
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 23

Recursion Example: The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example: The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example: The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example: The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.

(
n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example: The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example: The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)

Base :
(n
0

)
=
(n
n

)
= 1.

Recursion Example: The Binomial Coefficient

(n
k

)
denotes :

• Number of ways of choosing k
items from a collection of n
items.

• Number of subsets of size k of
a set of size n.

• Coefficient of xk in the
expansion of (1 + x)n.(

n

k

)
=

n!

k!(n − k)!

Task : Write a function which:
given n and k computes

(n
k

)
.

Pascal’s Triangle

Pascal’s Identity :(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
Base :

(n
0

)
=
(n
n

)
= 1.

Recursion Example: The Binomial Coefficient

bin(n,k) =


1 if k = 0
1 if n = k
bin(n-1,k-1) + bin(n-1,k) otherwise

int binom(int n, int k)

{

if(k == 0 || n == k)

return 1;

int s = binom(n-1,k-1);

int t = binom(n-1,k);

return (s+t);

}

#include<stdio.h>

int main()

{

int n,k;

printf("Entern n, k : ");

scanf("%d %d",&n,&k);

printf("%d\n",binom(n,k));

return 0;

}

Recursion Example: The Binomial Coefficient

bin(n,k) =


1 if k = 0
1 if n = k
bin(n-1,k-1) + bin(n-1,k) otherwise

int binom(int n, int k)

{

if(k == 0 || n == k)

return 1;

int s = binom(n-1,k-1);

int t = binom(n-1,k);

return (s+t);

}

#include<stdio.h>

int main()

{

int n,k;

printf("Entern n, k : ");

scanf("%d %d",&n,&k);

printf("%d\n",binom(n,k));

return 0;

}

Recursion Example: The Binomial Coefficient

bin(n,k) =


1 if k = 0
1 if n = k
bin(n-1,k-1) + bin(n-1,k) otherwise

int binom(int n, int k)

{

if(k == 0 || n == k)

return 1;

int s = binom(n-1,k-1);

int t = binom(n-1,k);

return (s+t);

}

#include<stdio.h>

int main()

{

int n,k;

printf("Entern n, k : ");

scanf("%d %d",&n,&k);

printf("%d\n",binom(n,k));

return 0;

}

Exercise : Print the Pascal’s Triangle

(0
0

)
(1
0

) (1
1

)
(2
0

) (2
1

) (2
2

)
(3
0

) (3
1

) (3
2

) (3
3

)
(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)

#include <stdio.h>

int main()

{

int i,j,n;

printf("Enter n :");

scanf("%d",&n);

for (i=0;i<n;i++)

{

for (j=0;j<=i;j++) {

printf("%6d",binom(i,j));

}

printf("\n");

}

}

Exercise : Print the Pascal’s Triangle

(0
0

)
(1
0

) (1
1

)
(2
0

) (2
1

) (2
2

)
(3
0

) (3
1

) (3
2

) (3
3

)
(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)

#include <stdio.h>

int main()

{

int i,j,n;

printf("Enter n :");

scanf("%d",&n);

for (i=0;i<n;i++)

{

for (j=0;j<=i;j++) {

printf("%6d",binom(i,j));

}

printf("\n");

}

}

Recursion Example: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.

Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?

Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example: Virahanka Numbers/Fibonacci
Numbers

Suppose you have an unlimited supply of bricks of heights 1 and 2.
You want to construct a tower of height n. In how many ways can
you do this? Let this number be Vn.
Right answer comes from the right questions.

Question: In any given arrangement, what is the bottom-most
brick, is it of height 1 or 2?
Two answers possible (It could be 1 or it could be 2, but not both).

That is, Vn = Vn−1 + Vn−2 Nice !. But how do we compute Vn

Recursion Example: Virahanka Numbers

int Virahanka(int n)

{

if(n == 1) return 1; // V_1

if(n == 2) return 2; // V_2

// returning V_{n-1} + V_{n-2}

return Virahanka(n-1) + Virahanka(n-2);

}

Sorting an Array

• Iterative Thinking: We talked about selection sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Even better) Recursive Thinking: Divide the array into
two halves, recursively sort them, merge the resulting arrays
into one array keeping the result to be sorted.
This is new ! - called merge sort.

Sorting an Array

• Iterative Thinking: We talked about selection sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Even better) Recursive Thinking: Divide the array into
two halves, recursively sort them, merge the resulting arrays
into one array keeping the result to be sorted.
This is new ! - called merge sort.

Sorting an Array

• Iterative Thinking: We talked about selection sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position.

Hey, this is insertion sort !

• (Even better) Recursive Thinking: Divide the array into
two halves, recursively sort them, merge the resulting arrays
into one array keeping the result to be sorted.
This is new ! - called merge sort.

Sorting an Array

• Iterative Thinking: We talked about selection sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Even better) Recursive Thinking: Divide the array into
two halves, recursively sort them, merge the resulting arrays
into one array keeping the result to be sorted.
This is new ! - called merge sort.

Sorting an Array

• Iterative Thinking: We talked about selection sort.

• Recursive Thinking: Take out the last element, sort the first
n − 1 elements recursively, invoking the same function
recursively. And then insert this last element in the right
position. Hey, this is insertion sort !

• (Even better) Recursive Thinking: Divide the array into
two halves, recursively sort them, merge the resulting arrays
into one array keeping the result to be sorted.
This is new ! - called merge sort.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in
the array.

• Iterative Thinking: Run over each element in the array by
using a for loop, check if the key is equal to any of them.

• Recursive Thinking: Take out the last element, check if it is
equal to the key, if so stop, else search for the key in the
remaining n − 1 elements recursively.

• (Even better) Recursive Thinking: Divide the array into
two halves, check if the key element is less than the middle
element - then search in the left half of the array, else search
in the right half of the array. This is called binary search.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in
the array.

• Iterative Thinking: Run over each element in the array by
using a for loop, check if the key is equal to any of them.

• Recursive Thinking: Take out the last element, check if it is
equal to the key, if so stop, else search for the key in the
remaining n − 1 elements recursively.

• (Even better) Recursive Thinking: Divide the array into
two halves, check if the key element is less than the middle
element - then search in the left half of the array, else search
in the right half of the array. This is called binary search.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in
the array.

• Iterative Thinking: Run over each element in the array by
using a for loop, check if the key is equal to any of them.

• Recursive Thinking: Take out the last element, check if it is
equal to the key, if so stop, else search for the key in the
remaining n − 1 elements recursively.

• (Even better) Recursive Thinking: Divide the array into
two halves, check if the key element is less than the middle
element - then search in the left half of the array, else search
in the right half of the array. This is called binary search.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in
the array.

• Iterative Thinking: Run over each element in the array by
using a for loop, check if the key is equal to any of them.

• Recursive Thinking: Take out the last element, check if it is
equal to the key, if so stop, else search for the key in the
remaining n − 1 elements recursively.

• (Even better) Recursive Thinking: Divide the array into
two halves, check if the key element is less than the middle
element - then search in the left half of the array, else search
in the right half of the array. This is called binary search.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in
the array.

• Iterative Thinking: Run over each element in the array by
using a for loop, check if the key is equal to any of them.

• Recursive Thinking: Take out the last element, check if it is
equal to the key, if so stop, else search for the key in the
remaining n − 1 elements recursively.

• (Even better) Recursive Thinking: Divide the array into
two halves, check if the key element is less than the middle
element - then search in the left half of the array, else search
in the right half of the array. This is called binary search.

Searching in a Sorted Array

Given an array A that is sorted, search for a given element key in
the array.

• Iterative Thinking: Run over each element in the array by
using a for loop, check if the key is equal to any of them.

• Recursive Thinking: Take out the last element, check if it is
equal to the key, if so stop, else search for the key in the
remaining n − 1 elements recursively.

• (Even better) Recursive Thinking: Divide the array into
two halves, check if the key element is less than the middle
element - then search in the left half of the array, else search
in the right half of the array. This is called binary search.

Coding Binary Search

#include <stdio.h>

int binarySearch(int array[], int x, int low, int high) {

if (high >= low) {

int mid = low + (high - low) / 2;

// If found at mid, then return it

if (array[mid] == x)

return mid;

// Search the left half

if (array[mid] > x)

return binarySearch(array, x, low, mid - 1);

// Search the right half

return binarySearch(array, x, mid + 1, high);

}

return -1;

}

int main(void) {

int array[] = {3, 4, 5, 6, 7, 8, 9};

int n = sizeof(array) / sizeof(array[0]);

int x = 4;

int result = binarySearch(array, x, 0, n - 1);

if (result == -1)

printf("Not found");

else

printf("Element is found at index %d", result);

}

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

Analyzing Binary Search

Given an array A that is sorted, search for a given element key in
the array.

• Divide the array into two halves, check if the key element is
less than the middle element - then search in the left half of
the array, else search in the right half of the array.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n/2) + C .

• This gives us T (n) ≈ log2(n).

The relations with T (n) in LHS are called recurrence relations

