What is CS1100 all about?

What is CS1100 all about?

Problems and how to solve them

What is CS1100 all about?

Problems and how to solve them using a computer.

What is CS1100 all about?

Problems and how to solve them using a computer.
What is the source of the problems?
Biology

What is CS1100 all about?

Problems and how to solve them using a computer.
What is the source of the problems?

Our goal: Understand the problem, formulate a solution and ask the computer to do it!

What is CS1100 all about?

Problems and how to solve them using a computer.
What is the source of the problems?

Our goal: Understand the problem, formulate a solution and ask the computer to do it!

If you want to learn something, teach it

What is CS1100 all about?

Problems and how to solve them using a computer.
What is the source of the problems?

Our goal: Understand the problem, formulate a solution and ask the computer to do it!

If you want to learn something, teach it to a computer

Example \#1: Drawing Patterns

Learnings:

- A simple but useful language - turtle graphics.
- Using "repeat" to achieve complicated but repetitive tasks.

Example \#1: Drawing Patterns

Learnings:

- A simple but useful language - turtle graphics.
- Using "repeat" to achieve complicated but repetitive tasks.
- The power of control modification - via loops.

Example \#2 : Geometric Problems

Example \#2 : Geometric Problems

Some questions:

- Are two rectangles intersecting?
- Drawing triangles of given dimensions.
- Computing areas using alternate formulas.

Example \#2 : Geometric Problems

Some questions:

- Are two rectangles intersecting?
- Drawing triangles of given dimensions.
- Computing areas using alternate formulas.

Learnings:

- Logical approach to the problems.
- Formalizing known concepts as precise statements in a prog. language.

Example \#3 : Number theoretic questions

Greatest Common Factor

1) Prime Factors
2) Shared: $2,3,3$
3) Multiply $2 \cdot 3 \cdot 3=18$

Example \#3 : Number theoretic questions

Some questions:

- Is a number prime? Output prime factors.
- Compute GCD / LCM of two numbers.

Example \#3: Number theoretic questions

Some questions:

- Is a number prime? Output prime factors.
- Compute GCD / LCM of two numbers.

Learnings:

- Again power of being able to repeat.
- Reducing the problem to smaller size.
- A efficient algorithm can make a significant difference!

Example \#4 : Searching and Sorting

Example \#4: Searching and Sorting

Some questions:

9	7	6	15	17	5	10	11	1
9 7		6	15	17	5	10	11	1
4	9	6	15	17	5	10	11	1
6	7	9	15	17	5	10		11
	7	9	15	17	5	10		11
	7	9	15	17	5	10		11
	6	7	9	15	17	10		11
5	6	7	9	10	15	17		1
5	6	7	9	10	11	15		7

- How to seach when list is sorted?
- Sort a list of elements.

Example \#4 : Searching and Sorting

Some questions:

9	7	6	15	17	5	10	11

6	7	9	15	17	5	10	11

6	7	9	15	17	5	10	11

5	6	7	9	10	11	15	17

- How to seach when list is sorted?
- Sort a list of elements.

Learnings:

- Binary versus Linear search.
- Different ways to sort - again converting known ideas to precise statements.
- A efficient algorithm can make a significant difference!

Example \#5: Tic-Tac-Toe

$$
\begin{aligned}
& \frac{x \times 1 x}{x \times 10} \\
& \frac{x+0 \mid Q}{x+0}
\end{aligned}
$$

Example \#5: Tic-Tac-Toe

Some questions:

- Tic-Tac-Toe.
- Word Grids - finding strings.

Example \#5: Tic-Tac-Toe

Some questions:

- Tic-Tac-Toe.
- Word Grids - finding strings.

Learnings:

- Breaking problems into subtasks.
- Modular way of thinking.

Example \#5: Tic-Tac-Toe

Some questions:

- Tic-Tac-Toe.
- Word Grids - finding strings.

Learnings:

- Breaking problems into subtasks.
- Modular way of thinking.

Did not consider strategy games!

Concept \#6: Recursion

Concept \#6: Recursion

Some questions:

- Strings - palindromes, reversals.
- Useful data structures - queues, stacks.

Concept \#6: Recursion

Some questions:

- Strings - palindromes, reversals.
- Useful data structures - queues, stacks.

Learnings:

- Thinking recursively.
- Breaking down tasks into sub-tasks of the same type!

CS1111 - Problem Solving Using Computers

- Data Types in C, Operators. Input and the Output.
- Modifying the control flow in programs if-else, switch, while, do-while, for.
- Arrays and Strings in C.
- Functions \& Modular programming, Recursion.

This
Semester

- Pointers, Pass by reference, Pointer arithmetic.
- Structures in C.
- Structures and Pointers.
- Linked Lists.

CS1111 - Problem Solving Using Computers

- Data Types in C, Operators. Input and the Output.
- Modifying the control flow in programs if-else, switch, while, do-while, for.
- Arrays and Strings in C.
- Functions \& Modular programming, Recursion.
- Pointers, Pass by reference, Pointer arithmetic.
- Structures in C.
- Structures and Pointers.
- Linked Lists.

The 3 Ds: Design, Debug, Detect

Final Take Away

