

#include <stdio.h>

#define PI 3.1415

int main()

{

float radius, area;

printf("Enter the radius: ");

scanf("%f", &radius);

// Notice, the use of PI

area = PI*radius*radius;

printf("Area=%.2f",area);

return 0;

}

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

• When a value is explicitly specified (jan=1) then it starts
counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

• When a value is explicitly specified (jan=1) then it starts
counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

• When a value is explicitly specified (jan=1) then it starts
counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

#include <stdio.h>

enum week {Sun, Mon, Tue, Wed, Thur, Fri, Sat};

int main()

{

// creating today variable of enum week type

enum week today;

today = Wed;

printf("Day %d",today+1);

return 0;

}

Output is: Day 4.

• Note that the variable values are treated as integers though
they look like strings!

• In the program, can use Wed > 0 etc. Wed will be treated as
an (unisgned) integer.

Enumerated Constants

#include <stdio.h>

enum escapes {BELL = ’\a’, BACKSPACE = ’\b’, TAB = ’\t’, NEWLINE =’\n’};

int main()

{

// creating today variable of enum week type

enum escapes element;

element = BELL;

printf("We have %d",element);

return 0;

}

Output is: We have 7.

Declaring Constants

• The qualifier const applied to a declaration specifies that the
value will not be changed.

• If I declare const int J = 25; , this means that J is a constant
throughout the program.

• Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.

Declaring Constants

• The qualifier const applied to a declaration specifies that the
value will not be changed.

• If I declare const int J = 25; , this means that J is a constant
throughout the program.

• Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.

Declaring Constants

• The qualifier const applied to a declaration specifies that the
value will not be changed.

• If I declare const int J = 25; , this means that J is a constant
throughout the program.

• Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.

Multi-Dimensional Arrays

Storage and Initialization are row by row

Multi-Dimensional Arrays

• double array3d[100][50][75];

• double array4d[60][100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

• Find out how many dimensions your system/compiler can
handle.

Multi-Dimensional Arrays

• double array3d[100][50][75];

• double array4d[60][100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

• Find out how many dimensions your system/compiler can
handle.

Multi-Dimensional Arrays

• double array3d[100][50][75];

• double array4d[60][100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

• Find out how many dimensions your system/compiler can
handle.

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 3D Arrays: Block by Block!

