
CS1100 – Introduction to Programming

Trimester 3, April – June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 15

CS1100 – Introduction to Programming

• Programming : From Turtle to C.

• Data Types in C, Operators. Input and the Output.

• Modifying the control flow in Programs if-else,
switch, loops : while, do-while, for.

So far ...

• One-dimensional Arrays in C.

 Coming
Up

CS1100 – Introduction to Programming

• Programming : From Turtle to C.

• Data Types in C, Operators. Input and the Output.

• Modifying the control flow in Programs if-else,
switch, loops : while, do-while, for.

So far ...

• One-dimensional Arrays in C.

 Coming
Up

Programming for Real life problems

Here are some real life problems that we may want to solve using
computers.

• Given the marks obtained by students in a class, print out the
marks in the non-decreasing order. That is, smallest marks
first.

• Given a road map of India find the shortest path from Main
gate of IIT Madras to Dharwad.

• Given the positions, velocities and masses of stars, determine
their state 1 million years from today.

Difficulties : Size of the input data is huge !
See example 1 : defining a variable for each mark is not feasible

Programming for Real life problems

Here are some real life problems that we may want to solve using
computers.

• Given the marks obtained by students in a class, print out the
marks in the non-decreasing order. That is, smallest marks
first.

• Given a road map of India find the shortest path from Main
gate of IIT Madras to Dharwad.

• Given the positions, velocities and masses of stars, determine
their state 1 million years from today.

Difficulties : Size of the input data is huge !
See example 1 : defining a variable for each mark is not feasible

Programming for Real life problems

Here are some real life problems that we may want to solve using
computers.

• Given the marks obtained by students in a class, print out the
marks in the non-decreasing order. That is, smallest marks
first.

• Given a road map of India find the shortest path from Main
gate of IIT Madras to Dharwad.

• Given the positions, velocities and masses of stars, determine
their state 1 million years from today.

Difficulties : Size of the input data is huge !
See example 1 : defining a variable for each mark is not feasible

Programming for Real life problems

Here are some real life problems that we may want to solve using
computers.

• Given the marks obtained by students in a class, print out the
marks in the non-decreasing order. That is, smallest marks
first.

• Given a road map of India find the shortest path from Main
gate of IIT Madras to Dharwad.

• Given the positions, velocities and masses of stars, determine
their state 1 million years from today.

Difficulties : Size of the input data is huge !

See example 1 : defining a variable for each mark is not feasible

Programming for Real life problems

Here are some real life problems that we may want to solve using
computers.

• Given the marks obtained by students in a class, print out the
marks in the non-decreasing order. That is, smallest marks
first.

• Given a road map of India find the shortest path from Main
gate of IIT Madras to Dharwad.

• Given the positions, velocities and masses of stars, determine
their state 1 million years from today.

Difficulties : Size of the input data is huge !
See example 1 : defining a variable for each mark is not feasible

What is an array?

• To store several elements of the same type.
• store 100 integers.
• store 2000 characters.
• store 500 floats.

• Declaration :
data-type array-name[array-size];

• int marks[7];

• char name[10];

• float score[1000]; - defines 1000 variables!

• the value of marks[2] is 75.

• new values can be assigned to elements
marks[3] = 36;

What is an array?

• To store several elements of the same type.
• store 100 integers.
• store 2000 characters.
• store 500 floats.

• Declaration :
data-type array-name[array-size];

• int marks[7];

• char name[10];

• float score[1000]; - defines 1000 variables!

• the value of marks[2] is 75.

• new values can be assigned to elements
marks[3] = 36;

What is an array?

• To store several elements of the same type.
• store 100 integers.
• store 2000 characters.
• store 500 floats.

• Declaration :
data-type array-name[array-size];

• int marks[7];

• char name[10];

• float score[1000]; - defines 1000 variables!

• the value of marks[2] is 75.

• new values can be assigned to elements
marks[3] = 36;

What is an array?

• To store several elements of the same type.
• store 100 integers.
• store 2000 characters.
• store 500 floats.

• Declaration :
data-type array-name[array-size];

• int marks[7];

• char name[10];

• float score[1000];

- defines 1000 variables!

• the value of marks[2] is 75.

• new values can be assigned to elements
marks[3] = 36;

What is an array?

• To store several elements of the same type.
• store 100 integers.
• store 2000 characters.
• store 500 floats.

• Declaration :
data-type array-name[array-size];

• int marks[7];

• char name[10];

• float score[1000]; - defines 1000 variables!

• the value of marks[2] is 75.

• new values can be assigned to elements
marks[3] = 36;

What is an array?

• To store several elements of the same type.
• store 100 integers.
• store 2000 characters.
• store 500 floats.

• Declaration :
data-type array-name[array-size];

• int marks[7];

• char name[10];

• float score[1000]; - defines 1000 variables!

• the value of marks[2] is 75.

• new values can be assigned to elements
marks[3] = 36;

Storing Arrays

• All elements are of same type.

• The number of elements is finite and fixed !.

• Elements are stored in contiguous memory locations.

Storing Arrays

• All elements are of same type.

• The number of elements is finite and fixed !.

• Elements are stored in contiguous memory locations.

Storing Arrays

• All elements are of same type.

• The number of elements is finite and fixed !.

• Elements are stored in contiguous memory locations.

Simple use of arrays

Grading for an exam is over and we wish to plot a histogram of
marks of the students.

• Assume test was for 25 marks.

• Integer scores. No negative marking.

• What are the possible different scores?

• Use arrays instead of 25 different variables.

Simple use of arrays

Grading for an exam is over and we wish to plot a histogram of
marks of the students.

• Assume test was for 25 marks.

• Integer scores. No negative marking.

• What are the possible different scores?

• Use arrays instead of 25 different variables.

Simple use of arrays

Grading for an exam is over and we wish to plot a histogram of
marks of the students.

• Assume test was for 25 marks.

• Integer scores. No negative marking.

• What are the possible different scores?

• Use arrays instead of 25 different variables.

Simple use of arrays

Grading for an exam is over and we wish to plot a histogram of
marks of the students.

• Assume test was for 25 marks.

• No negative marking.

• What are the possible different scores?

• Use arrays instead of 25 26 different variables.

Counting number of students who scored marks-i

#include<stdio.h>

main() {

const int MAX_MARKS = 25;

const int NUM_STUDENTS = 56;

int marksCount[MAX_MARKS+1];

int i, currMarks;

for (i=1; i<= NUM_STUDENTS; i++) {

printf("Enter the marks for Rollnumber %d\t", i);

scanf("%d", &currMarks);

marksCount[currMarks]++;

}

}

Is the program correct?

• Initialization of marksCount missing.

• What if the user enters marks outside the range?

Counting number of students who scored marks-i

#include<stdio.h>

main() {

const int MAX_MARKS = 25;

const int NUM_STUDENTS = 56;

int marksCount[MAX_MARKS+1];

int i, currMarks;

for (i=1; i<= NUM_STUDENTS; i++) {

printf("Enter the marks for Rollnumber %d\t", i);

scanf("%d", &currMarks);

marksCount[currMarks]++;

}

}

Is the program correct?

• Initialization of marksCount missing.

• What if the user enters marks outside the range?

Counting number of students who scored marks-i

#include<stdio.h>

main() {

const int MAX_MARKS = 25;

const int NUM_STUDENTS = 56;

int marksCount[MAX_MARKS+1];

int i, currMarks;

for (i=1; i<= NUM_STUDENTS; i++) {

printf("Enter the marks for Rollnumber %d\t", i);

scanf("%d", &currMarks);

marksCount[currMarks]++;

}

}

Is the program correct?

• Initialization of marksCount missing.

• What if the user enters marks outside the range?

Counting number of students who scored marks-i

#include<stdio.h>

int main() {

const int MAX_MARKS = 25;

const int NUM_STUDENTS = 5;

int marksCount[MAX_MARKS+1];

int i, currMarks;

int sum;

for (i=0; i<= MAX_MARKS; i++) {

marksCount[i] = 0;

}

for (i=1; i<= NUM_STUDENTS; i++) {

printf("Enter the marks for Rollnumber %d\t", i);

scanf("%d", &currMarks);

if (currMarks >= 0 && currMarks <= MAX_MARKS) {

marksCount[currMarks]++;

}

}

sum = 0;

for (i = 0; i <= MAX_MARKS; i++) {

printf ("marksCount %d = %d\n", i, marksCount[i]);

sum = marksCount[i]*i + sum;}

printf ("Average = %f\n", (float) (sum)/NUM_STUDENTS);

}

Initializing an array

Different ways of initializing array.

• int count[] = {10, 23, 50};
Creates an array of 3 integers. count[0], count[1], count[2].

• int count[10] = {0};

• Using a loop to explicitly initialize the elements.

Common Mistake: Forgetting to initialize the elements of array.

Initializing an array

Different ways of initializing array.

• int count[] = {10, 23, 50};
Creates an array of 3 integers. count[0], count[1], count[2].

• int count[10] = {0};
• Using a loop to explicitly initialize the elements.

Common Mistake: Forgetting to initialize the elements of array.

Initializing an array

Different ways of initializing array.

• int count[] = {10, 23, 50};
Creates an array of 3 integers. count[0], count[1], count[2].

• int count[10] = {0};
• Using a loop to explicitly initialize the elements.

Common Mistake: Forgetting to initialize the elements of array.

Evaluating a polynomial

P(x) = a0 + a1x + a2x
2 + . . . + anx

n

• n is the degree of a polynomial.

• User provides n coefficients.

• User provides the value of x at which polynomial has to be
evaluated.

• Evaluate the polynomial.

Evaluating a polynomial

P(x) = a0 + a1x + a2x
2 + . . . + anx

n

• Evaluate each term separately.
• n additions.
• n + (n − 1) + (n − 2) + . . . + 2 + 1 = n(n+1)

2 multiplications.

• P(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−2 + x(an−1 + xan)) . . .)
• n additions.
• n multiplications.

Evaluating a polynomial

P(x) = a0 + a1x + a2x
2 + . . . + anx

n

• Evaluate each term separately.
• n additions.
• n + (n − 1) + (n − 2) + . . . + 2 + 1 = n(n+1)

2 multiplications.

• P(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−2 + x(an−1 + xan)) . . .)
• n additions.
• n multiplications.

Evaluating a polynomial

#include <stdio.h>

#include <math.h>

int main() {

int x, n, i;

int coeff[20]; // maximum degree = 20.

int value = 0;

int product = 1;

scanf("%d %d", &n, &x);

for (i=0; i<=n; i++) {

scanf("%d", &coeff[i]);

product = coeff[i]* pow(x, i);

value = value + product;

}

printf("%d\n", value);

return 0;

}

Evaluating a polynomial

#include<stdio.h>

main() {

int x, n, i;

int coeff[20]; // maximum degree = 20.

int value;

scanf("%d %d", &n, &x);

for (i=0; i<=n; i++) {

scanf("%d", &coeff[i]);

}

/* Fill in your code here */

printf("%d\n", value);

}

Evaluating a polynomial

Character arrays

char name[20];

Different ways of initialization

• char name[20] = “Avani”;

• char name[20] = {‘A’, ‘V’, ‘A’, ‘N’, ‘I’, ’null char’};
• char name[20];

scanf(“%s”, name);

• char name[20];
name = ”AVANI”; Incorrect!!

Character arrays

char name[20];

Different ways of initialization

• char name[20] = “Avani”;

• char name[20] = {‘A’, ‘V’, ‘A’, ‘N’, ‘I’, ’null char’};
• char name[20];

scanf(“%s”, name);

• char name[20];
name = ”AVANI”; Incorrect!!

What is the output of this program?

#include<stdio.h>

int main() {

char name[20] = "AVANI";

int i;

for (i=10; i<20; i++) {

name[i] = ’X’;

}

printf("name = %s\n", name);

for (i=0; i<20; i++) {

printf("%c %d\n", name[i], name[i]);

}

return 0;

}

Character arrays and standard library support

• Character arrays or strings occur very often.

• C provides a standard library string.h
• exposes several useful functions:

• strlen
• strcmp
• strcpy
• strstr

Compare two strings

User input two strings s1, s2. Determine if s1 and s2 are the same.

• if (s1 == s2) This does not work

• Write your own string compare.

• Assume strlen is available from string.h

Compare two strings

User input two strings s1, s2. Determine if s1 and s2 are the same.

• if (s1 == s2) This does not work

• Write your own string compare.

• Assume strlen is available from string.h

Compare two strings

User input two strings s1, s2. Determine if s1 and s2 are the same.

• if (s1 == s2) This does not work

• Write your own string compare.

• Assume strlen is available from string.h

Palindromes

A string is a palindrome iff string == reverse(string)

• malayalam

• neveroddoreven

• dontnod

Write a program to determine if the given string is a palindrome.

Palindromes

A string is a palindrome iff string == reverse(string)

• malayalam

• neveroddoreven

• dontnod

Write a program to determine if the given string is a palindrome.

Palindromes

A string is a palindrome iff string == reverse(string)

• malayalam

• neveroddoreven

• dontnod

Write a program to determine if the given string is a palindrome.

