
CS1100 – Introduction to Programming

Trimester 3, April – June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 19

Shweta Agrawal



CS1100 – Introduction to Programming

• Programming : From Turtle to C.

• Data Types in C, Operators. Input and the Output.

• Modifying the control flow in Programs if-else,
switch, loops : while, do-while, for.

• Implementing numerical methods using a
C-program.

• Arrays and Strings in C.


So Far

• functions in C.

• Blocks and Scope


Coming
Up...



CS1100 – Introduction to Programming

• Programming : From Turtle to C.

• Data Types in C, Operators. Input and the Output.

• Modifying the control flow in Programs if-else,
switch, loops : while, do-while, for.

• Implementing numerical methods using a
C-program.

• Arrays and Strings in C.


So Far

• functions in C.

• Blocks and Scope


Coming
Up...



Character grids

• Given a character grid, and a string s, print the indices of the
rows and columns of grid that contain s.

c a t t y

c c s e p

e s c e l

s e e s e

h a p s a

• Which rows and
columns contain cse?

• Assume a code find(x,y) -
that returns the index of y in x.
write a code for find now.

• For each row R, find(R, s).

• For each column C, find(C, s).



Character grids

• Given a character grid, and a string s, print the indices of the
rows and columns of grid that contain s.

c a t t y

c c s e p

e s c e l

s e e s e

h a p s a

• Which rows and
columns contain cse?

• Assume a code find(x,y) -
that returns the index of y in x.
write a code for find now.

• For each row R, find(R, s).

• For each column C, find(C, s).



Character grids

• Given a character grid, and a string s, print the indices of the
rows and columns of grid that contain s.

Pseudo-code:

• For each row R of grid
• If (find(R, s)) print(index of R).

• gridT = transpose(grid).
• For each row R of gridT

• If (find(R, s)) print(index of R).

functions : concept of writing the programs for find, transpose
etc seperately and using them in the main program.



Character grids

• Given a character grid, and a string s, print the indices of the
rows and columns of grid that contain s.

Pseudo-code:

• For each row R of grid
• If (find(R, s)) print(index of R).

• gridT = transpose(grid).
• For each row R of gridT

• If (find(R, s)) print(index of R).

functions : concept of writing the programs for find, transpose
etc seperately and using them in the main program.



Can we define our own “commands”?

• We already know of commands like :
• sqrt(x) evaluates to the square root of x.
• pow(x,k) returns the value of x multiplied by itself value of k

many times.
• forward(d) moves the turtle forward d units.

• Can we define new commands? e.g.
• gcd(m,n) should evaluate to the GCD of m,n.
• dash(d) should move the turtle forward, but draw dashes as it

moves rather than a continuous line.

• functions - official name for such commands, implemented
seperately.



Can we define our own “commands”?

• We already know of commands like :
• sqrt(x) evaluates to the square root of x.
• pow(x,k) returns the value of x multiplied by itself value of k

many times.
• forward(d) moves the turtle forward d units.

• Can we define new commands? e.g.
• gcd(m,n) should evaluate to the GCD of m,n.
• dash(d) should move the turtle forward, but draw dashes as it

moves rather than a continuous line.

• functions - official name for such commands, implemented
seperately.



Can we define our own “commands”?

• We already know of commands like :
• sqrt(x) evaluates to the square root of x.
• pow(x,k) returns the value of x multiplied by itself value of k

many times.
• forward(d) moves the turtle forward d units.

• Can we define new commands? e.g.
• gcd(m,n) should evaluate to the GCD of m,n.
• dash(d) should move the turtle forward, but draw dashes as it

moves rather than a continuous line.

• functions - official name for such commands, implemented
seperately.



functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own mathematical (or otherwise) functions, and
use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.



functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own mathematical (or otherwise) functions, and
use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.



functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own mathematical (or otherwise) functions, and
use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.



functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own mathematical (or otherwise) functions, and
use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.



functions in C

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own mathematical (or otherwise) functions, and
use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.



functions in C

#include <stdio.h>

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d", var3);

printf("%d", var4);

return 0;

}

What happens when you com-

pile this program?

• Before using the function
- the compiler needs to
be told about the
function.

• How to tell them?
Declare functions.

• Only name, return type,
number of arguments
and their type need to
be told initially. This is
called the prototype of a
function.



functions in C

#include <stdio.h>

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d", var3);

printf("%d", var4);

return 0;

}

What happens when you com-

pile this program?

• Before using the function
- the compiler needs to
be told about the
function.

• How to tell them?
Declare functions.

• Only name, return type,
number of arguments
and their type need to
be told initially. This is
called the prototype of a
function.



functions in C

#include <stdio.h>

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d", var3);

printf("%d", var4);

return 0;

}

What happens when you com-

pile this program?

• Before using the function
- the compiler needs to
be told about the
function.

• How to tell them?
Declare functions.

• Only name, return type,
number of arguments
and their type need to
be told initially. This is
called the prototype of a
function.



functions in C

#include <stdio.h>

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d", var3);

printf("%d", var4);

return 0;

}

What happens when you com-

pile this program?

• Before using the function
- the compiler needs to
be told about the
function.

• How to tell them?

Declare functions.

• Only name, return type,
number of arguments
and their type need to
be told initially. This is
called the prototype of a
function.



functions in C

#include <stdio.h>

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d", var3);

printf("%d", var4);

return 0;

}

What happens when you com-

pile this program?

• Before using the function
- the compiler needs to
be told about the
function.

• How to tell them?
Declare functions.

• Only name, return type,
number of arguments
and their type need to
be told initially. This is
called the prototype of a
function.



Completing the example

#include "stdio.h"

int FindSum(int, int);

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

Prototype of a function:
• Name of the function

• Arguments and their types.

• Return type.

Defintion of the function:
• Return type

• Function name

• Names of arguments and
their types

• Body of the function

• Local variables

• Return statement



Completing the example

#include "stdio.h"

int FindSum(int, int);

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

Prototype of a function:
• Name of the function

• Arguments and their types.

• Return type.

Defintion of the function:
• Return type

• Function name

• Names of arguments and
their types

• Body of the function

• Local variables

• Return statement



Prototype can be replaced by definition

#include "stdio.h"

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

Prototype : Not provided.

Defintion of the function:
• Return type

• Function name

• Names of arguments and
their types

• Body of the function

• Local variables

• Return statement



Extra Example: Anatomy of a function definition

Function myMultipleFunction returns the result of multiplication
of integers.



Extra Example: Anatomy of a function definition

Function myMultipleFunction returns the result of multiplication
of integers.



Extra Example : Anatomy of a function definition

Function getAreaOfSquare returns the area of a square in cm2

whose side is of length side in cm.



Extra Example : Anatomy of a function definition

Function getAreaOfSquare returns the area of a square in cm2

whose side is of length side in cm.



Back to Example 1 : Invocation of the Function

#include "stdio.h"

int FindSum(int, int);

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

Invocation (function call):
• arguments passed to the function.

• receiving the return value from
the function.

• a function can be called multiple
times, with different arguments.



Back to Example 1 : Invocation of the Function

#include "stdio.h"

int FindSum(int, int);

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

Invocation (function call):
• arguments passed to the function.

• receiving the return value from
the function.

• a function can be called multiple
times, with different arguments.



Back to Example 1 : Invocation of the Function

#include "stdio.h"

int FindSum(int, int);

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

Invocation (function call):
• arguments passed to the function.

• receiving the return value from
the function.

• a function can be called multiple
times, with different arguments.



Back to Example 1 : Invocation of the Function

#include "stdio.h"

int FindSum(int, int);

int main()

{

int var1 = 10;

int var2 = 20;

int var3,var4;

var3 = FindSum(var1,var2);

var4 = FindSum(var3,var2);

printf("%d\n", var3);

printf("%d\n", var4);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

return c;

}

Invocation (function call):
• arguments passed to the function.

• receiving the return value from
the function.

• a function can be called multiple
times, with different arguments.



Another Example : implementing fact

#include<stdio.h>

int fact(int);

int main() {

int x, y;

printf("Enter a number:");

scanf("%d", &x);

y = fact(x);

printf("%d\n",y);

}

int fact(int n) {

int i = 1;

while(n>0) {

i = i * n;

n--;

}

return i;

}

Take Aways:

• We can write more
complicated code within
the body of functions.

• We can define our own
math functions.

• In fact, math.h has such
definitions to compute
sqrt and pow etc.

• More interestingly,
printf and scanf are
also functions defined
inside stdio.h.



Another Example : implementing fact

#include<stdio.h>

int fact(int);

int main() {

int x, y;

printf("Enter a number:");

scanf("%d", &x);

y = fact(x);

printf("%d\n",y);

}

int fact(int n) {

int i = 1;

while(n>0) {

i = i * n;

n--;

}

return i;

}

Take Aways:

• We can write more
complicated code within
the body of functions.

• We can define our own
math functions.

• In fact, math.h has such
definitions to compute
sqrt and pow etc.

• More interestingly,
printf and scanf are
also functions defined
inside stdio.h.



Another Example : implementing fact

#include<stdio.h>

int fact(int);

int main() {

int x, y;

printf("Enter a number:");

scanf("%d", &x);

y = fact(x);

printf("%d\n",y);

}

int fact(int n) {

int i = 1;

while(n>0) {

i = i * n;

n--;

}

return i;

}

Take Aways:

• We can write more
complicated code within
the body of functions.

• We can define our own
math functions.

• In fact, math.h has such
definitions to compute
sqrt and pow etc.

• More interestingly,
printf and scanf are
also functions defined
inside stdio.h.



Another Example : implementing fact

#include<stdio.h>

int fact(int);

int main() {

int x, y;

printf("Enter a number:");

scanf("%d", &x);

y = fact(x);

printf("%d\n",y);

}

int fact(int n) {

int i = 1;

while(n>0) {

i = i * n;

n--;

}

return i;

}

Take Aways:

• We can write more
complicated code within
the body of functions.

• We can define our own
math functions.

• In fact, math.h has such
definitions to compute
sqrt and pow etc.

• More interestingly,
printf and scanf are
also functions defined
inside stdio.h.



Another Example : implementing fact

#include<stdio.h>

int fact(int);

int main() {

int x, y;

printf("Enter a number:");

scanf("%d", &x);

y = fact(x);

printf("%d\n",y);

}

int fact(int n) {

int i = 1;

while(n>0) {

i = i * n;

n--;

}

return i;

}

Take Aways:

• We can write more
complicated code within
the body of functions.

• We can define our own
math functions.

• In fact, math.h has such
definitions to compute
sqrt and pow etc.

• More interestingly,
printf and scanf are
also functions defined
inside stdio.h.



Functions with arguments & no return value

#include<stdio.h>

void area(float rad); // Prototype Declaration

int main()

{

float rad;

printf("Enter the radius : ");

scanf("%f",&rad);

area(rad);

}

void area(float rad)

{

float ar;

ar = 3.14 * rad * rad ;

printf("Area of Circle = %f",ar);

}



Functions with no arguments & no return value

#include<stdio.h>

void area(); // Prototype Declaration

void main()

{

area();

}

void area()

{

float area_circle;

float rad;

printf("Enter the radius : ");

scanf("%f",&rad);

area_circle = 3.14 * rad * rad ;

printf("Area of Circle = %f",area_circle);

}



Control Flow : More complicated example



Now this slide may make more sense

functions in C-language helps us to :

• Define our own subtasks which we want to use in bigger tasks
and program them to reuse them whenever needed. This is
called modular approach to program design. Very effective
and less error-prone.

• Define our own mathematical (or otherwise) functions, and
use them.

• Re-use lots of code, tested code.

• Giving a job to functions ≡ outsourcing.



Classifying functions in C



Classifying functions in C



New Concept : Blocks and Scope

Block : A program segment written within curly brackets.

Scope : The program segment where a particular declaration of a
variable is applicable.



New Concept : Blocks and Scope

Block : A program segment written within curly brackets.

Scope : The program segment where a particular declaration of a
variable is applicable.



Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}

• Scope of var2 is the whole of
main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.



Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.



Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.



Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.



Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.



Practicing the Concept : Blocks and Scope

#include <stdio.h>

int FindSum(int, int);

int var1 = 10;

int main()

{

int var2 = 20;

{

int var3;

var3 = FindSum(var1,var2);

printf("%d\n", var3);

}

float var3=100;

printf("%f\n", var3);

return 0;

}

int FindSum(int a, int b)

{

int c=a+b;

printf("%d\n",var1);

return c;

}
• Scope of var2 is the whole of

main

• Scope of int var3 is only
the inner block.

• Scope of float var3 is only
the outer block.

• Scope of int var1 is the
whole program.

Local vs Global variables : var1 is global but var2 is local for main function.



Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself? Yes ! Recurison !.



Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions?

Yes !

• Can a function invoke itself? Yes ! Recurison !.



Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself? Yes ! Recurison !.



Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself?

Yes ! Recurison !.



Take Aways

• Functions : Modular Programming. Build programs brick by
brick. Reusing built and tested part.

• Declaration, Definition and Invocation of functions.

• Block and Scope. Local and Global Variables.

Coming up :

• We will do hands-on examples of using functions.

• Is main program a function?
Why are we ending with "return 0;" Who is it returning to?

• Can a function invoke other functions? Yes !

• Can a function invoke itself? Yes ! Recurison !.


