
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 21

Macros in C

• A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

#include <stdio.h>

#define PI 3.1415

int main()

{

float radius, area;

printf("Enter the radius: ");

scanf("%f", &radius);

// Notice, the use of PI

area = PI*radius*radius;

printf("Area=%.2f",area);

return 0;

}

Macros in C

• A macro is a fragment of code that is given a name. You can
define a macro in C using the #define preprocessor directive.
Example # define c 299792458 (speed of light)

#include <stdio.h>

#define PI 3.1415

int main()

{

float radius, area;

printf("Enter the radius: ");

scanf("%f", &radius);

// Notice, the use of PI

area = PI*radius*radius;

printf("Area=%.2f",area);

return 0;

}

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

• When a value is explicitly specified (jan=1) then it starts
counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

• When a value is explicitly specified (jan=1) then it starts
counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};

• When a value is explicitly specified (jan=1) then it starts
counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

• Macros let us define a single constant at a time. What if we
want to define many?

• Declaration: enum boolean {No, Yes}; defines two constants
No = 0, and Yes = 1.

• enum months {jan = 1, feb, march, april, may, jun, jul, aug,
sep, oct, nov, dec};
• When a value is explicitly specified (jan=1) then it starts

counting from there

• Values start from 0 unless specified otherwise.

• Not all values need to be specified. If some values are not
specified, they are obtained by increments from the last
specified value.

• Better than #define, as the constant values are generated for
us.

Enumerated Constants

#include <stdio.h>

enum week {Sun, Mon, Tue, Wed, Thur, Fri, Sat};

int main()

{

// creating today variable of enum week type

enum week today;

today = Wed;

printf("Day %d",today+1);

return 0;

}

Output is: Day 4.

• Note that the variable values are treated as integers though
they look like strings!

• In the program, can use Wed > 0 etc. Wed will be treated as
an (unisgned) integer.

Declaring Constants

• The qualifier const applied to a declaration specifies that the
value will not be changed.

• If I declare const int J = 25; , this means that J is a constant
throughout the program.

• Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.

Declaring Constants

• The qualifier const applied to a declaration specifies that the
value will not be changed.

• If I declare const int J = 25; , this means that J is a constant
throughout the program.

• Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.

Declaring Constants

• The qualifier const applied to a declaration specifies that the
value will not be changed.

• If I declare const int J = 25; , this means that J is a constant
throughout the program.

• Response to modifying J depends on the system. Typically, a
warning message is issued while compilation.

Multi-Dimensional Arrays

Storage and Initialization are row by row

Multi-Dimensional Arrays

• double array3d[100][50][75];

• double array4d[60][100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

• Find out how many dimensions your system/compiler can
handle.

Multi-Dimensional Arrays

• double array3d[100][50][75];

• double array4d[60][100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

• Find out how many dimensions your system/compiler can
handle.

Multi-Dimensional Arrays

• double array3d[100][50][75];

• double array4d[60][100][50][75];
Requires 60*100*50*75*8 = 171.66 MB!

• Find out how many dimensions your system/compiler can
handle.

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 2D Arrays

• int a[3][2] = {{1, 4}, {5, 2}, {6, 5}};
Recommended that each value is initialized explicitly.

• int a[3][2] = {1, 4, 5, 2, 6, 5};
Stored in row major order (better not to assume).

• int a[3][2] = {{1}, {5, 2}, {6}}; Some elements are not
initialized explicitly – they are initialized to 0.

• a[0][1] = 0; a[2][1] = 0;

• Better not to assume!

Initializing 3D Arrays: Block by Block!

Passing by Value or Reference

Consider a swap function to swap two integers.

#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program? needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program? needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program? needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program? needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C

always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program? needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program? needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.

How do we write a correct swap program? needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program?

needs pointers.

Passing by Value or Reference

Consider a swap function to swap two integers.
#include<stdio.h>

void swap (int a, int b) {

int temp = a;

a = b;

b = temp;

return;

}

void main() {

int x = 20;

int y = 40;

swap(x, y);

printf("x= %d;y= %d\n", x, y);

}

• What is the output of
the program?

• What is the output if
we print a and b

inside the function
swap? (at the end of
the function).

• Variables are passed
by value in C always!

Take-away: This is an incorrect swap program.
How do we write a correct swap program? needs pointers.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

replace string

#include<stdio.h>

void replace(char s[10]) {

int i = 0;

while (s[i] != 0) {

if (s[i] == ’s’)

s[i] = ’S’;

i++;

}

printf("%s\n", s);

}

int main() {

char arr[10] = "Maths";

replace(arr);

printf("%s\n", arr);

}

• What is the output of
the program?

• Recall: Variables are
passed by value in C
always!

• printf("%p\n", arr);

printf("%p\n", &arr);

• The address of the
array is copied when
the function is called.

• This behaves like pass
by reference which is
supported by other
languages like Pascal,
C++.

Selection Sort Modularized

Selection Sort : Sort n num-
bers in descending order

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Subtasks identified:

FindMax(A, i,n) : find
the index of maxelement in
the subarray from i to n.

Swap(A, i,j) : swap i th

and j th elements of A.

Selection Sort Modularized

Selection Sort : Sort n num-
bers in descending order

Pseudo-code :

for i ranging from 1 to n

• maxindex = the index of
the max element in the
part of the array indexed
from i to n. Find
maxindex.

• swap elements array[i]
and array[maxindex];

Subtasks identified:

FindMax(A, i,n) : find
the index of maxelement in
the subarray from i to n.

Swap(A, i,j) : swap i th

and j th elements of A.

Selection Sort: Modularized

#include<stdio.h>

int getMaxIndex(int A[], int low, int high) {

int maxIndex = low; // omitted braces below to fit in screen.

for (int j=low+1; j <= high; j++)

if (A[j] > A[maxIndex])

maxIndex = j;

return maxIndex;

}

void swapA (int A[], int i, int j) {

int temp = A[i]; A[i] = A[j]; A[j] = temp;

}

int main() {

int arr [10] = {25, 7, 9, 30, 44, 8, -12, 7, 8, 10};

for (int i=0; i<10; i++) {

int mIndex = getMaxIndex(arr, i, 9);

swapA(arr, mIndex, i);

}

}

