
CS1100 – Introduction to Programming

Lecture 4

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Assignment operator =

Form: variable-name = expression

• z = x+y

• x+y = z Incorrect form

• Assignment between different data types.
• What happens if you assign float to int and vice versa?

• Multiple assignments.
• x = y = z = (a + b);
• evaluations happen right to left.

• x = x + 10 can be written as x += 10;

• instead of +, we can also have -, *, /, %

Exercises

Write a program that reads an integer from the input and prints 0
if the integer is even and 1 if the integer is odd.

Write a program that takes as input a 3 digit integer, separates the
digits of the integer and prints the individual digits separated by
spaces.
For example if the input is 194, then your program must print
1 9 4

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

Integers in C and Storage

• We have used int and float data types till now.

• An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

• In the 2s complement form this allows storage of values from

−215 to 215 − 1

−32, 768 to 32, 767

• There are limits to representation - we better choose the right
type.

• What other data type can we use to store integers?

• unsigned int, long, unsigned long.

unsigned int

• Typically 4 bytes storage.

• Output an unsigned int: printf(“%u”, x);

• Input an unsigned int: scanf(“%u”, &x);

• Storage: binary format.

The Integers - The detailed Chart

char

• Typically 1 byte storage.

• Every character has a unique code assigned to it (ASCII code).
A = 65, B = 66

• Output a character: printf(“%c”, x);

• Input a character: scanf(“%c”, &x);

char

• Typically 1 byte storage.

• Every character has a unique code assigned to it (ASCII code).
A = 65, B = 66

• Output a character: printf(“%c”, x);

• Input a character: scanf(“%c”, &x);

float

• Typically 4 bytes storage.

• Output a float: printf(“%f ”, x);

• Input a float: scanf(“%f ”, &x);

• How are fractions stored?

Binary vs decimal fractions

• (10.11)2 = (1 × 2) + (0 × 1) + (1 × 1
2) + (1 × 1

22
) = (2.75)10

• (0.90625)10 = ()2
• (0.9)10 = ()2

Binary vs decimal fractions

• (10.11)2 = (1 × 2) + (0 × 1) + (1 × 1
2) + (1 × 1

22
) = (2.75)10

• (0.90625)10 = ()2
• (0.9)10 = ()2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 44

Convert (0.90625)10 to binary fraction
0.90625

 2

 0.8125 + integer part

1 2

 0 + integer part 1

Thus, (0.90625)10 = (0.11101)2

0.90625 = ½(1+0.8125)

= ½(1+ ½(1+0.625))

= ½(1+ ½(1+ ½(1+0.25)))

= ½(1+½(1+ ½(1+½(0+0.5))))

= ½(1+½(1+½(1+½(0+½(1+0.0)))))

= ½+1/22+1/23+0/24 +1/25

= (0.11101)2

Decimal Fraction Binary Fraction (1)

 0.625 + integer part

1 2

 0.25 + integer part

1 2

 0.5 + integer part

0 2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 45

Convert (0.9)10 to binary fraction
0.9

 2

 0.8 + integer part 0 Repetition

(0.9)10 = 0.11100110011001100 . . . = 0.11100

For some fractions, we do

not get 0.0 at any stage!

These fractions require an

infinite number of bits!

Cannot be represented

exactly!

Decimal Fraction Binary Fraction (2)

 0.8 + integer part 1

 2

 0.6 + integer part 1

 2
 0.2 + integer part 1

 2

 0.4 + integer part 0

 2

Binary vs decimal fractions

• (10.11)2 = (1× 21) + (0× 20) + (1× 1
2) + (1× 1

22
) = (2.75)10

• (0.90625)10 = (0.11101)2
• (0.9)10 = (0.111001110011100..)2

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa (fractional part).
• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa (fractional part).
• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa (fractional part).

• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Fixed point vs floating point representation

Fixed point

• Position of radix point is fixed and is same for all numbers.

• Lets say we have 3 digits after radix point.

• (0.120 × 0.120)10 = (0.014)10
• A digit is lost.

Floating point

• 1.20 × (10)−1 × 1.20 × (10)−1 = 1.44 × (10)−2

• Wider range of numbers can be represented.
• IEEE standard: 32 bits are split as follows:

• First bit for sign.
• Next 8 bits for exponent.
• Next 23 bits for mantissa (fractional part).
• (−39.9)10 = (−100111.11100)2 = (−1.0011111100)2 × 25.

Floats - different types

Output floats in C

printf(“ %w.p f ”, x);

• w.p is optional.

• w : total width of the field.

• p : precision (digits after decimal).

#include<stdio.h>

main() {

float x = 2.00123;

printf ("x = %5.4f\n", x);

printf ("x = %8.7f\n", x);

}

Output floats in C

printf(“ %w.p f ”, x);

• w.p is optional.

• w : total width of the field.

• p : precision (digits after decimal).

#include<stdio.h>

main() {

float x = 2.00123;

printf ("x = %5.4f\n", x);

printf ("x = %8.7f\n", x);

}

Circumference of circle

#include<stdio.h>

main() {

float radius;

float circum;

printf("Enter radius : ");

scanf("%f", &radius);

circum = 2* (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

}

• How to print output only upto 2 decimals?

Circumference of circle

#include<stdio.h>

main() {

float radius;

float circum;

printf("Enter radius : ");

scanf("%f", &radius);

circum = 2* (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

}

• How to print output only upto 2 decimals?

Circumference of circle – formatted output

#include<stdio.h>

main() {

float radius;

float circum;

printf("Enter radius : ");

scanf("%f", &radius);

circum = 2* (22.0/7) * radius;

printf ("radius = %5.2f, circum = %5.2f\n", radius, circum);

}

Output statement

printf (format-string, var1, var2, ..., varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• How many columns to use for printing? (width)

• What is the precision? (if applicable)
• Common mistakes:

• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.

Output statement

printf (format-string, var1, var2, ..., varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• How many columns to use for printing? (width)

• What is the precision? (if applicable)

• Common mistakes:
• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.

Output statement

printf (format-string, var1, var2, ..., varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• How many columns to use for printing? (width)

• What is the precision? (if applicable)
• Common mistakes:

• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.

Formatted output

printf (‘‘%w.pC", x);

• w, p and C are place holders, can take different values.

• w: width of the output. (optional)

• p: precision of the output. (optional)
• C: Conversion character.

• d : integer
• f : float
• c : character
• x : hexadecimal
• o : octal
• u : unsigned int
• e : real decimal in exponent form

Formatted output

printf (‘‘%w.pC", x);

• w, p and C are place holders, can take different values.

• w: width of the output. (optional)

• p: precision of the output. (optional)
• C: Conversion character.

• d : integer
• f : float
• c : character
• x : hexadecimal
• o : octal
• u : unsigned int
• e : real decimal in exponent form

Formatted output

printf (‘‘%w.pC", x);

• w, p and C are place holders, can take different values.

• w: width of the output. (optional)

• p: precision of the output. (optional)
• C: Conversion character.

• d : integer
• f : float
• c : character
• x : hexadecimal
• o : octal
• u : unsigned int
• e : real decimal in exponent form

Input Statement

scanf (format-string, &var1,&var2, ...,&varn)

Format string specifies

• How many variables to expect?

• Type of each variable.
• Common mistakes:

• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.
• & missing before the variable.

Input Statement

scanf (format-string, &var1,&var2, ...,&varn)

Format string specifies

• How many variables to expect?

• Type of each variable.

• Common mistakes:
• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.
• & missing before the variable.

Input Statement

scanf (format-string, &var1,&var2, ...,&varn)

Format string specifies

• How many variables to expect?

• Type of each variable.
• Common mistakes:

• comma missing after the double quotes.
• mismatch in the actual number of variables given and those

expected in the format string.
• & missing before the variable.

Learnings so far..

• Variables in C.

• Data types in C - how they are stored. Why a programmer
should be worried.

• Arithmetic operators. Precedence of operators.

• Assignment operator “=”

• Formatting the input and output - the printf and scanf

• What is coming up?
• Compilation and Exection of C-programs.
• More Programming.

Learnings so far..

• Variables in C.

• Data types in C - how they are stored. Why a programmer
should be worried.

• Arithmetic operators. Precedence of operators.

• Assignment operator “=”

• Formatting the input and output - the printf and scanf

• What is coming up?
• Compilation and Exection of C-programs.
• More Programming.

Learnings so far..

• Variables in C.

• Data types in C - how they are stored. Why a programmer
should be worried.

• Arithmetic operators. Precedence of operators.

• Assignment operator “=”

• Formatting the input and output - the printf and scanf

• What is coming up?
• Compilation and Exection of C-programs.
• More Programming.

Learnings so far..

• Variables in C.

• Data types in C - how they are stored. Why a programmer
should be worried.

• Arithmetic operators. Precedence of operators.

• Assignment operator “=”

• Formatting the input and output - the printf and scanf

• What is coming up?
• Compilation and Exection of C-programs.
• More Programming.

Learnings so far..

• Variables in C.

• Data types in C - how they are stored. Why a programmer
should be worried.

• Arithmetic operators. Precedence of operators.

• Assignment operator “=”

• Formatting the input and output - the printf and scanf

• What is coming up?
• Compilation and Exection of C-programs.
• More Programming.

Learnings so far..

• Variables in C.

• Data types in C - how they are stored. Why a programmer
should be worried.

• Arithmetic operators. Precedence of operators.

• Assignment operator “=”

• Formatting the input and output - the printf and scanf

• What is coming up?
• Compilation and Exection of C-programs.
• More Programming.

