
CS1100 – Introduction to Programming

Lecture 3

Instructor: Shweta Agrawal (shweta.a@cse.iitm.ac.in)



Goals for the day

• Edit, compile and execute the first C program.
• Get simple yet useful tasks done via C programs.

• Add a set of numbers.
• Find roots of a quadratic equation.
• Multiply 2 polynomials.

• Learn the syntax of C language.
• Basics – structure of a C program, using standard library.
• How to store data – variables, data types.
• How to get inputs, how to print outputs?

• Learn about the working environment (Linux based OS).
• editors – gedit and others.
• compiler – gcc.
• executing a compiled program.



Goals for the day

• Edit, compile and execute the first C program.
• Get simple yet useful tasks done via C programs.

• Add a set of numbers.
• Find roots of a quadratic equation.
• Multiply 2 polynomials.

• Learn the syntax of C language.
• Basics – structure of a C program, using standard library.
• How to store data – variables, data types.
• How to get inputs, how to print outputs?

• Learn about the working environment (Linux based OS).
• editors – gedit and others.
• compiler – gcc.
• executing a compiled program.



Goals for the day

• Edit, compile and execute the first C program.
• Get simple yet useful tasks done via C programs.

• Add a set of numbers.
• Find roots of a quadratic equation.
• Multiply 2 polynomials.

• Learn the syntax of C language.
• Basics – structure of a C program, using standard library.
• How to store data – variables, data types.
• How to get inputs, how to print outputs?

• Learn about the working environment (Linux based OS).
• editors – gedit and others.
• compiler – gcc.
• executing a compiled program.



First C program

#include <stdio.h>

/* My first C program */

main() {

printf("Hello World!\n");

}

• stdio.h : standard library of input and output.

• main : a function that every C program must have.

• printf : a useful library function to print several things in C.

To do anything more useful than merely printing we need to have
more operations / commands and storage to store temporary
computations.



First C program

#include <stdio.h>

/* My first C program */

main() {

printf("Hello World!\n");

}

• stdio.h : standard library of input and output.

• main : a function that every C program must have.

• printf : a useful library function to print several things in C.

To do anything more useful than merely printing we need to have
more operations / commands and storage to store temporary
computations.



First C program

#include <stdio.h>

/* My first C program */

main() {

printf("Hello World!\n");

}

• stdio.h : standard library of input and output.

• main : a function that every C program must have.

• printf : a useful library function to print several things in C.

To do anything more useful than merely printing we need to have
more operations / commands and storage to store temporary
computations.



Variables in C

Add 2 numbers x and y and store the value in z .
• Define two variables x and y .

• What type of values can x and y take?

integer, positive integers, fractions?

• What do x and y represent?
Say marks in Maths and marks in Physics respectively.

• Use the + operator defined to sum up the values of x and y .

• Use an assignment operator to store the value in z .



Variables in C

Add 2 numbers x and y and store the value in z .
• Define two variables x and y .

• What type of values can x and y take?
integer, positive integers, fractions?

• What do x and y represent?
Say marks in Maths and marks in Physics respectively.

• Use the + operator defined to sum up the values of x and y .

• Use an assignment operator to store the value in z .



Variables in C

Add 2 numbers x and y and store the value in z .
• Define two variables x and y .

• What type of values can x and y take?
integer, positive integers, fractions?

• What do x and y represent?

Say marks in Maths and marks in Physics respectively.

• Use the + operator defined to sum up the values of x and y .

• Use an assignment operator to store the value in z .



Variables in C

Add 2 numbers x and y and store the value in z .
• Define two variables x and y .

• What type of values can x and y take?
integer, positive integers, fractions?

• What do x and y represent?
Say marks in Maths and marks in Physics respectively.

• Use the + operator defined to sum up the values of x and y .

• Use an assignment operator to store the value in z .



Variables in C

Add 2 numbers x and y and store the value in z .
• Define two variables x and y .

• What type of values can x and y take?
integer, positive integers, fractions?

• What do x and y represent?
Say marks in Maths and marks in Physics respectively.

• Use the + operator defined to sum up the values of x and y .

• Use an assignment operator to store the value in z .



Variables in C

Add 2 numbers x and y and store the value in z .
• Define two variables x and y .

• What type of values can x and y take?
integer, positive integers, fractions?

• What do x and y represent?
Say marks in Maths and marks in Physics respectively.

• Use the + operator defined to sum up the values of x and y .

• Use an assignment operator to store the value in z .



Sum of 2 numbers

#include <stdio.h>

/* sum 2 integers */

main() {

int x;

int y;

int z;

z = x+y;

printf("%d\n", z);

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?

• Initialization or reading of x
and y missing.



Sum of 2 numbers

#include <stdio.h>

/* sum 2 integers */

main() {

int x;

int y;

int z;

z = x+y;

printf("%d\n", z);

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?

• Initialization or reading of x
and y missing.



Sum of 2 numbers

#include <stdio.h>

/* sum 2 integers */

main() {

int x;

int y;

int z;

z = x+y;

printf("%d\n", z);

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?

• Initialization or reading of x
and y missing.



Sum of 2 numbers

#include <stdio.h>

/* sum 2 integers */

main() {

int x;

int y;

int z;

z = x+y;

printf("%d\n", z);

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?

• Initialization or reading of x
and y missing.



Sum of 2 numbers

#include <stdio.h>

/* sum 2 integers */

main() {

int x;

int y;

int z;

z = x+y;

printf("%d\n", z);

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?

• Initialization or reading of x
and y missing.



Sum of 2 numbers – with initialization

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?



Sum of 2 numbers – with initialization

#include <stdio.h>

/* sum 2 integers */

main() {

int x = 98;

int y = 99;

int z;

z = x+y;

printf("%d\n", z);

}

• int : defines that x , y , z are
of type integers.

• z = x+y : evaluates x+y
and stores it in z.

• What will be output if we
print z?



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =



Input statement: scanf

scanf(format-string, &var1, &var2, ... , &var3);

• scanf is a function which allows us to accept inputs.

• Usually functions take fixed number of parameters/
arguments.

• scanf takes variable number of arguments.

• Notice the & preceeding the variables.



Weighted sum of 2 numbers

• Recall x denotes marks in Maths, y denotes marks in Physics.

• We wish to calculate weighted total such that Maths marks
are given 30% weightage and Physics marks are given 70%
weightage.

• z = 30
100x + 70

100y .



Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

int total;

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%d\n", total);

}

• What is the output of the program?

• Is the variable total still guaranteed to be an integer?



Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

int total;

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%d\n", total);

}

• What is the output of the program?

• Is the variable total still guaranteed to be an integer?



Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

int total;

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%d\n", total);

}

• What is the output of the program?

• Is the variable total still guaranteed to be an integer?



Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%f\n", total); /* change here */

}

• What is the output of the program?

• 30
100 and 70

100 evaluate to 0 and therefore total is zero.



Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%f\n", total); /* change here */

}

• What is the output of the program?

• 30
100 and 70

100 evaluate to 0 and therefore total is zero.



Weighted sum of 2 numbers

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total; /* float variable */

total = (30/100)*mathMarks + (70/100)*phyMarks;

printf("%f\n", total); /* change here */

}

• What is the output of the program?

• 30
100 and 70

100 evaluate to 0 and therefore total is zero.



Weighted sum of 2 numbers – a correct program

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;

printf("%f\n", total);

}

• What is the output of the program?



Weighted sum of 2 numbers – a correct program

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;

printf("%f\n", total);

}

• What is the output of the program?



Weighted sum of 2 numbers – a correct program

#include <stdio.h>

/* weighted sum 2 integers */

main() {

int mathMarks = 98;

int phyMarks = 99;

float total;

total = (30.0/100)*mathMarks + (70.0/100)*phyMarks;

printf("%f\n", total);

}

• What is the output of the program?



Learnings so far..

• C allows different kinds of variables to be declared.

• C defines arithmetic operators, like +, -, *, /,...

• Assignment operator “=”: used to change contents of a
variable.

• Have meaningful names for variables
mathMarks, phyMarks, total
choose variable names to be indicative – good programming practice

avoid reserved words like int, float, .. as variable names.



Exercise: Swap two integers

• Two integers x and y contain 10 and 20 respec.

• Need to exchange values in x and y .
swap two integers.

• Write a C program to do the same.



Swap – fill in correct code

#include<stdio.h>

main() {

int x, y;

printf("Enter x:");

scanf("%d", &x);

printf("Enter y:");

scanf("%d", &y);

/* Fill in code here */

printf("x = %d\n", x);

printf("y = %d\n", y);

}



Variable modification

• A C program is a sequence of commands that modify different
variables using different operators.

• Basic operators in C.
• Operator precedence and associativity.

• Basic data types in C.
• How much space does a particular data type take?
• How to input and output variables of a particular type?



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;
total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g
z = a + (((b * c) * d) % e) - (f / g)



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;
total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g
z = a + (((b * c) * d) % e) - (f / g)



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;
total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g
z = a + (((b * c) * d) % e) - (f / g)



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;
total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g
z = a + (((b * c) * d) % e) - (f / g)



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;

total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g
z = a + (((b * c) * d) % e) - (f / g)



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;
total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g
z = a + (((b * c) * d) % e) - (f / g)



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;
total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g

z = a + (((b * c) * d) % e) - (f / g)



Basic operators in C

• Arithmetic operators: +, -, *, /

• Modulus operator: %
x % y : remainder when x is divided by y .

• Assignment operator: =

Operator precedence:

• first: parenthesized sub-expression; inner-most to outer-most.

• second: *, /, % ; left to right.

• third: +, - ; left to right.

• total = 30 / 100 * mathMarks + 70 / 100 * phyMarks;
total = ((30 / 100) * mathMarks) + ((70 / 100) * phyMarks);

• z = a + b * c * d % e - f / g
z = a + (((b * c) * d) % e) - (f / g)



Increment / decrement operators

• ++, - -

• prefix and post-fix only to a variable.

#include<stdio.h>

main() {

int x, y;

int n = 10;

x = n++;

y = ++n;

printf(" x = %d, y = %d\n", x, y);

}

Output: x=10, n=12, y=12.



Increment / decrement operators

• ++, - -

• prefix and post-fix only to a variable.

#include<stdio.h>

main() {

int x, y;

int n = 10;

x = n++;

y = ++n;

printf(" x = %d, y = %d\n", x, y);

}

Output: x=10, n=12, y=12.



Increment / decrement operators

• ++, - -

• prefix and post-fix only to a variable.

#include<stdio.h>

main() {

int x, y;

int n = 10;

x = n++;

y = ++n;

printf(" x = %d, y = %d\n", x, y);

}

Output: x=10, n=12, y=12.


