
CS1100 – Introduction to Programming

Trimester 3, April – June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 16

More examples of loops

We will study more examples of loops, especially nested loops.

• Printing patterns

• Printing first k primes

• Finding prime factorization

• Printing staircase of numbers

• Computing positive square root of an integer, approximately

More examples of loops

We will study more examples of loops, especially nested loops.

• Printing patterns

• Printing first k primes

• Finding prime factorization

• Printing staircase of numbers

• Computing positive square root of an integer, approximately

More examples of loops

We will study more examples of loops, especially nested loops.

• Printing patterns

• Printing first k primes

• Finding prime factorization

• Printing staircase of numbers

• Computing positive square root of an integer, approximately

More examples of loops

We will study more examples of loops, especially nested loops.

• Printing patterns

• Printing first k primes

• Finding prime factorization

• Printing staircase of numbers

• Computing positive square root of an integer, approximately

More examples of loops

We will study more examples of loops, especially nested loops.

• Printing patterns

• Printing first k primes

• Finding prime factorization

• Printing staircase of numbers

• Computing positive square root of an integer, approximately

Printing patterns

#include<stdio.h>

main() {

for (int i=1; i<=4; i++) {

for (int j=1; j <=8; j++) {

printf("*");

}

printf("\n");

}

}

Printing patterns

**

#include<stdio.h>

main() {

int k = 2;

for (int i=1; i<=4; i++) {

for (int j=1; j <=k; j++) {

printf("*");

}

printf("\n");

k = k+2;

}

}

Printing first k primes

int n = 2;

while (count <= 10) {

// decide if n is prime

// if n is prime, increment counter, print n

// irrespective if that increment n

}

Printing first k primes

int n = 2;
while (count <= 10) {

// decide if n is prime
int i = 2; int flag = 0;
while (i < n) {

if (n % i == 0) {
flag = 1; break;

}
i = i+1;

}
// if n is prime, increment counter, print n
if (0 == flag) {

printf("The %d prime is %d\n", count, n);
count++;

}
// irrespective if that increment n
n++;

}

Printing first k primes

int count = 1; int n = 2;
while (count <= 10) {

int i = 2; int flag = 0;
while (i < n) {

if (n % i == 0) {
flag = 1; break;

}
i = i+1;

}
if (0 == flag) {

printf("The %d prime is %d\n", count, n);
count++;

}

n++;
}

A note on design : Finding prime factors and their powers

Given n, test if it is prime. If not prime, print its prime factors with

corresponding powers.

Idea

• Assume n is not prime.

• for i = 2 to n-1

• detect if i is prime.

• if i is prime, find largest power of i which divides n.
• print i and the corresponding power.

A note on design : Finding prime factors and their powers

Given n, test if it is prime. If not prime, print its prime factors with

corresponding powers.

Idea2

• Assume n is not prime.

• for i = 2 to n

• detect if i is prime.

• if i is prime, find largest power of i which divides n.
• print i and the corresponding power.

• modify n.

Idea2 is simpler (to code). Needs thinking before coding.

Spend at least 5 minutes thinking on how to code.

Finding prime factorization

int n; scanf("%d", &n);

for (int i=2; i<= n; i++) {

int count = 0;

while (n % i == 0) {

count++; n=n/i;

}

if (count > 0) {

printf("%d %d\n", i, count);

}

}

Printing Staircase of Numbers

1

22

333

4444

• Accept input n � 1 from user.

• Print a staircase containing n rows.

• Row 1 has a single 1, row 2 has two

2’s and so on.

• Row n has n times the number n.

Use the do while construct

Printing Staircase of Numbers

1

22

333

4444

#include<stdio.h>

main() {

int x;

scanf("%d", &x);

int i=1;

do {

int j = 1;

do {

printf("%d", i);

j++;

} while (j<=i);

printf("\n");

i++;

} while (i<=x);

}

Compute positive square-root of an integer – approximately

For example
p
2
p
102

p
555 . . .

We have the time tested sqrt function – use that!

but how is that implemented?

We will study a simple and e↵ective method – bisection method

Computing positive square root of a positive integer

Lets compute
p
55.

In fact we are interested in the value at which the function
f (x) = x2 � 55 evaluates to zero!

Computing positive square root of a positive integer

Lets compute
p
55.

In fact we are interested in the value at which the function
f (x) = x2 � 55 evaluates to zero!

• Start with some initial
guess : say 1. The
value of f (1) is -ve!

• Pick another guess
where value is
positive say 25.

• The function must be
zero in between these
two values.

• Keep refining your
guess!

Computing positive square root of a positive integer

Lets compute
p
55.

In fact we are interested in the value at which the function
f (x) = x2 � 55 evaluates to zero!

• Two initial values
xL = 1, xR = 25.

• How do we pick the
refined guess?
Take mid-point

• We now have 3 values
xL, xR, xM.

• Which are useful?
The two closest ones
with opposite sign for
f (x).

Computing positive square root of a positive integer

• Two initial values such that
f (xL) is negative and f (xR) is positive.

• Take mid-point xM = xL+xR
2 .

• Pick two of xL, xR , xM which are closest and have opposite
sign for f (x).

• How long? Till the two estimates are close enough!

Computing positive square root of a positive integer

#include<stdio.h>

main() {

double xL = 1; double xR = 25;

double xM, epsilon;

epsilon = 0.0001;

while (xR - xL >= epsilon) {

xM = (xL + xR) / 2;

if ((xM * xM - 55) > 0) {

xR = xM;

} else {

xL = xM;

}

}

printf ("sqrt of 55 is %.4f\n", xL);

}

