CS1100 — Introduction to Programming

Lecture 4

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y

® Xty =12 Incorrect form

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

Multiple assignments.
*x=y=z=(a+b)
® evaluations happen right to left.

Assignment operator =

Form: variable-name = expression
o 7 — x—|-y
® Xty =12 Incorrect form

® Assignment between different data types.
® What happens if you assign float to int and vice versa?

® Multiple assignments.
*x=y=z=(a+b)
® evaluations happen right to left.
® x = x + 10 can be written as x += 10;
® instead of +, we can also have -, *, /, %

Exercises

Write a program that reads an integer from the input and prints 0
if the integer is even and 1 if the integer is odd.

Write a program that takes as input a 3 digit integer, separates the
digits of the integer and prints the individual digits separated by
spaces.

For example if the input is 194, then your program must print
194

Integers in C and Storage

® We have used int and float data types till now.

Integers in C and Storage

® We have used int and float data types till now.

® An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

Integers in C and Storage

® We have used int and float data types till now.

® An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

® |n the 2s complement form this allows storage of values from

255215 1

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.
What other data type can we use to store integers?

Integers in C and Storage

We have used int and float data types till now.

An integer variable is assigned 2 bytes (16 bits) to be stored.
(Sometimes 4 bytes).

In the 2s complement form this allows storage of values from
—2P o2 1

—32,768 to 32,767

There are limits to representation - we better choose the right
type.
What other data type can we use to store integers?

unsigned int, long, unsigned long.

unsigned int

Typically 4 bytes storage.
Output an unsigned int: printf(“%u”, x);
Input an unsigned int: scanf(“%u", &x);

Storage: binary format.

The Integers - The detailed Chart

int
unsigned int
short
unsigned short

long

unsigned long

2 or 4 bytes

2 or 4 bytes
2 bytes
2 bytes
4 bytes

4 bytes

-32,768 to 32,767 or -2,147,483,648 t0

2,147,483,647

0to 65,535 or 0 to 4,294,967,295

-32,768 10 32,767

0 to 65,535

-2,147,483,648 t0 2,147 ,483,647

0to 4,294,967,285

char

® Typically 1 byte storage.

® Every character has a unique code assigned to it (ASCII code).
A =65 B =066

char

Typically 1 byte storage.

Every character has a unique code assigned to it (ASCII code).
A =65 B =066

Output a character: printf(“%c", x);

Input a character: scanf(“%c", &x);

float

Typically 4 bytes storage.
Output a float: printf(“%f ", x);
Input a float: scanf(“%f ", &x);

How are fractions stored?

Binary vs decimal fractions

° (1011)2=(1x2)+ (0 x 1)+ (1 x 3)+ (1 X %) =(2.75)10

Binary vs decimal fractions

° (1011)2=(1x2)+ (0 x 1)+ (1 x 3)+ (1 X %) =(2.75)10
® (0.90625)10 =()2
° (0.9)10 =)2

Decimal Fraction — Binary Fraction (1)

Convert (0.90625),, to binary fraction

0.90625
X 2

0.8125 + integer part
1 X 2
0.625 + integer part

1 X 2
0.25 + integer part

1 X 2
0.5 + integer part

0 X 2

0 + integer part 1

Thus, (0.90625),, = (0.11101),

SD, PSK, NSN, DK, TAG - CS&E, IIT M

0.90625 = %(1+0.8125)

=51+ %(1+0.625))

= 5(1+ %1+ %(1+0.25)))
=5(1+5(1+ %(1+5(0+0.5))))

= 5(1+5(1+5(1+5(0+5(1+0.0)))))
= 14 +1/22+1/23+0/24 +1/25
=(0.11101),

44

Decimal Fraction — Binary Fraction (2)

Convert (0.9),, to binary fraction

0.9
X 2 .

) For some fractions, we do
0.8 + integer part 1
%2 not get 0.0 at any stage!
0.6 + integerpart 1 These fractions require an
% 2 infinite number of bits!
0.2 + integerpart 1 Cannot be represented
X 2 exactly!
0.4 + integer part 0
X 2

0.8 + integer part 0 Repetition

(0.9),,=0.11100110011001100 ... =0.11100

SD, PSK, NSN, DK, TAG — CS&E, IIT M 45

Binary vs decimal fractions

° (10.11); = (1 x21) + (0% 2%) + (1 x 2) + (1 x &) = (2.75)10
® (0.90625)19 = (0.11101),
® (0.9)10 = (0.111001110011100..),

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.

® |ets say we have 3 digits after radix point.

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point
® 1.20 x (10)7! x 1.20 x (10)~! = 1.44 x (10)~2
® Wider range of numbers can be represented.

o |EEE standard: 32 bits are split as follows:

® First bit for sign.
® Next 8 bits for exponent.
® Next 23 bits for mantissa (fractional part).

Fixed point vs floating point representation

Fixed point
® Position of radix point is fixed and is same for all numbers.
® |ets say we have 3 digits after radix point.
e (0.120 x 0.120)109 = (0.014)19
e A digit is lost.

Floating point
® 1.20 x (10)7! x 1.20 x (10)~! = 1.44 x (10)~2
® Wider range of numbers can be represented.

o |EEE standard: 32 bits are split as follows:

® First bit for sign.

® Next 8 bits for exponent.

® Next 23 bits for mantissa (fractional part).

® (—39.9);0 = (—100111.11100), = (—1.0011111100), x 2°.

Floats - different types

Type Storage size Value range
float 4 byte 1.2E-38 to 3.4E+38
double 8 byte 2.3E-308 to 1.7E+308

long double 10 byte 3.4E-4932 to 1.1E+4932

Output floats in C

printf(" Y%w.p f ", x);
® w.p is optional.
® w : total width of the field.

® p: precision (digits after decimal).

Output floats in C

printf(" Y%w.p f ", x);
® w.p is optional.
® w : total width of the field.
® p: precision (digits after decimal).

#include<stdio.h>
main() {

float x = 2.00123;
printf ("x = 5.4f\n", x);
printf ("x = %8.7f\n", x);

Circumference of circle

#include<stdio.h>

main() {
float radius;
float circum;

printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

Circumference of circle

#include<stdio.h>
main() {
float radius;
float circum;
printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %f, circum = %f\n", radius, circum);

® How to print output only upto 2 decimals?

Circumference of circle — formatted output

#include<stdio.h>

main() {
float radius;
float circum;

printf ("Enter radius : ");
scanf ("%f", &radius);

circum = 2% (22.0/7) * radius;

printf ("radius = %5.2f, circum = %5.2f\n", radius, ci:

Output statement

printf (format-string, vari,varo,...,varp)

Output statement

printf (format-string, vari,varo,...,varp)

Format string specifies
® How many variables to expect?
® Type of each variable.
® How many columns to use for printing? (width)
® What is the precision? (if applicable)

Output statement

printf (format-string, vari,varo,...,varp)

Format string specifies
® How many variables to expect?
® Type of each variable.
® How many columns to use for printing? (width)

What is the precision? (if applicable)
e Common mistakes:

® comma missing after the double quotes.
® mismatch in the actual number of variables given and those
expected in the format string.

Formatted output

[printf (““%w.pC", x);

Formatted output

’ printf (‘‘%w.pC", x);

w, p and C are place holders, can take different values.
w: width of the output. (optional)

p: precision of the output. (optional)
C: Conversion character.

Formatted output

’ printf (‘‘%w.pC", x);

w, p and C are place holders, can take different values.

w: width of the output. (optional)

p: precision of the output. (optional)

C: Conversion character.

e 6 6 o o o o
® O X O —h

d:
. float

: character

: hexadecimal

. octal

. unsigned int

. real decimal in exponent form

integer

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Format string specifies
® How many variables to expect?

® Type of each variable.

Input Statement

scanf (format-string, &vari,&vary,...,&var,)

Format string specifies
® How many variables to expect?
® Type of each variable.
® Common mistakes:

® comma missing after the double quotes.

® mismatch in the actual number of variables given and those
expected in the format string.

® & missing before the variable.

® Variables in C.

Learnings so far..

® Variables in C.

® Data types in C - how they are stored. Why a programmer
should be worried.

Learnings so far..

® Variables in C.

® Data types in C - how they are stored. Why a programmer
should be worried.

® Arithmetic operators. Precedence of operators.

Learnings so far..

Variables in C.

Data types in C - how they are stored. Why a programmer
should be worried.

Arithmetic operators. Precedence of operators.

Assignment operator “=

Learnings so far..

Variables in C.

Data types in C - how they are stored. Why a programmer

should be worried.
Arithmetic operators. Precedence of operators.

Assignment operator “=

Formatting the input and output - the printf and scanf

Learnings so far..

Variables in C.

Data types in C - how they are stored. Why a programmer
should be worried.
Arithmetic operators. Precedence of operators.

Assignment operator “=

Formatting the input and output - the printf and scanf
What is coming up?

® Compilation and Exection of C-programs.

® More Programming.

