
CS1100 – Introduction to Programming

Lecture 5

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

CS1100 – Introduction to Programming

• Programming : From Turtle to C.

• Data Types in C, representations, range of values
for each type, Arithmetic operators, and operator
precedence.

• Formatting the Input and the Output with various
data types.

So far

• Execution of Programs, Compilers.

• Modifying the control flow in Programs.

• if-then-else, switch statements.

• loops in C.

Up Next

CS1100 – Introduction to Programming

• Programming : From Turtle to C.

• Data Types in C, representations, range of values
for each type, Arithmetic operators, and operator
precedence.

• Formatting the Input and the Output with various
data types.

So far

• Execution of Programs, Compilers.

• Modifying the control flow in Programs.

• if-then-else, switch statements.

• loops in C.

Up Next

The Computing Machine

• A program is a sequence of instructions assembled for some
given task.

• Most instructions operate on data.

• Some instructions control the flow of the operations.

The questions ...

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

• How exactly does the computer
execute a program?

• What happens when you
”compile” using “gcc”?

• While running the program, is
this text of C-program stored in
memory as it is?

• How exactly does the computer
know the type of some data is
integer and some data is
character etc?

The questions ...

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

• How exactly does the computer
execute a program?

• What happens when you
”compile” using “gcc”?

• While running the program, is
this text of C-program stored in
memory as it is?

• How exactly does the computer
know the type of some data is
integer and some data is
character etc?

The questions ...

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

• How exactly does the computer
execute a program?

• What happens when you
”compile” using “gcc”?

• While running the program, is
this text of C-program stored in
memory as it is?

• How exactly does the computer
know the type of some data is
integer and some data is
character etc?

The questions ...

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

• How exactly does the computer
execute a program?

• What happens when you
”compile” using “gcc”?

• While running the program, is
this text of C-program stored in
memory as it is?

• How exactly does the computer
know the type of some data is
integer and some data is
character etc?

The questions ...

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

• How exactly does the computer
execute a program?

• What happens when you
”compile” using “gcc”?

• While running the program, is
this text of C-program stored in
memory as it is?

• How exactly does the computer
know the type of some data is
integer and some data is
character etc?

Variables in Programs

• Each memory location is given a name.

• The name is the variable that refers to the data stored in that
location. Eg: nsides,rollNo, classSize.

• Variables have types that define the interpretation data. e.g.
integers (1, 14, 25649), or characters (a, f, G, H)

• All data is represented as binary strings. That is, it is a
sequence of 0’s and 1’s (bits), of a predetermined size. Recall
that a byte is made of 8 bits.

Instructions

• Instructions - operate on data or changes the control flow of
the program.

• The instruction ”X ← X+1” on integer type says: “Take the
integer stored in location named X, add 1 to it, and store it
back in (location named) X”..

• Other instructions tell the processor to do something. For
example, “jump” to a particular instruction next, or to exit.

Instructions

• Instructions - operate on data or changes the control flow of
the program.

• The instruction ”X ← X+1” on integer type says: “Take the
integer stored in location named X, add 1 to it, and store it
back in (location named) X”..

• Other instructions tell the processor to do something. For
example, “jump” to a particular instruction next, or to exit.

Instructions

• Instructions - operate on data or changes the control flow of
the program.

• The instruction ”X ← X+1” on integer type says: “Take the
integer stored in location named X, add 1 to it, and store it
back in (location named) X”..

• Other instructions tell the processor to do something. For
example, “jump” to a particular instruction next, or to exit.

Instructions

• Instructions - operate on data or changes the control flow of
the program.

• The instruction ”X ← X+1” on integer type says: “Take the
integer stored in location named X, add 1 to it, and store it
back in (location named) X”..

• Other instructions tell the processor to do something. For
example, “jump” to a particular instruction next, or to exit.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,

Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.

Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.

Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).

Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).

Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

Programs and their Execution

Program in memory : sequence of instructions (known to CPU)

The processor(CPU) works as follows,
Step A: pick next instruction in the sequence.
Step B: get data for the instruction to operate upon.
Step C: execute instruction on data (or “jump”).
Step D: store results in designated location (variable).
Step E: go to Step A.

CPU interacts with other parts...

• Control Unit: Directs operation of processor. Tells other parts
how to respond to received instructions.

• Arithmetic Logic Unit: Performs arithmetic (addition etc) and
logical (OR, AND, etc) operations.

But there is a problem ...

Question : How does the CPU know what is to be done when it
executes (say) :

• an assignment statement like ”X ← X+1”?

• the printf

• the int x.

Answer :

It does not !!
So what does it know? Only

• Addition and some basic arithmetic operations.

• Storage and retrieval from memory.

• A very elementary set of instructions - like ADD, MOV.

• There are specific codes for each of these instructions.

But there is a problem ...

Question : How does the CPU know what is to be done when it
executes (say) :

• an assignment statement like ”X ← X+1”?

• the printf

• the int x.

Answer : It does not !!

So what does it know? Only

• Addition and some basic arithmetic operations.

• Storage and retrieval from memory.

• A very elementary set of instructions - like ADD, MOV.

• There are specific codes for each of these instructions.

But there is a problem ...

Question : How does the CPU know what is to be done when it
executes (say) :

• an assignment statement like ”X ← X+1”?

• the printf

• the int x.

Answer : It does not !!
So what does it know?

Only

• Addition and some basic arithmetic operations.

• Storage and retrieval from memory.

• A very elementary set of instructions - like ADD, MOV.

• There are specific codes for each of these instructions.

But there is a problem ...

Question : How does the CPU know what is to be done when it
executes (say) :

• an assignment statement like ”X ← X+1”?

• the printf

• the int x.

Answer : It does not !!
So what does it know? Only

• Addition and some basic arithmetic operations.

• Storage and retrieval from memory.

• A very elementary set of instructions - like ADD, MOV.

• There are specific codes for each of these instructions.

The Machine Language

• Here is an instruction that the machine understands :

1011 0000 01100001

• It is an instruction that tells the machine MOV A 61h. That
is, move, hexadecimal value ”61” to the register named ”A”.

• Who said this is the meaning of this instruction?

fixed at the
processor design stage. (Assembly Language)

• How to use it - combine several instructions like this to make
something useful.

• The instruction forward(100) can really be represented by a
sequence of instructions like that.

The Machine Language

• Here is an instruction that the machine understands :

1011 0000 01100001

• It is an instruction that tells the machine MOV A 61h. That
is, move, hexadecimal value ”61” to the register named ”A”.

• Who said this is the meaning of this instruction? fixed at the
processor design stage. (Assembly Language)

• How to use it - combine several instructions like this to make
something useful.

• The instruction forward(100) can really be represented by a
sequence of instructions like that.

From C to Machine language

For example, x = y + z could require the following sequence.

• Get the contents of y into register R1.

• Get the contents of z into R2.

• Add contents of R1 and R2 and store it in R1.

• Move contents of R1 into location named x.

Are these written in English? No !!
in ”machine language” like this :

1011 0000 01100001

High level languages - Commands are human readable.
Eg : C, C++, Java, Python, FORTRAN, SimpleCPP.

From C to Machine language

For example, x = y + z could require the following sequence.

• Get the contents of y into register R1.

• Get the contents of z into R2.

• Add contents of R1 and R2 and store it in R1.

• Move contents of R1 into location named x.

Are these written in English?

No !!
in ”machine language” like this :

1011 0000 01100001

High level languages - Commands are human readable.
Eg : C, C++, Java, Python, FORTRAN, SimpleCPP.

From C to Machine language

For example, x = y + z could require the following sequence.

• Get the contents of y into register R1.

• Get the contents of z into R2.

• Add contents of R1 and R2 and store it in R1.

• Move contents of R1 into location named x.

Are these written in English? No !!
in ”machine language” like this :

1011 0000 01100001

High level languages - Commands are human readable.
Eg : C, C++, Java, Python, FORTRAN, SimpleCPP.

From C to Machine language

For example, x = y + z could require the following sequence.

• Get the contents of y into register R1.

• Get the contents of z into R2.

• Add contents of R1 and R2 and store it in R1.

• Move contents of R1 into location named x.

Are these written in English? No !!
in ”machine language” like this :

1011 0000 01100001

High level languages - Commands are human readable.
Eg : C, C++, Java, Python, FORTRAN, SimpleCPP.

A Demo

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

01110011 01101111 00101110 00110110 00000000 01110000

01110010 01101001 01101110 01110100 01100110 00000000

01011111 01011111 01101100 01101001 01100010 01100011

01011111 01110011 01110100 01100001 01110010 01110100

01011111 01101101 01100001 01101001 01101110 00000000

01011111 01011111 01100111 01101101 01101111 01101110

01011111 01110011 01110100 01100001 01110010 01110100

01011111 01011111 00000000 01000111 01001100 01001001

01000010 01000011 01011111 00110010 00101110 00110010

00101110 00110101 00000000 00000000 00000000 00000000

01011101 11000110 00000101 00111110 00001011 00100000

00000000 00000001 11110011 11000011 00001111 00011111

01000000 00000000 10111111 00100000 00001110 01100000

00000000 01001000 10000011 00111111 00000000 01110101

00000101 11101011 10010011 00001111 00011111 00000000

10111000 00000000 00000000 00000000 00000000 01001000

10000101 11000000 01110100 11110001 01010101 01001000

10001001 11100101 11111111 11010000 01011101 11101001

01111010 11111111 11111111 11111111 01010101 01001000

A Demo

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

01110011 01101111 00101110 00110110 00000000 01110000

01110010 01101001 01101110 01110100 01100110 00000000

01011111 01011111 01101100 01101001 01100010 01100011

01011111 01110011 01110100 01100001 01110010 01110100

01011111 01101101 01100001 01101001 01101110 00000000

01011111 01011111 01100111 01101101 01101111 01101110

01011111 01110011 01110100 01100001 01110010 01110100

01011111 01011111 00000000 01000111 01001100 01001001

01000010 01000011 01011111 00110010 00101110 00110010

00101110 00110101 00000000 00000000 00000000 00000000

01011101 11000110 00000101 00111110 00001011 00100000

00000000 00000001 11110011 11000011 00001111 00011111

01000000 00000000 10111111 00100000 00001110 01100000

00000000 01001000 10000011 00111111 00000000 01110101

00000101 11101011 10010011 00001111 00011111 00000000

10111000 00000000 00000000 00000000 00000000 01001000

10000101 11000000 01110100 11110001 01010101 01001000

10001001 11100101 11111111 11010000 01011101 11101001

01111010 11111111 11111111 11111111 01010101 01001000

The Computing Machine

• The instructions are really in binary.

• They are not binary equivalents of the corresponding program
characters.

• They are “translations” of program instructions into the
“machine language” which uses only very simple instructions.

• But who does the translation?

The Computing Machine

• The instructions are really in binary.

• They are not binary equivalents of the corresponding program
characters.

• They are “translations” of program instructions into the
“machine language” which uses only very simple instructions.

• But who does the translation?

The Computing Machine

• The instructions are really in binary.

• They are not binary equivalents of the corresponding program
characters.

• They are “translations” of program instructions into the
“machine language” which uses only very simple instructions.

• But who does the translation?

The Computing Machine

• The instructions are really in binary.

• They are not binary equivalents of the corresponding program
characters.

• They are “translations” of program instructions into the
“machine language” which uses only very simple instructions.

• But who does the translation?

Translators : “The Compiler”

• Source Program can be in C or
any other language.

• A program called C-compiler
takes in this program
instructions and converts them
into assembly language and
finally into machine language.

• The final file produced is called
the “executable file”.

Assembly versus Machine Language

• Machine language is a language that has a binary form. It can
be directly executed by a computer.

• An assembly language is a low-level programming language
that requires software called an assembler to convert it into
machine code.

Example : Program to Sum Two numbers

program.c (9 lines)

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

program.s (assembly language)
(36 lines)

movq %rsp, %rbp

subq $16, %rsp

movl $98, -12(%rbp)

movl $99, -8(%rbp)

movl -12(%rbp), %edx

movl -8(%rbp), %eax

addl %edx, %eax

movl %eax, -4(%rbp)

movl -4(%rbp), %eax

movl %eax, %esi

movl $.LC0, %edi

movl $0, %eax

and more ..

Example : Program to Sum Two numbers

a.out (binary) (1435 lines like this....)

01110011 01101111 00101110 00110110 00000000 01110000

01110010 01101001 01101110 01110100 01100110 00000000

01011111 01011111 01101100 01101001 01100010 01100011

01011111 01110011 01110100 01100001 01110010 01110100

01011111 01101101 01100001 01101001 01101110 00000000

01011111 01011111 01100111 01101101 01101111 01101110

01011111 01110011 01110100 01100001 01110010 01110100

01011111 01011111 00000000 01000111 01001100 01001001

01000010 01000011 01011111 00110010 00101110 00110010

00101110 00110101 00000000 00000000 00000000 00000000

01011101 11000110 00000101 00111110 00001011 00100000

00000000 00000001 11110011 11000011 00001111 00011111

01000000 00000000 10111111 00100000 00001110 01100000

00000000 01001000 10000011 00111111 00000000 01110101

00000101 11101011 10010011 00001111 00011111 00000000

10111000 00000000 00000000 00000000 00000000 01001000

10000101 11000000 01110100 11110001 01010101 01001000

10001001 11100101 11111111 11010000 01011101 11101001

01111010 11111111 11111111 11111111 01010101 01001000

Learnings so far..

• What are the steps involved in running a program?

• The role of a compiler and different parts of a compiler.

• Assembly language, Machine language.

• What is coming up? More Programming !!

Learnings so far..

• What are the steps involved in running a program?

• The role of a compiler and different parts of a compiler.

• Assembly language, Machine language.

• What is coming up? More Programming !!

Learnings so far..

• What are the steps involved in running a program?

• The role of a compiler and different parts of a compiler.

• Assembly language, Machine language.

• What is coming up? More Programming !!

Learnings so far..

• What are the steps involved in running a program?

• The role of a compiler and different parts of a compiler.

• Assembly language, Machine language.

• What is coming up?

More Programming !!

Learnings so far..

• What are the steps involved in running a program?

• The role of a compiler and different parts of a compiler.

• Assembly language, Machine language.

• What is coming up? More Programming !!

