
Linked List

Slides Credit: IIT KGP
https://cse.iitkgp.ac.in/pds/semester/2016a/

1

Introduction
• A linked list is a data structure which can change

during execution.
– Successive elements are connected by pointers.
– Last element points to NULL.
– It can grow or shrink in size during execution of a

program.
– It can be made just as long as required.
– It does not waste memory space.

2

A B C

head

• Keeping track of a linked list:
– Must know the pointer to the first element of the

list (called start, head, etc.).

• Linked lists provide flexibility in allowing the
items to be rearranged efficiently.
– Insert an element.
– Delete an element.

3

Illustration: Insertion

4

AA

Item to be
inserted

X

X

A B C

B C

curr

tmp

Pseudo-code for insertion

5

typedef struct nd {
 struct item data;
 struct nd * next;
 } node;

void insert(node *curr)
{
node * tmp;

tmp=(node *) malloc(sizeof(node));
tmp->next=curr->next;
curr->next=tmp;
}

Illustration: Deletion

6

A B

A B C

C

Item to be deleted

curr tmp

Pseudo-code for deletion

7

typedef struct nd {
 struct item data;
 struct nd * next;
 } node;

void delete(node *curr)
{
node * tmp;
 tmp=curr->next;
curr->next=tmp->next;
free(tmp);
}

In essence ...
• For insertion:
– A record is created holding the new item.
– The next pointer of the new record is set to link it to

the item which is to follow it in the list.
– The next pointer of the item which is to precede it

must be modified to point to the new item.

• For deletion:
– The next pointer of the item immediately preceding

the one to be deleted is altered, and made to point
to the item following the deleted item.

8

Array versus Linked Lists
• Arrays are suitable for:
– Inserting/deleting an element at the end.
– Randomly accessing any element.
– Searching the list for a particular value.

• Linked lists are suitable for:
– Inserting an element.
– Deleting an element.
– Applications where sequential access is required.
– In situations where the number of elements cannot

be predicted beforehand.

9

Types of Lists

• Depending on the way in which the links are
used to maintain adjacency, several different
types of linked lists are possible.

– Linear singly-linked list (or simply linear list)
• One we have discussed so far.

10

A B C

head

– Circular linked list
• The pointer from the last element in the list points back

to the first element.

11

A B C

head

– Doubly linked list
• Pointers exist between adjacent nodes in both

directions.
• The list can be traversed either forward or backward.
• Usually two pointers are maintained to keep track of

the list, head and tail.

12

A B C

head tail

Basic Operations on a List

• Creating a list
• Traversing the list
• Inserting an item in the list
• Deleting an item from the list
• Concatenating two lists into one

13

Example: Working with linked list
• Consider the structure of a node as follows:

struct stud {
 int roll;
 char name[25];
 int age;
 struct stud *next;
 };

 /* A user-defined data type called “node” */
typedef struct stud node;
node *head;

14

Creating a List

15

How to begin?
• To start with, we have to create a node (the

first node), and make head point to it.

head = (node *)
malloc(sizeof(node));

16

head

age

name

roll

next

Contd.

• If there are n number of nodes in the initial
linked list:
– Allocate n records, one by one.
– Read in the fields of the records.
– Modify the links of the records so that the chain is

formed.

17

A B C

head

node *create_list()
{
 int k, n;
 node *p, *head;

 printf ("\n How many elements to enter?");
 scanf ("%d", &n);

 for (k=0; k<n; k++)
 {
 if (k == 0) {
 head = (node *) malloc(sizeof(node));
 p = head;
 }
 else {
 p->next = (node *) malloc(sizeof(node));
 p = p->next;
 }

 scanf ("%d %s %d", &p->roll, p->name, &p->age);
 }

 p->next = NULL;
 return (head);
}

18

• To be called from main() function as:

 node *head;

 ………

 head = create_list();

19

Traversing the List

20

What is to be done?

• Once the linked list has been constructed and
head points to the first node of the list,
– Follow the pointers.
– Display the contents of the nodes as they are

traversed.
– Stop when the next pointer points to NULL.

21

void display (node *head)
{
 int count = 1;
 node *p;

 p = head;
 while (p != NULL)
 {
 printf ("\nNode %d: %d %s %d", count,
 p->roll, p->name, p->age);
 count++;
 p = p->next;
 }
 printf ("\n");
}

22

• To be called from main() function as:

 node *head;

 ………

 display (head);

23

Inserting a Node in a List

24

How to do?

• The problem is to insert a node before a
specified node.
– Specified means some value is given for the node

(called key).
– In this example, we consider it to be roll.

• Convention followed:
– If the value of roll is given as negative, the node

will be inserted at the end of the list.

25

Contd.
• When a node is added at the beginning,
– Only one next pointer needs to be modified.

• head is made to point to the new node.
• New node points to the previously first element.

• When a node is added at the end,
– Two next pointers need to be modified.

• Last node now points to the new node.
• New node points to NULL.

• When a node is added in the middle,
– Two next pointers need to be modified.

• Previous node now points to the new node.
• New node points to the next node.

26

27

void insert (node **head)
{
 int k = 0, rno;
 node *p, *q, *new;

 new = (node *) malloc(sizeof(node));

 printf ("\nData to be inserted: ");
 scanf ("%d %s %d", &new->roll, new->name, &new->age);
 printf ("\nInsert before roll (-ve for end):");
 scanf ("%d", &rno);

 p = *head;

 if (p->roll == rno) /* At the beginning */
 {
 new->next = p;
 *head = new;
 }

28

else
 {
 while ((p != NULL) && (p->roll != rno))
 {
 q = p;
 p = p->next;
 }

 if (p == NULL) /* At the end */
 {
 q->next = new;
 new->next = NULL;
 }
 else if (p->roll == rno)
 /* In the middle */
 {
 q->next = new;
 new->next = p;
 }
 }
}

The pointers
q and p
always point
to consecutive
nodes.

• To be called from main() function as:

 node *head;

 ………

 insert (&head);

29

Deleting a node from the list

30

What is to be done?

• Here also we are required to delete a specified
node.
– Say, the node whose roll field is given.

• Here also three conditions arise:
– Deleting the first node.
– Deleting the last node.
– Deleting an intermediate node.

31

32

void delete (node **head)
{
 int rno;
 node *p, *q;

 printf ("\nDelete for roll :");
 scanf ("%d", &rno);

 p = *head;
 if (p->roll == rno)
 /* Delete the first element */
 {
 *head = p->next;
 free (p);
 }

33

else
 {
 while ((p != NULL) && (p->roll != rno))
 {
 q = p;
 p = p->next;
 }

 if (p == NULL) /* Element not found */
 printf ("\nNo match :: deletion failed");

 else if (p->roll == rno)
 /* Delete any other element */
 {
 q->next = p->next;
 free (p);
 }
 }
}

Few Exercises to Try Out
• Write a function to:
– Concatenate two given list into one big list.

 node *concatenate (node *head1, node *head2);
– Insert an element in a linked list in sorted order.

The function will be called for every element to
be inserted.

 void insert_sorted (node **head, node *element);
– Always insert elements at one end, and delete

elements from the other end (first-in first-out
QUEUE).

 void insert_q (node **head, node *element)
 node *delete_q (node **head) /* Return the deleted node */

34

