
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta@cse.iitm.ac.in)
Lecture 22

Recursion

Drawing Hands by
M. C. Escher.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself?

Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?

Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

New Idea - Recursive Function Calls

Can a function invoke itself? Yes ! - but why would it want to?
Here is a situation :

• We wish to define the function int fact(int n) : to return
the factorial of a number n.

• We have not written fact function yet, but we want to write
it using itself.

Here is the idea :
Write the function fact in such a way that :

• it returns 1, if the argument is 1.

• else it returns n times the result of itself when called with
argument n-1.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

fact function : Iterative vs Recursive

int fact(int n){

int i;

int result;

result = 1;

for (i = 1; i <= n; i++)

result = result * i;

return result;

}

invocation : f = fact(4);

int fact(int n){

if (n == 1) return(1);

return (n*fact(n-1));

}

• (n == 1) case is called
the base case. If it not
provided, it will turn out
to be an infinite
recursion.

A Graphical Demo of fact(4) : Control Flow

Assume that we invoked fact with argument as the number 4.

A Graphical Demo of fact(5) : Return Values

Assume that we invoked fact with argument as the number 5.

Recursion : Control Flow

Recursion : Control Flow

Recursion: Summary

• The function knows how to solve the simplest case. This is
also called the base case.

• If the function is invoked using a complex case, it breaks the
input into

(i) a part that the function knows how to do.
(ii) a part that it does not know how to do.

• For (ii) it again invokes the same function – this step is called
the recursive step.

Multiplication using repeated addition

Mathematical formulation
Assume x , y are positive integers.

f (x , y) = y + f (x − 1, y) if x > 1

= y otherwise.

int mult(int x, int y) {

if (x == 1)

return 1;

else

return (y + mult(x-1, y));

}

Is the program correct?

Multiplication using repeated addition

Mathematical formulation
Assume x , y are positive integers.

f (x , y) = y + f (x − 1, y) if x > 1

= y otherwise.

int mult(int x, int y) {

if (x == 1)

return 1;

else

return (y + mult(x-1, y));

}

Is the program correct?

Multiplication using repeated addition

Mathematical formulation
Assume x , y are positive integers.

f (x , y) = y + f (x − 1, y) if x > 1

= y otherwise.

int mult(int x, int y) {

if (x == 1)

return 1;

else

return (y + mult(x-1, y));

}

Is the program correct?

Multiplication using repeated addition

Mathematical formulation
Assume x , y are positive integers.

f (x , y) = y + f (x − 1, y) if x > 1

= y otherwise.

int mult(int x, int y) {

if (x == 1)

return 1;

else

return (y + mult(x-1, y));

}

Is the program correct?

Multiplication using repeated addition

Mathematical formulation
Assume x , y are positive integers.

f (x , y) = y + f (x − 1, y) if x > 1

= y otherwise.

int mult(int x, int y) {

if (x == 1)

return y; //notice the change.

else

return (y + mult(x-1, y));

}

Length of a string : recursively

• Base case: if str[0] == 0 return 0;

• Else add 1 to the length of string starting at str+1.

int reclen(char str[]) {

if (str[0] == 0) {

return 0;

} else return(1+reclen(str+1));

}

• Note the usage of str+1.

• Why is accessing str+1 valid?
we know that str[0] != 0, hence we will find at least one more
character after str[0].

Length of a string : recursively

• Base case: if str[0] == 0 return 0;

• Else add 1 to the length of string starting at str+1.

int reclen(char str[]) {

if (str[0] == 0) {

return 0;

} else return(1+reclen(str+1));

}

• Note the usage of str+1.

• Why is accessing str+1 valid?
we know that str[0] != 0, hence we will find at least one more
character after str[0].

Length of a string : recursively

• Base case: if str[0] == 0 return 0;

• Else add 1 to the length of string starting at str+1.

int reclen(char str[]) {

if (str[0] == 0) {

return 0;

} else return(1+reclen(str+1));

}

• Note the usage of str+1.

• Why is accessing str+1 valid?
we know that str[0] != 0, hence we will find at least one more
character after str[0].

Length of a string : recursively

• Base case: if str[0] == 0 return 0;

• Else add 1 to the length of string starting at str+1.

int reclen(char str[]) {

if (str[0] == 0) {

return 0;

} else return(1+reclen(str+1));

}

• Note the usage of str+1.

• Why is accessing str+1 valid?
we know that str[0] != 0, hence we will find at least one more
character after str[0].

Length of a string : recursively

• Base case: if str[0] == 0 return 0;

• Else add 1 to the length of string starting at str+1.

int reclen(char str[]) {

if (str[0] == 0) {

return 0;

} else return(1+reclen(str+1));

}

• Note the usage of str+1.

• Why is accessing str+1 valid?
we know that str[0] != 0, hence we will find at least one more
character after str[0].

Length of a string : recursively

• Base case: if str[0] == 0 return 0;

• Else add 1 to the length of string starting at str+1.

int reclen(char str[]) {

if (str[0] == 0) {

return 0;

} else return(1+reclen(str+1));

}

• Note the usage of str+1.

• Why is accessing str+1 valid?
we know that str[0] != 0, hence we will find at least one more
character after str[0].

Palindrome

Conceptual formulation
Assume inputs are a string s1, start index start, end index end .
Assume start ≤ end .

• if s1 is of length 1 it is a palindrome.

• if s1 is of length 2 and s1[start] == s1[end], it is a
palindrome.

• if s1[start] == s1[end] and s1[start + 1, end − 1] is a
palindrome, then s1 is a palindrome.

Palindrome

Conceptual formulation
Assume inputs are a string s1, start index start, end index end .
Assume start ≤ end .

• if s1 is of length 1 it is a palindrome.

• if s1 is of length 2 and s1[start] == s1[end], it is a
palindrome.

• if s1[start] == s1[end] and s1[start + 1, end − 1] is a
palindrome, then s1 is a palindrome.

Largest Element in an Array

• Till now - we computed only functions which were taught to
us or known to us recursively.

• We can solve problems that have a recursive structure using
recursive programming. That is more fun !.

• Key Part : Formulate the problem recursively.

Example Task : Finding the largest element in an array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :

• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.

• Find the largest element (call it `) in the remaining array
recursively (with only n − 1 elements in the array)

• Compare between the first and `, and return the larger element
as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)

• Compare between the first and `, and return the larger element
as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :

• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.

• Recursively find the largest element in the first half and second
half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

• Iterative Thinking : Keep the current largest, compare it
with the next element. Update the largest with the largest
among the two. Do this for all elements in the given order.

• Recursive Thinking :
• Take out the first element.
• Find the largest element (call it `) in the remaining array

recursively (with only n − 1 elements in the array)
• Compare between the first and `, and return the larger element

as the largest in the array.

• (Even Better) Recursive Thinking :
• Divide the array into two.
• Recursively find the largest element in the first half and second

half by invoking the same function and let the results by `1
and `2 resp.)

• Compare between the `1 and `2, and return the larger element
as the largest in the array.

Largest Element in an Array

Recursive thinking: Find the
largest of elements 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Largest Element in an Array

Recursive thinking: Find the
largest of elements 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Largest Element in an Array

Recursive thinking: Find the
largest of elements 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Largest Element in an Array

Recursive thinking: Find the
largest of elements 2 to n − 1.
Compare it with first and return
the largest.

int largest(int i, int n)

{

if (i == n) return arr[i];

int l;

l = largest(i+1,n);

if (arr[i] > l)

return arr[i];

else return l;

}

(Better) recursive thinking: Find
the largest of the first half, then in
the second half, and then return the
largest of the two.

int largest(int i, int j)

{

if (i == j) return arr[i];

int l1,l2;

l1 = largest(i,(i+j)/2);

l2 = largest((i+j)/2+1,j);

if (l1 > l2)

return l1;

else return l2;

}

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

Why is this algorithm better?

• We divide the array into two equal halves, recursively call
largest on each half, and perform one comparison after they
return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = 2T (n/2) + C .

• Depth of the recursion tree is log n, and total time taken is
≈ n × K for some constant K .

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

What happens in the older algorithm?

• We divide the array into two unequal parts of size 1 and
n − 1, recursively call largest on the sub-array, and perform
one comparison after they return.

• Let us say C is the time taken for a single comparison and
T (n) is the time taken for the program on input size n.

• Then we have: T (n) = T (n − 1) + C .

• Depth of the recursion tree is n, and total time taken is again
≈ n × K for some constant K .

• So total time is roughly the same. But depth of recursion tree
is larger in one case.

• The space complexity of recursive algorithm is proportinal to
maximum depth of recursion tree generated. So this is how
the second algorithm is better than the first.

