
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 20

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own functions, and use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.

Example : Checking co-primeness

#include "stdio.h"

int GCD (int m, int n) {

int rem;

do {

rem = m % n;

m = n;

n = rem;

} while (rem != 0);

return m; }

int main () {

int x, y, gcd;

printf ("input two nonzero positive integers:");

scanf ("%d %d", &x, &y);

gcd = GCD (x, y);

if (gcd == 1)

printf ("%d and %d are coprime\n", x, y);

else

printf ("%d and %d are not coprime\n", x, y); }

Example : Checking co-primeness

#include "stdio.h"

int GCD (int m, int n) {

int rem;

do {

rem = m % n;

m = n;

n = rem;

} while (rem != 0);

return m; }

int main () {

int x, y, gcd;

printf ("input two nonzero positive integers:");

scanf ("%d %d", &x, &y);

gcd = GCD (x, y);

if (gcd == 1)

printf ("%d and %d are coprime\n", x, y);

else

printf ("%d and %d are not coprime\n", x, y); }

Example : Finding Prime Numbers in an Interval

#include <stdio.h>

int checkPrimeNumber(int n);

int main() {

int n1, n2, i, flag;

printf("Enter two positive integers: ");

scanf("%d %d", &n1, &n2);

printf("Prime numbers between %d and %d are: ", n1, n2);

for (i = n1 + 1; i < n2; ++i) {

flag = checkPrimeNumber(i);

if (flag == 1) printf("%d ", i); }

return 0; }

int checkPrimeNumber(int n) {

int j, flag = 1;

for (j = 2; j <= n / 2; ++j) {

if (n % j == 0) {

flag = 0;

break;

} }

return flag; }

Example : Finding Prime Numbers in an Interval

#include <stdio.h>

int checkPrimeNumber(int n);

int main() {

int n1, n2, i, flag;

printf("Enter two positive integers: ");

scanf("%d %d", &n1, &n2);

printf("Prime numbers between %d and %d are: ", n1, n2);

for (i = n1 + 1; i < n2; ++i) {

flag = checkPrimeNumber(i);

if (flag == 1) printf("%d ", i); }

return 0; }

int checkPrimeNumber(int n) {

int j, flag = 1;

for (j = 2; j <= n / 2; ++j) {

if (n % j == 0) {

flag = 0;

break;

} }

return flag; }

Reversing an Array: Using Auxiliary Array

#include <stdio.h>

void print(int arr[], int n)

{

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

}

void reverse(int arr[], int n)

{

int aux[n];

for (int i = 0; i < n; i++) {

aux[n - 1 - i] = arr[i];

}

for (int i = 0; i < n; i++) {

arr[i] = aux[i];

}

}

int main(void)

{

int arr[] = { 1, 2, 3, 4, 5 };

int n = sizeof(arr)/sizeof(arr[0]);

reverse(arr, n);

print(arr, n);

return 0;

}

Reversing an Array: Using Auxiliary Array

#include <stdio.h>

void print(int arr[], int n)

{

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

}

void reverse(int arr[], int n)

{

int aux[n];

for (int i = 0; i < n; i++) {

aux[n - 1 - i] = arr[i];

}

for (int i = 0; i < n; i++) {

arr[i] = aux[i];

}

}

int main(void)

{

int arr[] = { 1, 2, 3, 4, 5 };

int n = sizeof(arr)/sizeof(arr[0]);

reverse(arr, n);

print(arr, n);

return 0;

}

Reversing an Array: In Place

#include <stdio.h>

void print(int arr[], int n)

{

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

}

void reverse(int arr[], int n)

{

for (int low = 0, high = n - 1; low < high; low++, high--)

{

int temp = arr[low];

arr[low] = arr[high];

arr[high] = temp;

}

}

int main(void)

{

int arr[] = { 1, 2, 3, 4, 5 };

int n = sizeof(arr)/sizeof(arr[0]);

reverse(arr, n);

print(arr, n);

return 0;

}

Reversing an Array: In Place

#include <stdio.h>

void print(int arr[], int n)

{

for (int i = 0; i < n; i++) {

printf("%d ", arr[i]);

}

}

void reverse(int arr[], int n)

{

for (int low = 0, high = n - 1; low < high; low++, high--)

{

int temp = arr[low];

arr[low] = arr[high];

arr[high] = temp;

}

}

int main(void)

{

int arr[] = { 1, 2, 3, 4, 5 };

int n = sizeof(arr)/sizeof(arr[0]);

reverse(arr, n);

print(arr, n);

return 0;

}

Example : Binary to Decimal Conversion

#include <math.h>

#include <stdio.h>

int convert(long long n);

int main() {

long long n;

printf("Enter a binary number: ");

scanf("%lld", &n);

printf("%lld in binary = %d in decimal", n, convert(n));

return 0;

}

int convert(long long n) {

int dec = 0, i = 0, rem;

while (n != 0) {

rem = n % 10;

n /= 10;

dec += rem * pow(2, i);

++i; }

return dec; }

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()?

The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments?

Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

De-mystifying the main() function

• When we type ./a.out the control is set to be transferred to
the starting point of the main. (This is set to be so by the
C-compiler when it produced the a.out file.)

• Who “calls” the main()? The command-line program, which
is a part of the operating system on which the entire program
is running - calls the main().

• Can main have arguments? Yes, if we want to pass on a value
to the program while executing a.out, it can be passed as an
argument.

Use of static

#include "stdio.h"

void DoSomething() {

static int x=5;

{

static int y=6;

x++;

y++;

printf ("x = %d y = %d\n", x, y);

}

}

int main () {

int i;

for (i = 1; i < 10; i++)

DoSomething();

}

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alternate turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alternate turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alternate turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alternate turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Hands-on Example : Referee of Tic-Tac-Toe

X X O

O

O X

• Two Player Game (X-player & O-player).

• The game proceeds when each player
places ’X’ or ’O’ in a blank space in the
matrix in alternate turns.

• Initial configuration : the board is empty.

• Winning : if there is a sequence of three
consecutive cells (vertical, horizontal,
forward diagonal or reverse diagonal)
where the player’s symbol appears.

X X O

X O

O X

• Draw : if the board is full, but neither of
the players has reached a winning
configuration yet.

X X O

O O X

X X O

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Programming the Referee: functions

• Representing the board: A 3 × 3 character array. Stores, ’X’
or ’O’ or Blank in each cell.

• Define it as a global character array board[3][3] of order
3 × 3.

Think modular : Tasks involved for a referee - the board keeper.

• Show the board to both players.

• Check if any of them won, if so, declare won.

• If not, ask for a move from the correct player.

• Check if the move is legal, if so, update the board.

• Keep doing this until board is full or somebody wins.

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Four Functions:

We will do this using four functions:

• showconfig() : to print the current configuration of the
board.

• checkwin() : to check if the current configuration of the
board (available in the global array board) is a winning
configuration for any of the players, if yes, print the
appropriate message. If it is a draw, then also it can print an
appropriate message.

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Pseudo-code of the main program

Now the main prorgam is compact and intuitive.

// Assume 1 and 2 are used for X and O.

p = 0

while (checkwin() returns false)

{

showconfig();

read the next move (i,j) of player no:(p+1)

// note that p+1 is either 1 or 2.

if (checklegal(i,j) == false) continue;

putsymbol(i,j,(p+1));

p = (p+1) % 2.

}

Print "Game Over"

The prototype declarations

#include <stdio.h>

char board[1000][1000]; int N=3;

char player[2] = {’X’,’O’};

void init();

void showconfig(void);

int checkwin(void);

int checklegal(int, int);

int putsymbol(int,int,char);

int main()

{

init();

....

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf("\n-------------\n");

for (int i=0; i<N; i++)

{

for (int j=0; j<N; j++)

printf("| %c ",board[i][j]);

printf("|\n-------------\n");

}

}

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf("\n-------------\n");

for (int i=0; i<N; i++)

{

for (int j=0; j<N; j++)

printf("| %c ",board[i][j]);

printf("|\n-------------\n");

}

}

Implementing showconfig()

Exercise on printing a 2-dimensional array in matrix form.

void showconfig()

{

printf("\n-------------\n");

for (int i=0; i<N; i++)

{

for (int j=0; j<N; j++)

printf("| %c ",board[i][j]);

printf("|\n-------------\n");

}

}

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.

• Let the board[2][2] be the character grid.

• Do the character search with s = XXX to determine if
X-player wins.

• Do the character search with s = OOO to determine if
O-player wins.

So we can reuse that code.

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.

• Let the board[2][2] be the character grid.

• Do the character search with s = XXX to determine if
X-player wins.

• Do the character search with s = OOO to determine if
O-player wins.

So we can reuse that code.

Implementing checkwin() : The naive way

Idea 1 : checkwin : is a close cousin of the character grid
question.

Recall character grid question : Given a character grid, and a
string s, check if the rows, columns or diagonals of the grid that
contain s.

• Let the board[2][2] be the character grid.

• Do the character search with s = XXX to determine if
X-player wins.

• Do the character search with s = OOO to determine if
O-player wins.

So we can reuse that code.

Implementing checkwin()

A better ”modular” design for checkwin()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player (’X’/’O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

• for i=1 to N
• for j=1 to N

• If dir = 1 all checks should be board[i][j] != ’X’.
• If dir = 2 all checks should be board[j][i] != ’X’.
• If dir = 3 all checks should be board[j][j] != ’X’.
• If dir = 4 all checks should be board[j][N-j-1] != ’X’.

• If any check fails, then try next i . If all succeeds for the full
run of the j-loop, then declare Winning.

A better ”modular” design for checkwin()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player (’X’/’O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

• for i=1 to N
• for j=1 to N

• If dir = 1 all checks should be board[i][j] != ’X’.
• If dir = 2 all checks should be board[j][i] != ’X’.
• If dir = 3 all checks should be board[j][j] != ’X’.
• If dir = 4 all checks should be board[j][N-j-1] != ’X’.

• If any check fails, then try next i . If all succeeds for the full
run of the j-loop, then declare Winning.

A better ”modular” design for checkwin()

Idea 2 : Think Modular !

New function checkwindir(int dir, char player) : checks
the winning configuration for player (’X’/’O’) in the direction
(1/2/3/4 - representing horiz/vert/diag/revdiag).

Pseudocode for checkwindir(dir,player)

• for i=1 to N
• for j=1 to N

• If dir = 1 all checks should be board[i][j] != ’X’.
• If dir = 2 all checks should be board[j][i] != ’X’.
• If dir = 3 all checks should be board[j][j] != ’X’.
• If dir = 4 all checks should be board[j][N-j-1] != ’X’.

• If any check fails, then try next i . If all succeeds for the full
run of the j-loop, then declare Winning.

A better ”modular” design for checkwin()

Two more functions to define

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

Two more functions to define

• checklegal(i,j) : to check if putting a symbol in the i,j

the location of the board is legal or not. That is, is a symbol
already there? Then the move is illegal.

• putsymbol(i,j,c) : Assuming we checked the legality of
the move by the player, put down the symbol c (which is
either ’X’ or ’O’) at the entry board[i][j].

