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Recursion

Drawing Hands by
M. C. Escher.



New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.
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fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.
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A Graphical Demo of fact(4) : Control Flow

Assume that we invoked fact with argument as the number 4.



A Graphical Demo of fact(5) : Return Values

Assume that we invoked fact with argument as the number 5.



Recursion : Control Flow



Recursion : Control Flow



Recursion: Summary

• The function knows how to solve the simplest case. This is
also called the base case.

• If the function is invoked using a complex case, it breaks the
input into

(i) a part that the function knows how to do.
(ii) a part that it does not know how to do.

• For (ii) it again invokes the same function – this step is called
the recursive step.



Multiplication using repeated addition

Mathematical formulation
Assume x , y are positive integers.

f (x , y) = y + f (x − 1, y) if x > 1

= y otherwise.

int mult(int x, int y) {

if (x == 1)

return 1;

else

return ( y + mult(x-1, y));

}

Is the program correct?
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Multiplication using repeated addition

Mathematical formulation
Assume x , y are positive integers.

f (x , y) = y + f (x − 1, y) if x > 1

= y otherwise.

int mult(int x, int y) {

if (x == 1)

return y; //notice the change.

else

return ( y + mult(x-1, y));

}



Length of a string : recursively

• Base case: if str[0] == 0 return 0;

• Else add 1 to the length of string starting at str+1.

int reclen(char str[]) {

if (str[0] == 0) {

return 0;

} else return(1+reclen(str+1));

}

• Note the usage of str+1.

• Why is accessing str+1 valid?
we know that str[0] != 0, hence we will find at least one more
character after str[0].
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Palindrome

Conceptual formulation
Assume inputs are a string s1, start index start, end index end .
Assume start ≤ end .

• if s1 is of length 1 it is a palindrome.

• if s1 is of length 2 and s1[start] == s1[end ], it is a
palindrome.

• if s1[start] == s1[end ] and s1[start + 1, end − 1] is a
palindrome, then s1 is a palindrome.
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Largest Element in an Array

• Till now - we computed only functions which were taught to
us or known to us recursively.

• We can solve problems that have a recursive structure using
recursive programming. That is more fun !.

• Key Part : Formulate the problem recursively.

Example Task : Finding the largest element in an array.



Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.
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Largest Element in an Array

Recursive thinking: Find the
largest of elements 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}
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Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .
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What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.
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maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.



What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.


