
CS1100 – Introduction to Programming

Instructor: Shweta Agrawal
Lecture 25

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

• Arrays and Strings in C.

• Functions & modular programming.

• Recursion.

So far...

• Pointers in C, Pass by reference

• Dynamic memory allocation

• Structures in C

 Up Next...

CS1100 – Introduction to Programming

Instructor: Shweta Agrawal
Lecture 25

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

• Arrays and Strings in C.

• Functions & modular programming.

• Recursion.

So far...

• Pointers in C, Pass by reference

• Dynamic memory allocation

• Structures in C

 Up Next...

CS1100 – Introduction to Programming

Instructor: Shweta Agrawal
Lecture 25

• Data Types in C, Operators. Input and the
Output.

• Modifying the control flow in Programs
if-else, switch, loops : while, do-while,
for.

• Arrays and Strings in C.

• Functions & modular programming.

• Recursion.

So far...

• Pointers in C, Pass by reference

• Dynamic memory allocation

• Structures in C

 Up Next...

Pointers – Recap

• int count; – names a memory cell called count.

• Throughout the program the same memory cell gets accessed
when we access count.

• The address of count is called its `-value.

• The value of count (its r -value) may change during the course
of the program.

• int *countptr; – names a memory cell called countptr.

• Throughout the program the same memory cell gets accessed
when we access countptr as `-value.

• However different cells may get accessed when we access
countptr as r -value which is the `-value of some other
variable.

Pointers – Recap

• int count; – names a memory cell called count.

• Throughout the program the same memory cell gets accessed
when we access count.

• The address of count is called its `-value.

• The value of count (its r -value) may change during the course
of the program.

• int *countptr; – names a memory cell called countptr.

• Throughout the program the same memory cell gets accessed
when we access countptr as `-value.

• However different cells may get accessed when we access
countptr as r -value which is the `-value of some other
variable.

Pointers – Recap

• int count; – names a memory cell called count.

• Throughout the program the same memory cell gets accessed
when we access count.

• The address of count is called its `-value.

• The value of count (its r -value) may change during the course
of the program.

• int *countptr; – names a memory cell called countptr.

• Throughout the program the same memory cell gets accessed
when we access countptr as `-value.

• However different cells may get accessed when we access
countptr as r -value which is the `-value of some other
variable.

Pointers – Recap

• int count; – names a memory cell called count.

• Throughout the program the same memory cell gets accessed
when we access count.

• The address of count is called its `-value.

• The value of count (its r -value) may change during the course
of the program.

• int *countptr; – names a memory cell called countptr.

• Throughout the program the same memory cell gets accessed
when we access countptr as `-value.

• However different cells may get accessed when we access
countptr as r -value

which is the `-value of some other
variable.

Pointers – Recap

• int count; – names a memory cell called count.

• Throughout the program the same memory cell gets accessed
when we access count.

• The address of count is called its `-value.

• The value of count (its r -value) may change during the course
of the program.

• int *countptr; – names a memory cell called countptr.

• Throughout the program the same memory cell gets accessed
when we access countptr as `-value.

• However different cells may get accessed when we access
countptr as r -value which is the `-value of some other
variable.

An Application : Passing Parameters to Functions

A correct swap function :

#include<stdio.h>

void swap(int *p1, int *p2)

{

int t;

t = *p1;

*p1 = *p2;

*p2 = t;

}

int main()

{

int a = 10, b = 20;

swap(&a, &b);

printf("%d %d",a,b);

}

Incorrect Version :

#include<stdio.h>

void swap(int *p1, int *p2)

{

int *temp;

temp = p1;

p1 = p2;

p2 = temp;

}

int main()

{

int a = 10, b = 20;

swap(&a, &b);

printf("%d %d\n",a,b);

}

An Application : Passing Parameters to Functions

A correct swap function :

#include<stdio.h>

void swap(int *p1, int *p2)

{

int t;

t = *p1;

*p1 = *p2;

*p2 = t;

}

int main()

{

int a = 10, b = 20;

swap(&a, &b);

printf("%d %d",a,b);

}

Incorrect Version :

#include<stdio.h>

void swap(int *p1, int *p2)

{

int *temp;

temp = p1;

p1 = p2;

p2 = temp;

}

int main()

{

int a = 10, b = 20;

swap(&a, &b);

printf("%d %d\n",a,b);

}

Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}

Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?

How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}

Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?

• Use char* Names[3]
• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}

Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}

Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}

Array of pointers

Goal: We wish to store the names of three students in our class –
“Sai”, “Narasimhan”, “Lakshmi” in some appropriate data-type.

• What data-structure will you use?
How about char Names[3][11]?
• Use char* Names[3]

• “Names” is an array of pointers to characters.

#include<stdio.h>

main() {

char *Names[3]={"Sai", "Narasimhan", "Lakshmi"};

int i;

for (i=0; i<3; i++) {

printf("%s\n",Names[i]);

}

}

An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {

char *Names[3];

int i;

for (i=0; i<3; i++) {

printf("Enter Name %d\t", i+1);

scanf("%s", Names[i]);

}

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.

An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {

char *Names[3];

int i;

for (i=0; i<3; i++) {

printf("Enter Name %d\t", i+1);

scanf("%s", Names[i]);

}

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.

An array of pointers

Goal: Read the three names from standard input.

#include<stdio.h>

main() {

char *Names[3];

int i;

for (i=0; i<3; i++) {

printf("Enter Name %d\t", i+1);

scanf("%s", Names[i]);

}

}

This program is incorrect! There is no memory allocated for
Names[i]. The program most likely gives a core dump.

An array of pointers – Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i] = temp;

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++) {

printf("String output %s\n",Names[i]);

}

}

This program is still in-
correct! All 3 array
locations point to the
same array temp.

An array of pointers – Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i] = temp;

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++) {

printf("String output %s\n",Names[i]);

}

}

This program is still in-
correct! All 3 array
locations point to the
same array temp.

An array of pointers – Another program

Goal: Read the three names from standard input.

#include<stdio.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i] = temp;

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++) {

printf("String output %s\n",Names[i]);

}

}

This program is still in-
correct! All 3 array
locations point to the
same array temp.

Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.

Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.

Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.

Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.

Allocating memory using malloc

• malloc – memory allocator – is a function that allocates
memory to the program and returns a pointer to that memory.

• int *ptr;

ptr = (int *) malloc(sizeof(int));

• The input to malloc is size of the memory required.

• malloc returns a pointer to the memory allocated – the type
of the pointer is (void *).

• Note the typecasting into (int *).

• Memory obtained using malloc is destroyed only when it is
explicitly freed or the program terminates.

• This is unlike variables which are unavailable outside their
scope.

An array of pointers – a correct program

Goal: Read the three names from standard input.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i]=(char *)malloc(sizeof(strlen(temp)));

strcpy(Names[i], temp);

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++)

printf("String output %s\n",Names[i]);

return 0;

}

Note the use of malloc and also the stdlib.h

An array of pointers – a correct program

Goal: Read the three names from standard input.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i]=(char *)malloc(sizeof(strlen(temp)));

strcpy(Names[i], temp);

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++)

printf("String output %s\n",Names[i]);

return 0;

}

Note the use of malloc and also the stdlib.h

An array of pointers – a correct program

Goal: Read the three names from standard input.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main() {

char *Names[3]; char temp[100]; int i;

for (i=0; i<3; i++) {

scanf("%s", temp);

Names[i]=(char *)malloc(sizeof(strlen(temp)));

strcpy(Names[i], temp);

printf("String input %s\n",Names[i]);

}

for (i=0; i<3; i++)

printf("String output %s\n",Names[i]);

return 0;

}

Note the use of malloc and also the stdlib.h

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18, 20}, {25, 26, 27}};
How to reference these elements using pointers?

In general, nums[i][j] is equivalent to *(*(nums+i)+j)

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18, 20}, {25, 26, 27}};
How to reference these elements using pointers?

In general, nums[i][j] is equivalent to *(*(nums+i)+j)

2D Arrays using pointers

Consider the following declaration:
int nums[2][3] = {{16, 18, 20}, {25, 26, 27}};
How to reference these elements using pointers?

In general, nums[i][j] is equivalent to *(*(nums+i)+j)

Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null

Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null

Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null

Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null

Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null

Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null

Some more practice

• Consider the following declaration:
char * ptr = “geek”;

• What is char x = *(ptr+3); ?

• Null Pointer: We can create a null pointer by assigning null
value during the pointer declaration.

• This method is useful when you do not have any address
assigned to the pointer.

• Declaration: int *p = NULL

• if(ptr) : succeeds if p is not null

• if(!ptr) : succeeds if p is null

More practice: Pointers and strings

#include <stdio.h>

#include <string.h>

int main()

{

char str[]="Hello Guru99!";

char *p;

p=str;

printf("First character is:%c\n",*p);

p =p+1;

printf("Next character is:%c\n",*p);

printf("Printing all the characters in a string\n");

p=str; //reset the pointer

for(int i=0;i<strlen(str);i++)

{

printf("%c\n",*p);

p++;

}

return 0;

}

