
CS1100 – Introduction to Programming

Trimester 3, April – June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 14

Testing if a number is prime

A number n is prime if it has no other divisors other than one and
itself.

Algorithm: Check, for every number m in the range 2 to n − 1,
whether m divides n or not. If none divides, then you can declare
that it is a prime number. If one of them divides, then you can
declare right away that is is a composite number.

Pseudocode:

• Start checking from 2 to n − 1.

• If any of the above divides n, declare “not prime!”

• Else declare “prime”.

Testing if a number is prime

scanf("%d", &n);

i = 2; flag = 0;

while (i < n) {

if (n % i == 0) {

flag = 1;

break;

}

i = i+1;

}

if (1 == flag)

printf("not prime\n");

else

printf("prime\n");

• see the initialization,
termination.

• (1 == flag)

• use of break.

Nested For Loop for Finding Prime Numbers

Find the prime numbers from 2 to 100

#include <stdio.h>

int main () {

/* local variable definition */

int i, j;

for(i = 2; i<100; i++) {

for(j = 2; j <= (i/j); j++)

if(!(i%j)) break; // if factor found, not prime

if(j > (i/j)) printf("%d is prime\n", i);

}

return 0;

}

Finding min of n integers

• Take n from input.

• initialize counter to count n (in some way!)

• scan input, modify min (if needed).

Finding min of n integers

#include<stdio.h>

main() {

int n; int currInt;

int a; int min;

scanf("%d",&n);

a = 1;

while (a <= n) {

scanf ("%d", &currInt);

if (a == 1) {

min = currInt;

}

if (currInt < min) {

min = currInt;

}

a++;

}

printf("min = %d\n", min);

}

Points to remember

• Is counter updated?

• Corner cases: a single
input, no input?

• min occurs as the
first or last element.

• When control is at
the scanf statement,
we are scanning the
a-th input.

• Just before the
statement a++; we
have computed min
of first a elements
given by user.

Finding min of positive integers : terminated by a negative
integer

#include<stdio.h>

main() {

int n; int currInt;

int min;

scanf("%d",&currInt);

min = currInt;

while (currInt >= 0) {

scanf ("%d", &currInt);

if (currInt < min) {

min = currInt;

}

}

printf("min = %d\n", min);

}

What is the output of this program? Always gives a negative value.

Finding min of positive integers : terminated by a negative
integer

#include<stdio.h>

main() {

int n; int currInt;

int min;

scanf("%d",&currInt);

min = currInt;

while (currInt >= 0) {

scanf ("%d", &currInt);

if (currInt < 0) break;

if (currInt < min) {

min = currInt;

}

}

printf("min = %d\n", min);

}

• What happens when
first input is negative?

• Add a check in the
end.

Finding GCD of two integers

Given positive integers x and y , output the GCD of x and y .

Idea

• Let z be min of x and y.
• for i = 1 to z

• check if i divides both x and y.
• output largest such i as gcd.

Finding GCD of two integers

Given positive integers x and y , output the GCD of x and y .

if (x < y)

z = x;

else z = y;

// z contains min of x and y

gcd = 1; i = 1;

while (i<=z) {

if ((x % i == 0) && (y % i == 0)) {

gcd = i;

}

i++;

}

Finding GCD of two integers

Given x and y , output the GCD of x and y .

Idea2 by Euclid

• If y divides x we are done!

• Else there is a smaller problem to solve!

gcd(x, y) = gcd(x-y, y)

• Needs proof!

Finding GCD of two integers – Euclid’s algorithm

gcd(1034, 237) = gcd(797, 237)

= gcd(560, 237)

= gcd(323, 237)

= gcd(86, 237) next?

= gcd(86, 151)

= gcd(86, 65)

= gcd(21, 65)

= gcd(21, 44)

= gcd(23, 44)

= gcd(23, 21)

= gcd(2, 21)

... = 1

Finding GCD of two integers

Given x and y , output the GCD of x and y .

Idea2 by Euclid

• If x % y == 0, we are done!
• Else modify x and y suitably.

• x = x % y;
• What if x < y?
• Exchange x and y.

Finding GCD of two integers

Euclid’s algorithm

#include<stdio.h>

int main() {

int x, y;

int temp;

scanf("%d %d", &x, &y);

if (x < y) {

temp = x; x = y; y = temp;

}

// Assume x >= y.

while (x % y != 0) {

x = x % y;

printf ("x = %d, y = %d\n", x, y);

if (x < y) {

temp = x; x = y; y = temp;

}

}

printf("gcd of input numbers is %d \n", y);

return 0;

}

Learnings so far...

• Examples: Finding min of positive integers, testing primality,
finding gcd using simple and Euclid’s method.

• Our problems naturally needed loops.

• break is a useful way to terminate out of the loop.

A very important and useful learning: Power of a clever algorithm.

