
What is CS1100 all about?

Problems and how to solve them using a computer.

What is the source of the problems?

Physics

Chemistry

Biology

Arts

Mechanics

Games

 Geometry

Our goal: Understand the problem, formulate a solution and ask
the computer to do it!

If you want to learn something, teach it to a computer

What is CS1100 all about?

Problems and how to solve them

using a computer.

What is the source of the problems?

Physics

Chemistry

Biology

Arts

Mechanics

Games

 Geometry

Our goal: Understand the problem, formulate a solution and ask
the computer to do it!

If you want to learn something, teach it to a computer

What is CS1100 all about?

Problems and how to solve them using a computer.

What is the source of the problems?

Physics

Chemistry

Biology

Arts

Mechanics

Games

 Geometry

Our goal: Understand the problem, formulate a solution and ask
the computer to do it!

If you want to learn something, teach it to a computer

What is CS1100 all about?

Problems and how to solve them using a computer.

What is the source of the problems?

Physics

Chemistry

Biology

Arts

Mechanics

Games

 Geometry

Our goal: Understand the problem, formulate a solution and ask
the computer to do it!

If you want to learn something, teach it to a computer

What is CS1100 all about?

Problems and how to solve them using a computer.

What is the source of the problems?

Physics

Chemistry

Biology

Arts

Mechanics

Games

 Geometry

Our goal: Understand the problem, formulate a solution and ask
the computer to do it!

If you want to learn something, teach it to a computer

What is CS1100 all about?

Problems and how to solve them using a computer.

What is the source of the problems?

Physics

Chemistry

Biology

Arts

Mechanics

Games

 Geometry

Our goal: Understand the problem, formulate a solution and ask
the computer to do it!

If you want to learn something, teach it

to a computer

What is CS1100 all about?

Problems and how to solve them using a computer.

What is the source of the problems?

Physics

Chemistry

Biology

Arts

Mechanics

Games

 Geometry

Our goal: Understand the problem, formulate a solution and ask
the computer to do it!

If you want to learn something, teach it to a computer

Example #1 : Drawing Patterns

Learnings:

• A simple but useful language – turtle graphics.

• Using “repeat” to achieve complicated but repetitive tasks.

• The power of control modification – via loops.

Example #1 : Drawing Patterns

Learnings:

• A simple but useful language – turtle graphics.

• Using “repeat” to achieve complicated but repetitive tasks.

• The power of control modification – via loops.

Example #2 : Geometric Problems

Some questions:

• Are two rectangles intersecting?

• Drawing triangles of given
dimensions.

• Computing areas using
alternate formulas.

Learnings:

• Logical approach to the
problems.

• Formalizing known concepts as
precise statements in a prog.
language.

Example #2 : Geometric Problems

Some questions:

• Are two rectangles intersecting?

• Drawing triangles of given
dimensions.

• Computing areas using
alternate formulas.

Learnings:

• Logical approach to the
problems.

• Formalizing known concepts as
precise statements in a prog.
language.

Example #2 : Geometric Problems

Some questions:

• Are two rectangles intersecting?

• Drawing triangles of given
dimensions.

• Computing areas using
alternate formulas.

Learnings:

• Logical approach to the
problems.

• Formalizing known concepts as
precise statements in a prog.
language.

Example #3 : Number theoretic questions

Some questions:

• Is a number prime? Output prime factors.

• Compute GCD / LCM of two numbers.

Learnings:

• Again power of being able to repeat.

• Reducing the problem to smaller size.

• A efficient algorithm can make a significant difference!

Example #3 : Number theoretic questions

Some questions:

• Is a number prime? Output prime factors.

• Compute GCD / LCM of two numbers.

Learnings:

• Again power of being able to repeat.

• Reducing the problem to smaller size.

• A efficient algorithm can make a significant difference!

Example #3 : Number theoretic questions

Some questions:

• Is a number prime? Output prime factors.

• Compute GCD / LCM of two numbers.

Learnings:

• Again power of being able to repeat.

• Reducing the problem to smaller size.

• A efficient algorithm can make a significant difference!

Example #4 : Searching and Sorting

Some questions:

• How to seach when list is sorted?

• Sort a list of elements.

Learnings:

• Binary versus Linear search.

• Different ways to sort – again
converting known ideas to precise
statements.

• A efficient algorithm can make a
significant difference!

Example #4 : Searching and Sorting

Some questions:

• How to seach when list is sorted?

• Sort a list of elements.

Learnings:

• Binary versus Linear search.

• Different ways to sort – again
converting known ideas to precise
statements.

• A efficient algorithm can make a
significant difference!

Example #4 : Searching and Sorting

Some questions:

• How to seach when list is sorted?

• Sort a list of elements.

Learnings:

• Binary versus Linear search.

• Different ways to sort – again
converting known ideas to precise
statements.

• A efficient algorithm can make a
significant difference!

Example #5 : Tic-Tac-Toe

Some questions:

• Tic-Tac-Toe.

• Word Grids – finding strings.

Learnings:

• Breaking problems into subtasks.

• Modular way of thinking.

Did not consider strategy games!

Example #5 : Tic-Tac-Toe

Some questions:

• Tic-Tac-Toe.

• Word Grids – finding strings.

Learnings:

• Breaking problems into subtasks.

• Modular way of thinking.

Did not consider strategy games!

Example #5 : Tic-Tac-Toe

Some questions:

• Tic-Tac-Toe.

• Word Grids – finding strings.

Learnings:

• Breaking problems into subtasks.

• Modular way of thinking.

Did not consider strategy games!

Example #5 : Tic-Tac-Toe

Some questions:

• Tic-Tac-Toe.

• Word Grids – finding strings.

Learnings:

• Breaking problems into subtasks.

• Modular way of thinking.

Did not consider strategy games!

Concept #6 : Recursion

Some questions:

• Strings – palindromes, reversals.

• Useful data structures – queues,
stacks.

Learnings:

• Thinking recursively.

• Breaking down tasks into
sub-tasks of the same type!

Concept #6 : Recursion

Some questions:

• Strings – palindromes, reversals.

• Useful data structures – queues,
stacks.

Learnings:

• Thinking recursively.

• Breaking down tasks into
sub-tasks of the same type!

Concept #6 : Recursion

Some questions:

• Strings – palindromes, reversals.

• Useful data structures – queues,
stacks.

Learnings:

• Thinking recursively.

• Breaking down tasks into
sub-tasks of the same type!

CS1111 – Problem Solving Using Computers

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in programs
if-else, switch, while, do-while, for.

• Arrays and Strings in C.

• Functions & Modular programming, Recursion.

• Pointers, Pass by reference, Pointer arithmetic.

• Structures in C.

• Structures and Pointers.

• Linked Lists.

This
Semester

The 3 Ds: Design, Debug, Detect

CS1111 – Problem Solving Using Computers

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in programs
if-else, switch, while, do-while, for.

• Arrays and Strings in C.

• Functions & Modular programming, Recursion.

• Pointers, Pass by reference, Pointer arithmetic.

• Structures in C.

• Structures and Pointers.

• Linked Lists.

This
Semester

The 3 Ds: Design, Debug, Detect

Final Take Away

