CS1100 - Introduction to Programming
 Lecture 2

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Today...

- More on turtle graphics.
- A brief history about computers.

Today...

- More on turtle graphics.
- A brief history about computers.
- What is a computer made of?

Today...

- More on turtle graphics.
- A brief history about computers.
- What is a computer made of?
- Do we need to know internals of a computer to be able to program it?

Today...

- More on turtle graphics.
- A brief history about computers.
- What is a computer made of?
- Do we need to know internals of a computer to be able to program it?
- How does a computer perform so many diverse tasks (number crunching, weather prediction, playing chess, ...)?

Today...

- More on turtle graphics.
- A brief history about computers.
- What is a computer made of?
- Do we need to know internals of a computer to be able to program it?
- How does a computer perform so many diverse tasks (number crunching, weather prediction, playing chess, ...)?
- Convert every task into a task on numbers.
- How to represent numbers on computers?

More on the Turtle Language

Question: How will we draw a pentagon.

```
#include simplecpp
main_program
{
    turtleSim();
    forward(100); left(90);
    forward(100); left(90);
    forward(100); left(90);
    forward(100);
    wait(5);
}
```

```
#include simplecpp
main_program
{
    turtleSim();
    forward(100); left(72);
    forward(100); left(72);
    forward(100); left(72);
    forward(100); left(72);
    forward(100);
    wait(5);
}
```


Neater way to draw a Decagon

Turtle knows more ...

- forward(n)
- right(d)
- left(d)
- wait(t)
- repeat (k) \{ commands \} repeats the commands k times.

```
#include <simplecpp>
main_program
{
    turtleSim();
    repeat(10)
    {
        forward(100);
        left(36);
        wait(1);
    }
    wait(5);
}
```


More fun with Turtle ...

```
What will the following
program draw?
#include <simplecpp>
main_program
{
    turtleSim();
    left(72);
    repeat(5)
    {
        forward(200);
        wait(1);
        left(144);
    }
    wait(20);
}
```


More fun with Turtle ...

What will the following program draw?

Make the turtle draw this !

```
#include <simplecpp>
main_program
{
    turtleSim();
    left(72);
    repeat(5)
    {
        forward(200);
        wait(1);
        left(144);
    }
    wait(20);
}
```


Turtle knows more

- Turtle can print messages. cout << 'Hello World";
- Turtle can wait for an input to be typed by you and use it for the drawing (computation). Command is: cin >> n; where n is a "variable".

Text-only Turtle

Predict the output:

```
#include <simplecpp>
```

main_program
\{
cout << "a";
repeat(5)
\{
cout << "b";
repeat(2)\{ cout << "c"; \}
cout << "d";
\}
\}

Text-only Turtle

Predict the output:

```
#include <simplecpp>
main_program
{
    cout << "a";
    repeat(5)
    {
            cout << "b";
        repeat(2){ cout << "c"; }
        cout << "d";
    }
}
```

The program will print abccdbccdbccdbccdbccd

A few general ideas

- Control is at statement w : Computer is currently executing statement w.
- Control flow: The order in which statements get executed. Execution starts at top and goes down. Retraced if there is a repeat statement.
- Variable used for storing data.
- Computer memory: blackboard
- Variable : Region on the board in which you can write a value.
- Variables have names, e.g. nsides. We can use the name to refer to the value written in the variable. Details later.

