CS1100 - Introduction to Programming

Instructor:
Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 23

Recursion Example: The Binomial Coefficient

$\binom{n}{k}$ denotes :

Recursion Example: The Binomial Coefficient

$\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.

Recursion Example: The Binomial Coefficient

$\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.

Recursion Example: The Binomial Coefficient

$\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.
- Coefficient of x^{k} in the expansion of $(1+x)^{n}$.

Recursion Example: The Binomial Coefficient

$\binom{n}{k}$ denotes:

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.

Pascal's Triangle

- Coefficient of x^{k} in the expansion of $(1+x)^{n}$.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Task: Write a function which: given n and k computes $\binom{n}{k}$.

Recursion Example: The Binomial Coefficient

$\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.
- Coefficient of x^{k} in the expansion of $(1+x)^{n}$.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Task: Write a function which: given n and k computes $\binom{n}{k}$.

Pascal's Triangle

Pascal's Identity :

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Recursion Example: The Binomial Coefficient

$\binom{n}{k}$ denotes :

- Number of ways of choosing k items from a collection of n items.
- Number of subsets of size k of a set of size n.
- Coefficient of x^{k} in the expansion of $(1+x)^{n}$.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Task: Write a function which: given n and k computes $\binom{n}{k}$.

Pascal's Triangle

Pascal's Identity :

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Base : $\binom{n}{0}=\binom{n}{n}=1$.

Recursion Example: The Binomial Coefficient

$$
\operatorname{bin}(\mathrm{n}, \mathrm{k})=\left\{\begin{array}{l}
1 \text { if } k=0 \\
1 \text { if } n=k \\
\operatorname{bin}(\mathrm{n}-1, \mathrm{k}-1)+\operatorname{bin}(\mathrm{n}-1, \mathrm{k}) \quad \text { otherwise }
\end{array}\right.
$$

Recursion Example: The Binomial Coefficient

$$
\operatorname{bin}(\mathrm{n}, \mathrm{k})=\left\{\begin{array}{l}
1 \text { if } k=0 \\
1 \text { if } n=k \\
\operatorname{bin}(\mathrm{n}-1, \mathrm{k}-1)+\operatorname{bin}(\mathrm{n}-1, \mathrm{k}) \quad \text { otherwise }
\end{array}\right.
$$

```
int binom(int n, int k)
{
    if(k == 0 || n == k)
        return 1;
    int s = binom(n-1,k-1);
    int t = binom(n-1,k);
    return (s+t);
}
```


Recursion Example: The Binomial Coefficient

$$
\operatorname{bin}(\mathrm{n}, \mathrm{k})=\left\{\begin{array}{l}
1 \text { if } k=0 \\
1 \text { if } n=k \\
\operatorname{bin}(\mathrm{n}-1, \mathrm{k}-1)+\operatorname{bin}(\mathrm{n}-1, \mathrm{k}) \quad \text { otherwise }
\end{array}\right.
$$

```
int binom(int n, int k) #include<stdio.h>
{
    if(k == 0 || n == k)
        return 1;
    int s = binom(n-1,k-1);
    int t = binom(n-1,k);
    return (s+t);
}
```

```
int main()
```

int main()
{
{
int n,k;
int n,k;
printf("Entern n, k : ");
printf("Entern n, k : ");
scanf("%d %d",\&n,\&k);
scanf("%d %d",\&n,\&k);
printf("%d\n",binom(n,k));
printf("%d\n",binom(n,k));
return 0;
return 0;
}

```
}
```


Exercise : Print the Pascal's Triangle

$\binom{0}{0}$
(1) $\left.{ }_{(1)}^{1}\right)$
(2) (${ }_{1}^{2}$) (2)
(3) ${ }^{3}\binom{3}{1}\binom{3}{2}\binom{3}{3}$
$\begin{array}{llll}\binom{4}{0} & \binom{4}{1} & \binom{4}{2} & \binom{4}{3}\end{array}\binom{4}{4}$
(5) $\binom{5}{1}\binom{5}{2}\binom{5}{(5)}\binom{5}{4}\left(\begin{array}{l}(5) \\ 5\end{array}\right.$

Exercise: Print the Pascal's Triangle

\#include <stdio.h>
\#include <stdio.h>
int main()
\{
int i,j,n;
printf("Enter n :");
scanf("\%d",\&n);
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
\{
for ($\mathrm{j}=0 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++$) \{
printf("\%6d", binom(i,j));
\}
printf("\n");
\}

Recursion Example: Virahanka Numbers/Fibonacci Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2 . You want to construct a tower of height n. In how many ways can you do this? Let this number be V_{n}.

Recursion Example: Virahanka Numbers/Fibonacci Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2 . You want to construct a tower of height n. In how many ways can you do this? Let this number be V_{n}. Right answer comes from the right questions.

Recursion Example: Virahanka Numbers/Fibonacci Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2 . You want to construct a tower of height n. In how many ways can you do this? Let this number be V_{n}. Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2 ?

Recursion Example: Virahanka Numbers/Fibonacci Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2 . You want to construct a tower of height n. In how many ways can you do this? Let this number be V_{n}. Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

Recursion Example: Virahanka Numbers/Fibonacci Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2 . You want to construct a tower of height n. In how many ways can you do this? Let this number be V_{n}.
Right answer comes from the right questions.
Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).
Number of ways of

Number of ways of
building a tower of
height n
:---
of height a tower n with
bottom-most brick
of height 1
:---
bottom-most brick

of height 2.

Recursion Example: Virahanka Numbers/Fibonacci Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2. You want to construct a tower of height n. In how many ways can you do this? Let this number be V_{n}.
Right answer comes from the right questions.
Question: In any given arrangement, what is the bottom-most brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).
Number of ways of

Number of ways of
building a tower of
height n
:---
of height a tower n with
bottom-most brick
of height 1
:---
of height n with
bottom-most brick
of height 2.

That is, $V_{n}=V_{n-1}+V_{n-2}$ Nice!. But how do we compute V_{n}

Recursion Example: Virahanka Numbers

```
int Virahanka(int n)
{
    if(n == 1) return 1; // V_1
    if(n == 2) return 2; // V_2
    // returning V_{n-1} + V_{n-2}
    return Virahanka(n-1) + Virahanka(n-2);
}
```


Sorting an Array

Sorting an Array

- Iterative Thinking: We talked about selection sort.

Sorting an Array

- Iterative Thinking: We talked about selection sort.
- Recursive Thinking: Take out the last element, sort the first $n-1$ elements recursively, invoking the same function recursively. And then insert this last element in the right position.

Sorting an Array

- Iterative Thinking: We talked about selection sort.
- Recursive Thinking: Take out the last element, sort the first $n-1$ elements recursively, invoking the same function recursively. And then insert this last element in the right position. Hey, this is insertion sort !

Sorting an Array

- Iterative Thinking: We talked about selection sort.
- Recursive Thinking: Take out the last element, sort the first $n-1$ elements recursively, invoking the same function recursively. And then insert this last element in the right position. Hey, this is insertion sort!
- (Even better) Recursive Thinking: Divide the array into two halves, recursively sort them, merge the resulting arrays into one array keeping the result to be sorted.
This is new!- called merge sort.

Searching in a Sorted Array

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in the array.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in the array.

- Iterative Thinking: Run over each element in the array by using a for loop, check if the key is equal to any of them.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in the array.

- Iterative Thinking: Run over each element in the array by using a for loop, check if the key is equal to any of them.
- Recursive Thinking: Take out the last element, check if it is equal to the key, if so stop, else search for the key in the remaining $n-1$ elements recursively.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in the array.

- Iterative Thinking: Run over each element in the array by using a for loop, check if the key is equal to any of them.
- Recursive Thinking: Take out the last element, check if it is equal to the key, if so stop, else search for the key in the remaining $n-1$ elements recursively.
- (Even better) Recursive Thinking: Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array. This is called binary search.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in the array.

- Iterative Thinking: Run over each element in the array by using a for loop, check if the key is equal to any of them.
- Recursive Thinking: Take out the last element, check if it is equal to the key, if so stop, else search for the key in the remaining $n-1$ elements recursively.
- (Even better) Recursive Thinking: Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array. This is called binary search.

Coding Binary Search

```
#include <stdio.h>
int binarySearch(int array[], int x, int low, int high) {
    if (high >= low) {
        int mid = low + (high - low) / 2;
        // If found at mid, then return it
        if (array[mid] == x)
                return mid;
        // Search the left half
        if (array[mid] > x)
            return binarySearch(array, x, low, mid - 1);
        // Search the right half
        return binarySearch(array, x, mid + 1, high);
    }
    return -1;
}
int main(void) {
    int array[] = {3, 4, 5, 6, 7, 8, 9};
    int n = sizeof(array) / sizeof(array[0]);
    int x = 4;
    int result = binarySearch(array, x, 0, n - 1);
    if (result == -1)
        printf("Not found");
    else
        printf("Element is found at index %d", result);
}
```


Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n / 2)+C$.

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in the array.

- Divide the array into two halves, check if the key element is less than the middle element - then search in the left half of the array, else search in the right half of the array.
- Let us say C is the time taken for a single comparison and $T(n)$ is the time taken for the program on input size n.
- Then we have: $T(n)=T(n / 2)+C$.
- This gives us $T(n) \approx \log _{2}(n)$.

The relations with $T(n)$ in LHS are called recurrence relations

