CS1100 - Introduction to Programming
 Lecture 6

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Goals:

- Selection statements:
- Single Selection: if
- Double Selection: if else
- Multiple Selection: switch

Goals:

- Selection statements:
- Single Selection: if
- Double Selection: if else
- Multiple Selection: switch
- Loops:
- while
- for
- do while

Goals:

- Selection statements:
- Single Selection: if
- Double Selection: if else
- Multiple Selection: switch
- Loops:
- while
- for
- do while
- Need for different kinds of selection and loops.

Goals:

- Selection statements:
- Single Selection: if
- Double Selection: if else
- Multiple Selection: switch
- Loops:
- while
- for
- do while
- Need for different kinds of selection and loops.
- Control flow for each of the constructs.

Single Selection : if construct

Decide to execute a part of the program if a condition is true.

Single Selection : if construct

Decide to execute a part of the program if a condition is true.

Eg: If a number (say meant to represent marks) is negative print a warning.

Single Selection : if construct

Decide to execute a part of the program if a condition is true.

Eg : If a number (say meant to represent marks) is negative print a warning.

Syntax :
if (condition)
\{Statement Sequence 1 \}

Single Selection : if construct

Semantics (meaning) :
Decide to execute a part of the program if a condition is true.

Eg: If a number (say meant to represent marks) is negative print a warning.

Single Selection : if construct

Example:

```
/* Program to display a number
    if user enters negative number.
    If user enters positive number,
    that number won't be displayed. */
#include <stdio.h>
main()
{
    int number;
    printf("Enter an integer: ");
    scanf("%d", &number);
    if (number < 0)
    {
        printf("You entered %d.\n", number);
    }
    printf("The if statement is easy.");
}
```


Single Selection : if construct

Semantics (meaning) :

```
Example :
/* Program to display a number
    if user enters negative number.
    If user enters positive number,
    that number won't be displayed. */
#include <stdio.h>
main()
{
    int number;
    printf("Enter an integer: ");
    scanf("%d", &number);
    if (number < 0)
    {
        printf("You entered %d.\n", number);
    }
    printf("The if statement is easy.");
}
```


Single Selection : if construct

Example :

```
/* Program to display a number
    if user enters negative number.
    If user enters positive number,
    that number won't be displayed. */
#include <stdio.h>
main()
{
    int number;
    printf("Enter an integer: ");
    scanf("%d", &number);
    if (number < 0)
    {
        printf("You entered %d.\n", number);
    }
    printf("The if statement is easy.");
}
```


Single Selection : if construct

Example :

```
/* Program to display a number
    if user enters negative number.
    If user enters positive number,
    that number won't be displayed. */
#include <stdio.h>
main() Enter an integer: -2
{
    int number;
    printf("Enter an integer: ");
    scanf("%d", &number);
    if (number < 0)
    {
        printf("You entered %d.\n", number);
    }
    printf("The if statement is easy.");
}
```


Double Selection : if-else construct

Decide to execute a part of the program based on a condition is true and some other part if condition is false.

Double Selection : if-else construct

Decide to execute a part of the program based on a condition is true and some other part if condition is false.

$$
\text { Eg : If } b^{2}-4 a c \text { nega- }
$$ tive, we should report that the quadratic has no real roots.

Double Selection : if-else construct

Decide to execute a part of the program based on a condition is true and some other part if condition is false.

Eg : If $b^{2}-4 a c$ negative, we should report that the quadratic has no real roots.
Syntax :
if (condition)
\{ Statement Sequence 1 \}
else
\{Statement Sequence 2 \}

Double Selection : if-else construct

Decide to execute a part of the Semantics (meaning) : program based on a condition is true and some other part if condition is false.

Eg : If $b^{2}-4 a c$ negative, we should report that the quadratic has no real roots. Syntax :
if (condition)
\{ Statement Sequence 1 \}
else
\{Statement Sequence 2 \}

Double Selection : if-else construct - Example

```
Example :
// Program to check whether an
// integer entered by the user
// is odd or even
#include <stdio.h>
int main()
{
    int number;
    printf("Enter an integer: ");
    scanf("%d",&number);
    // True if remainder is 0
    if( number%2 == 0 )
        printf("%d is an even integer.",number);
    else
        printf("%d is an odd integer.",number);
    return 0;
}
```


Double Selection : if-else construct - Example

Semantics (meaning) :

Example :

```
// Program to check whether an
// integer entered by the user
// is odd or even
#include <stdio.h>
int main()
{
    int number;
    printf("Enter an integer: ");
    scanf("%d",&number);
    // True if remainder is 0
    if( number%2 == 0 )
        printf("%d is an even integer.",numb\epsilon
    else
        printf("%d is an odd integer.",number
    return 0;
}
```


How do we specify conditions?

- Specified using relational and equality operators.

How do we specify conditions?

- Specified using relational and equality operators.
- Relational: $>,<,>=,<=$

How do we specify conditions?

- Specified using relational and equality operators.
- Relational: $>,<,>=,<=$
- Equality: $==,!=$

How do we specify conditions?

- Specified using relational and equality operators.
- Relational: $>,<,>=,<=$
- Equality: $==,!=$
- Usage: for a, b values or variables
$a>b, a<b, a>=b, a<=b, a==b, a!=b$

How do we specify conditions?

- Specified using relational and equality operators.
- Relational: $>,<,>=,<=$
- Equality: $==,!=$
- Usage: for a, b values or variables
$a>b, a<b, a>=b, a<=b, a==b, a \quad!=b$
- A condition is satisfied or true, if the relational operator, or equality is satisfied.

How do we specify conditions?

- Specified using relational and equality operators.
- Relational: $>,<,>=,<=$
- Equality: $==,!=$
- Usage: for a, b values or variables
$a>b, a<b, a>=b, a<=b, a==b, a!=b$
- A condition is satisfied or true, if the relational operator, or equality is satisfied.
- For $\mathrm{a}=3$, and $\mathrm{b}=5$:
- $a<b, a<=b$, and $a!=b$ are true.
- $a>b, a>=b, a==b$ are false.

How do we specify conditions?

- Specified using relational and equality operators.
- Relational: $>,<,>=,<=$
- Equality: $==,!=$
- Usage: for a, b values or variables
$a>b, a<b, a>=b, a<=b, a==b, a!=b$
- A condition is satisfied or true, if the relational operator, or equality is satisfied.
- For $\mathrm{a}=3$, and $\mathrm{b}=5$:
- $a<b, a<=b$, and $a!=b$ are true.
- $a>b, a>=b, a==b$ are false.
- Expression can contain relational, logical or equality operators.

Relational	$<=$	$<$	$>$	$>=$	
Equality	$==$	$!=$			
Logical	$\& \&$	$\\|$			

An Example Problem

Accept a character from $\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}$ and output appropriate message about the grade.

An Example Problem

Accept a character from $\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}$ and output appropriate message about the grade.

```
#include<stdio.h>
int main() {
    char input;
    printf("Input a character:\t" );
    scanf ("%c", &input);
    if (input == 'W') {
        printf("Attendance is below 85 %%\n");
    }
    if (input == 'A') {
        printf("Marks between 90--100 %%\n");
    }
    if (input == 'B') {
        printf("Marks between 80--90 %% \n");
    }
    else {
        printf("Invalid Character. Enter one of W, A, B\n");
}
return 0;
}
```


An Example Problem

Accept a character from $\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}$ and output appropriate message about the grade.

```
#include<stdio.h>
int main() {
    char input;
    if (input == 'W') {
    printf("Attendance is below 85 %%\n");
    }
if (input == 'A') {
        printf("Marks between 90--100 %%\n");
}
if (input == 'B') {
Program prints error mes-
sage even when we en-
        printf("Marks between 80--90 %% \n");
}
else {
    printf("Invalid Character. Enter one of W, A, B\n");
}
return 0;

\section*{An Example Problem}

\section*{Accept a character from \(\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}\) and output appropriate message about the grade.}
```

\#include<stdio.h>
int main() {
char input;
if (input == 'W') {
printf("Attendance is below 85 %%\n");
}
if (input == 'A') {
printf("Marks between 90--100 %%\n");
}
if (input == 'B') {
Program prints error mes-
sage even when we en-
printf("Marks between 80--90 %% \n");
}
else {
printf("Invalid Character. Enter one of W, A, B\n");
}
return 0;

A correct program.

Accept a character from $\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}$ and output appropriate message about the grade.

```
#include<stdio.h>
int main() {
```

```
char input;
```

char input;
printf("Input a character :\t");
printf("Input a character :\t");
scanf ("%c", \&input);
scanf ("%c", \&input);
if (input == 'W') {
if (input == 'W') {
printf("Attendance is below 85 %%\n");
printf("Attendance is below 85 %%\n");
}
}
else if (input == 'A') {
else if (input == 'A') {
printf("Marks between 90--100 %%\n");
printf("Marks between 90--100 %%\n");
}
}
else if (input == 'B') {
else if (input == 'B') {
printf("Marks between 80--90 %% \n");
printf("Marks between 80--90 %% \n");
}
}
else {
else {
printf("Invalid Character. Enter one of W, A, B\n");
printf("Invalid Character. Enter one of W, A, B\n");
}
}
return 0;
return 0;
}

```

\section*{Is this correct?}

Accept a character from \(\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}\) and output appropriate message.
```

\#include<stdio.h>
int main() {
char input, W, A, B;
printf("Input a character :\t");
scanf ("%c", \&input);
if (input == W) {
printf("Attendance is below 85 %%\n");
}
else if (input == A) {
printf("Marks between 90--100 %%\n");
}
else if (input == B) {
printf("Marks between 80--90 %% \n");
}
else {
printf("Invalid Character. Enter one of W, A, B\n");
}
return 0;
}

```

\section*{Is this correct?}

Accept a character from \(\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}\) and output appropriate message.
```

\#include<stdio.h>

```
int main() \{
```

char input, W, A, B;
printf("Input a character :\t");
scanf ("%c", \&input);
if (input == W) {
printf("Attendance is below 85 %%\n");
}
else if (input == A) {
printf("Marks between 90--100 %%\n");
}
else if (input == B) {
printf("Marks between 80--90 %% \n");
}
else {
printf("Invalid Character. Enter one of W, A, B\n");
}
return 0;

```

\section*{Is this correct?}

Accept a character from \(\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}\) and output appropriate message.
```

\#include<stdio.h>

```
int main() \{
```

char input, W, A, B;
printf("Input a character :\t");
scanf ("%c", \&input);
if (input == W) {
printf("Attendance is below 85 %%\n");
}
else if (input == A) {
printf("Marks between 90--100 %%\n");
}
else if (input == B) {
printf("Marks between 80--90 %% \n");
}
else {
printf("Invalid Character. Enter one of W, A, B\n");
}
return 0;

```

\section*{variable vs character constant}
- if (input ==W)
- comparing a variable input with another variable W.
- What is the value of the variable W?

\section*{variable vs character constant}
- if (input ==W)
- comparing a variable input with another variable W.
- What is the value of the variable W?
- If \(W\) is a character and is initialized to \(W\), you will have desired behaviour.

\section*{variable vs character constant}
- if (input ==W)
- comparing a variable input with another variable W.
- What is the value of the variable W?
- If \(W\) is a character and is initialized to \(W\), you will have desired behaviour.
- if (input == 'W')
- comparing a variable input with character constant W.

\section*{variable vs character constant}
- if (input \(==\mathrm{W}\) )
- comparing a variable input with another variable W.
- What is the value of the variable W?
- If \(W\) is a character and is initialized to \(W\), you will have desired behaviour.
- if (input == 'W')
- comparing a variable input with character constant W.
- In C, we can define some variables to be constants as well.
- const float \(\mathrm{PI}=3.14\);
- const int myConstant \(=71289\);
- const char gradeW = 'W';
- Recall what are valid variables names.

\section*{Are the parenthesis needed?}

\section*{Accept a character from \(\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}\) and output appropriate message.}
```

\#include<stdio.h>
int main() {

```
```

 char input;
    ```
    char input;
    printf("Input a character :\t" );
    printf("Input a character :\t" );
    scanf ("%c", &input);
    scanf ("%c", &input);
    if (input == 'W') {
    if (input == 'W') {
        printf("Attendance is below 85 %%\n");
        printf("Attendance is below 85 %%\n");
}
}
else if (input == 'A') {
else if (input == 'A') {
        printf("Marks between 90--100 %%\n");
        printf("Marks between 90--100 %%\n");
}
}
else if (input == 'B') {
else if (input == 'B') {
    printf("Marks between 80--90 %% \n");
    printf("Marks between 80--90 %% \n");
}
}
else {
else {
    printf("Invalid Character. Enter one of W, A, B\n");
    printf("Invalid Character. Enter one of W, A, B\n");
}
}
return 0;
return 0;
}
```


How is the nesting?

Accept a character from $\{\mathrm{W}, \mathrm{A}, \mathrm{B}\}$ and output appropriate message.

```
#include<stdio.h>
int main() {
    char input;
    printf("Input a character :\t" );
    scanf ("%c", &input);
    if (input == 'W')
        printf("Attendance is below 85 %%\n");
    else {
        if (input == 'A')
        printf("Marks between 90--100 %%\n");
        else {
            if (input == 'B')
printf("Marks between 80--90 %% \n");
            else
printf("Invalid Character. Enter one of W, A, B\n");
        }
    }
    return 0;
}
```


if else: example2

If a student gets less than 40 marks, report that $\mathrm{s} /$ he has to repeat the course. If student gets greater than 75 marks, report that s / he got distinction.

if else: example2

If a student gets less than 40 marks, report that $\mathrm{s} /$ he has to repeat the course. If student gets greater than 75 marks, report that s / he got distinction.

```
#include<stdio.h>
main() {
    int marks;
    printf("Enter your marks: \t");
    scanf("%d", &marks);
    if (marks > 40)
        if (marks > 75)
            printf("You got distinction\n");
    else
        printf("You need to repeat the course\n");
}
```


if else: example2

If a student gets less than 40 marks, report that $\mathrm{s} /$ he has to repeat the course. If student gets greater than 75 marks, report that s / he got distinction.

```
#include<stdio.h>
main() {
    int marks;
    printf("Enter your marks: \t");
    scanf("%d", &marks);
    if (marks > 40)
        if (marks > 75)
            printf("You got distinction\n");
    else
        printf("You need to repeat the course\n");
}
```

- No errors during compilation or execution.
- Does not produce desired behaviour.
- else pairs with the latest unpaired if.
- referred to as a "dangling else problem."

if else: example2 - correct program

If a student gets less than 40 marks, report that he has to repeat the course. If student gets greater than 75 marks, report that he got distinction.

```
#include<stdio.h>
main() {
    int marks;
    printf("Enter your marks: \t");
    scanf("%d", &marks);
    if (marks > 40) {
        if (marks > 75)
        printf("You got distinction\n");
    }
    else
        printf("You need to repeat the course\n");
}
```


if else: example2 - observe carefully

If a student gets less than 40 marks, report that he has to repeat the course. If student gets greater than 75 marks, report that he got distinction.

```
#include<stdio.h>
main() {
    int marks;
    printf("Enter your marks: \t");
    scanf("%d", &marks);
    if (marks > 40) {
        if (marks > 75);
            printf("You got distinction\n");
    }
    else
        printf("You need to repeat the course\n");
}
```


if else: example2 - observe carefully

If a student gets less than 40 marks, report that he has to repeat the course. If student gets greater than 75 marks, report that he got distinction.

```
#include<stdio.h>
main() {
    int marks;
    printf("Enter your marks: \t");
    scanf("%d", &marks);
    if (marks > 40) {
        if (marks > 75);
            printf("You got distinction\n");
    }
    else
        printf("You need to repeat the course\n");
}
```

- What is the output of the program on
- 40, 50, 75, 85

if else: example2 - observe carefully

If a student gets less than 40 marks, report that he has to repeat the course. If student gets greater than 75 marks, report that he got distinction.

```
#include<stdio.h>
main() {
    int marks;
    printf("Enter your marks: \t");
    scanf("%d", &marks);
    if (marks > 40) {
        if (marks > 75);
            printf("You got distinction\n");
    }
    else
        printf("You need to repeat the course\n");
}
```

- What is the output of the program on
- 40, 50, 75, 85
- Note the semicolon if (marks > 75);
- Semicolon is a statement terminator.

Another example

Write a C program to input electricity unit charges and calculate total electricity bill according to the given condition:
For first 50 units Rs. 0.50/unit
For next 100 units Rs. 0.75 /unit
For next 100 units Rs. 1.20/unit
For unit above 250 Rs. 1.50 /unit
An additional surcharge of 20

