
CS1100 – Introduction to Programming

Lecture 8

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

• Programming : From Turtle to C.

• Data Types in C, Representations, Operators.

• Formatting the Input and the Output.

• Execution of Programs, Compilers.

• Modifying the control flow in Programs
if-then-else, switch.

So Far

• while, for, do while constructs in C.

• Example problems.

• Programming for engineers.

Up Next

CS1100 – Introduction to Programming

Lecture 8

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

• Programming : From Turtle to C.

• Data Types in C, Representations, Operators.

• Formatting the Input and the Output.

• Execution of Programs, Compilers.

• Modifying the control flow in Programs
if-then-else, switch.

So Far

• while, for, do while constructs in C.

• Example problems.

• Programming for engineers.

Up Next

The while construct

• Syntax
while (expression) {

statements;
}

• Semantics

1. As long as expression is
true, execute statements.

2. If expression is false, exit
the loop.

• Value of expression must be
changed by the body of the loop,
otherwise we have an infinite
loop.

• expression can contain relational,
logical or equality operators.

Relational <= < > >=
Equality == ! =
Logical && ||

The while construct

• Syntax
while (expression) {

statements;
}
• Semantics

1. As long as expression is
true, execute statements.

2. If expression is false, exit
the loop.

• Value of expression must be
changed by the body of the loop,
otherwise we have an infinite
loop.

• expression can contain relational,
logical or equality operators.

Relational <= < > >=
Equality == ! =
Logical && ||

The while construct

• Syntax
while (expression) {

statements;
}
• Semantics

1. As long as expression is
true, execute statements.

2. If expression is false, exit
the loop.

• Value of expression must be
changed by the body of the loop,
otherwise we have an infinite
loop.

• expression can contain relational,
logical or equality operators.

Relational <= < > >=
Equality == ! =
Logical && ||

The while construct

• Syntax
while (expression) {

statements;
}
• Semantics

1. As long as expression is
true, execute statements.

2. If expression is false, exit
the loop.

• Value of expression must be
changed by the body of the loop,
otherwise we have an infinite
loop.

• expression can contain relational,
logical or equality operators.

Relational <= < > >=
Equality == ! =
Logical && ||

Reversing the digits of a given unsigned integer

#include "stdio.h"

int main () {

int number, revNumber, remainder;

revNumber = 0;

printf ("Input number:");

scanf ("%d", &number);

while (number > 0) {

remainder = number % 10;

revNumber = revNumber*10 + remainder;

number = number/10;

}

printf ("The reversed number is : %d\n", revNumber);

}

Example: Sum even and odd numbers

Accept integers from the standard input as long as the user does
not enter -1. Once the user enters -1, print the sum of all integers
entered so far, sum of even integers and sum of odd integers.

Two useful constructs:

• while loop repetitive statement

• switch multiple selection

Summing up odd and even numbers

Is the program correct?

#include<stdio.h>

int main() {

int input;

int sum, eSum, oSum;

printf("Enter an integer: \t");

scanf(" %d", &input);

while (input != -1) {

sum += input;

switch (input % 2) {

case 0: eSum += input; break;

case 1: oSum += input;

}

}

printf("sum = %d, oddSum = %d, evenSum = %d\n", sum, oSum, eSum);

return 0;

}

• common
mistake:
forgotten
initialization.

• expr. not
modified in body
of loop.

Summing up odd and even numbers

Is the program correct?

#include<stdio.h>

int main() {

int input;

int sum, eSum, oSum;

printf("Enter an integer: \t");

scanf(" %d", &input);

while (input != -1) {

sum += input;

switch (input % 2) {

case 0: eSum += input; break;

case 1: oSum += input;

}

}

printf("sum = %d, oddSum = %d, evenSum = %d\n", sum, oSum, eSum);

return 0;

}

• common
mistake:
forgotten
initialization.

• expr. not
modified in body
of loop.

Summing up odd and even numbers
#include<stdio.h>

int main() {

int input;

int sum, eSum, oSum;

printf("Enter an integer: \t");

scanf(" %d", &input);

sum = eSum = oSum = 0; // initialization.

while (input != -1) {

sum += input;

switch (input % 2) {

case 0: eSum += input; break;

case 1: oSum += input;

}

printf("Enter an integer: \t");

scanf(" %d", &input);

}

printf("sum = %d, oddSum = %d, evenSum = %d\n", sum, oSum, eSum);

return 0;

}

What does this code do?

#include <stdio.h>

int main() {

int count = 0;

while (count < 10) {

if (count == 5) {

break;

}

printf("Count is: %d\n", count);

count++;

}

return 0;

}

What does this code do?

#include <stdio.h>

int main() {

int count = 0;

while (count < 5) {

count++;

if (count == 3) {

continue; // Skip the rest of the loop body for count 3

}

printf("Count is: %d\n", count);

}

return 0;

}

Examples

• Enter a number from the keyboard and then calculate the
number of digits and the sum of digits of that number using a
while loop.

• Enter a number and print the Hemchandra/Fibonacci series
up to that number using a while loop.

• Read a set of n numbers (n is input) and print if each given
number is smaller or bigger than the previous number. For
first number there will not be any output as there is no
previous number.

Examples

• Enter a number from the keyboard and then calculate the
number of digits and the sum of digits of that number using a
while loop.

• Enter a number and print the Hemchandra/Fibonacci series
up to that number using a while loop.

• Read a set of n numbers (n is input) and print if each given
number is smaller or bigger than the previous number. For
first number there will not be any output as there is no
previous number.

Examples

• Enter a number from the keyboard and then calculate the
number of digits and the sum of digits of that number using a
while loop.

• Enter a number and print the Hemchandra/Fibonacci series
up to that number using a while loop.

• Read a set of n numbers (n is input) and print if each given
number is smaller or bigger than the previous number. For
first number there will not be any output as there is no
previous number.

