
CS1100 – Introduction to Programming

Trimester 3, April – June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 20

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

Example : Find Sum

#include "stdio.h"

int FindSum(int, int);

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

Example : implementing fact

#include<stdio.h>

int fact(int);

int main() {

int x, y;

printf("Enter a number:");

scanf("%d", &x);

y = fact(x);

printf("%d\n",y);

}

int fact(int n) {

int i = 1;

while(n>0) {

i = i * n;

n--;

}

return i;

}

Example : Checking co-primeness

#include "stdio.h"

int GCD (int m, int n) {

int rem;

do {

rem = m % n;

m = n;

n = rem;

} while (rem != 0);

return m; }

int main () {

int x, y, gcd;

printf ("input two nonzero positive integers:");

scanf ("%d %d", &x, &y);

gcd = GCD (x, y);

if (gcd == 1)

printf ("%d and %d are coprime\n", x, y);

else

printf ("%d and %d are not coprime\n", x, y); }

Example : Matrix Multiplication by Repeated Addition

#include "stdio.h"

int mult(int a, int b) {

int i;

int sum = 0;

for (i = 1; i <= a; i++)

sum = sum + b;

return sum;

}

int main () {

int x, y;

printf ("input two integers (positive)");

scanf ("%d %d", &x, &y);

printf ("Product of %d and %d is %d\n",x, y, mult(x,y));

return 0;

}

Example : Finding Prime Numbers in an Interval

#include <stdio.h>

int checkPrimeNumber(int n);

int main() {

int n1, n2, i, flag;

printf("Enter two positive integers: ");

scanf("%d %d", &n1, &n2);

printf("Prime numbers between %d and %d are: ", n1, n2);

for (i = n1 + 1; i < n2; ++i) {

flag = checkPrimeNumber(i);

if (flag == 1) printf("%d ", i); }

return 0; }

int checkPrimeNumber(int n) {

int j, flag = 1;

for (j = 2; j <= n / 2; ++j) {

if (n % j == 0) {

flag = 0;

break;

} }

return flag; }

Example : Swapping Two Numbers

#include<stdio.h>

void swap(int *a, int *b);

int main()

{

int m = 22, n = 44;

// calling swap function by reference

printf("values before swap m = %d \n and n = %d",m,n);

swap(&m, &n);

}

void swap(int *a, int *b)

{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;

printf("\n values after swap a = %d \nand b = %d", *a, *b);

}

Example : Binary to Decimal Conversion

#include <math.h>

#include <stdio.h>

int convert(long long n);

int main() {

long long n;

printf("Enter a binary number: ");

scanf("%lld", &n);

printf("%lld in binary = %d in decimal", n, convert(n));

return 0;

}

int convert(long long n) {

int dec = 0, i = 0, rem;

while (n != 0) {

rem = n % 10;

n /= 10;

dec += rem * pow(2, i);

++i; }

return dec; }

Yesterday’s Example: Character Grid

How do we write SearchPattern(string, pattern)?

Simpler Task : SearchPatternFrom(string,pattern,from)
Is the pattern the substring of string starting at the from-th
position of string? Answer Yes/No

int search_pattern_from()

{

int j;

for(j=0;j<pattern_length;j++)

{

if(string[from+j]==’\0’) return 0;;

if(pattern[j]!=string[from+j]) return 0;

}

return 1;

}

Yesterday’s Example: Character Grid

How do we write SearchPattern(string, pattern)?

Simpler Task : SearchPatternFrom(string,pattern,from)
Is the pattern the substring of string starting at the from-th
position of string? Answer Yes/No

int search_pattern_from()

{

int j;

for(j=0;j<pattern_length;j++)

{

if(string[from+j]==’\0’) return 0;;

if(pattern[j]!=string[from+j]) return 0;

}

return 1;

}

Yesterday’s Example: Character Grid

How do we write SearchPattern(string, pattern)?

Simpler Task : SearchPatternFrom(string,pattern,from)
Is the pattern the substring of string starting at the from-th
position of string? Answer Yes/No

int search_pattern_from()

{

int j;

for(j=0;j<pattern_length;j++)

{

if(string[from+j]==’\0’) return 0;;

if(pattern[j]!=string[from+j]) return 0;

}

return 1;

}

Yesterday’s Example: Character Grid

char string[1024],pattern[1024];

int string_length, pattern_length,from;

int search_pattern(void);

int search_pattern_from(void);

int search_pattern()

{

int i,yesno;

i = 0;

for (i=0; i<string_length; i++)

{

from = i;

yesno = search_pattern_from();

if (yesno != 0) return (from+1);

}

return(-1);

}

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()?

The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments?

Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

Blocks and Scope: Recap

Block : A program segment written within curley brackets.

Scope : The program segment where a particular declaration of a
variable is applicable.

Blocks and Scope: Recap

Block : A program segment written within curley brackets.

Scope : The program segment where a particular declaration of a
variable is applicable.

Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}

• Scope of var2 is the whole of
main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.

Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.

Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.

Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.

Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.

Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.

Use of static

#include "stdio.h"

void DoSomething() {

static int x=5;

{

static int y=6;

x++;

y++;

printf ("x = %d y = %d\n", x, y);

}

}

int main () {

int i;

for (i = 1; i < 10; i++)

DoSomething();

}

Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

• prefixing variables with static

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself? Yes ! Recurison !.

Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

• prefixing variables with static

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions?

Yes !

• Can a function invoke itself? Yes ! Recurison !.

Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

• prefixing variables with static

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself? Yes ! Recurison !.

Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

• prefixing variables with static

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself?

Yes ! Recurison !.

Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

• prefixing variables with static

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself? Yes ! Recurison !.

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alterante turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

