
CS1100 – Introduction to Programming

Trimester 3, April – June 2021

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)
Lecture 17

Shweta Agrawal

Character arrays

char name[20];

Different ways of initialization

• char name[20] = “Avani”;

• char name[20] = {‘A’, ‘V’, ‘A’, ‘N’, ‘I’, ’null char’};
• char name[20];

scanf(“%s”, name);

• char name[20];
name = ”AVANI”; Incorrect!!

Character arrays

char name[20];

Different ways of initialization

• char name[20] = “Avani”;

• char name[20] = {‘A’, ‘V’, ‘A’, ‘N’, ‘I’, ’null char’};
• char name[20];

scanf(“%s”, name);

• char name[20];
name = ”AVANI”; Incorrect!!

What is the output of this program?

#include<stdio.h>

main() {

char name[20] = "AVANI";

int i;

for (i=10; i<20; i++) {

name[i] = ’X’;

}

printf("name = %s\n", name);

for (i=0; i<20; i++) {

printf("%c %d\n", name[i], name[i]);

}

}

Character arrays and standard library support

• Character arrays or strings occur very often.

• C provides a standard library string.h
• exposes several useful functions:

• strlen
• strcmp
• strcpy
• strstr

• But we can create libraries.

Example 1 : Finding the length of a given string

Task : Given a string at the input, find the length.

Pseudo-code :

for i ranging from 1 to n

• if you find that i th

character is null
character output i and
break.

Program Segment:

char s[1000], i;

scanf("%s", s);

for(i=0 ; s[i] != ’\0’; ++i);

printf("Length : %d", i);

Example 1 : Finding the length of a given string

Task : Given a string at the input, find the length.

Pseudo-code :

for i ranging from 1 to n

• if you find that i th

character is null
character output i and
break.

Program Segment:

char s[1000], i;

scanf("%s", s);

for(i=0 ; s[i] != ’\0’; ++i);

printf("Length : %d", i);

Example 1 : Finding the length of a given string

Task : Given a string at the input, find the length.

Pseudo-code :

for i ranging from 1 to n

• if you find that i th

character is null
character output i and
break.

Program Segment:

char s[1000], i;

scanf("%s", s);

for(i=0 ; s[i] != ’\0’; ++i);

printf("Length : %d", i);

Example 2 : Compare two strings

Task : Given two strings s1, s2, check if s1 and s2 are the same.

if (s1 == s2) This does not work

Pseudo-code :
Find the length ` of the two
strings first. If they are differ-
ent, declare that the strings are
different.

For i ranging from 1 to `

• check if i th characters
are the same. If not,
declare NOT same.

Can we combine the two steps
above?

Program Segment:

// strings are in arrays a and b

int i = 0;

while (a[i] == b[i]){

if ((a[i] == ’\0’)||(b[i] == ’\0’)

break;

i++;

}

if (a[i] == ’\0’ && b[i] == ’\0’)

printf("SAME");

else

printf("NOT SAME");

Example 2 : Compare two strings

Task : Given two strings s1, s2, check if s1 and s2 are the same.
if (s1 == s2) This does not work

Pseudo-code :
Find the length ` of the two
strings first. If they are differ-
ent, declare that the strings are
different.

For i ranging from 1 to `

• check if i th characters
are the same. If not,
declare NOT same.

Can we combine the two steps
above?

Program Segment:

// strings are in arrays a and b

int i = 0;

while (a[i] == b[i]){

if ((a[i] == ’\0’)||(b[i] == ’\0’)

break;

i++;

}

if (a[i] == ’\0’ && b[i] == ’\0’)

printf("SAME");

else

printf("NOT SAME");

Example 2 : Compare two strings

Task : Given two strings s1, s2, check if s1 and s2 are the same.
if (s1 == s2) This does not work

Pseudo-code :
Find the length ` of the two
strings first. If they are differ-
ent, declare that the strings are
different.

For i ranging from 1 to `

• check if i th characters
are the same. If not,
declare NOT same.

Can we combine the two steps
above?

Program Segment:

// strings are in arrays a and b

int i = 0;

while (a[i] == b[i]){

if ((a[i] == ’\0’)||(b[i] == ’\0’)

break;

i++;

}

if (a[i] == ’\0’ && b[i] == ’\0’)

printf("SAME");

else

printf("NOT SAME");

Example 2 : Compare two strings

Task : Given two strings s1, s2, check if s1 and s2 are the same.
if (s1 == s2) This does not work

Pseudo-code :
Find the length ` of the two
strings first. If they are differ-
ent, declare that the strings are
different.

For i ranging from 1 to `

• check if i th characters
are the same. If not,
declare NOT same.

Can we combine the two steps
above?

Program Segment:

// strings are in arrays a and b

int i = 0;

while (a[i] == b[i]){

if ((a[i] == ’\0’)||(b[i] == ’\0’)

break;

i++;

}

if (a[i] == ’\0’ && b[i] == ’\0’)

printf("SAME");

else

printf("NOT SAME");

Example 3 : Palindromes

A string is a palindrome iff string == reverse(string)

• malayalam

• neveroddoreven

• dontnod

Write a program to determine if the given string is a palindrome.

Example 3 : Palindromes

A string is a palindrome iff string == reverse(string)

• malayalam

• neveroddoreven

• dontnod

Write a program to determine if the given string is a palindrome.

Example 3 : Palindromes

A string is a palindrome iff string == reverse(string)

• malayalam

• neveroddoreven

• dontnod

Write a program to determine if the given string is a palindrome.

Example 3 : Palindromes

Task : Given a string check if it is a palindrome.

Pseudo-code :

• Run and index i from 1
to n and another j from
n to 1.

• check if i th character is
equal to j th character. If
not, declare NOT
PALINDROME.

• If all checks pass - then
declare PALINDROME.

• You can do better

Program Segment:

// string is in the array named str

int l = 0;

int h = strlen(str) - 1;

while (h > l)

{

if (str[l++] != str[h--])

{

printf("NOT PALINDROME");

break;

}

}

if (h == l)

printf("PALINDROME");

// spot the error

Example 3 : Palindromes

Task : Given a string check if it is a palindrome.

Pseudo-code :

• Run and index i from 1
to n and another j from
n to 1.

• check if i th character is
equal to j th character. If
not, declare NOT
PALINDROME.

• If all checks pass - then
declare PALINDROME.

• You can do better

Program Segment:

// string is in the array named str

int l = 0;

int h = strlen(str) - 1;

while (h > l)

{

if (str[l++] != str[h--])

{

printf("NOT PALINDROME");

break;

}

}

if (h == l)

printf("PALINDROME");

// spot the error

Multi-dimensional arrays in C

• Declaring a multi-dimensional array
int myArray[size1][size2]. . . [sizeN];
int matrix [10][10];

• How is a two-dimensional array stored in memory?

• Initializing a two-dimensional array.

#include<stdio.h>

main() {

int matrix[3][4] = {

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

}

}

Multi-dimensional arrays in C

• Declaring a multi-dimensional array
int myArray[size1][size2]. . . [sizeN];
int matrix [10][10];

• How is a two-dimensional array stored in memory?

• Initializing a two-dimensional array.

#include<stdio.h>

main() {

int matrix[3][4] = {

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

}

}

Multi-dimensional arrays in C

• Declaring a multi-dimensional array
int myArray[size1][size2]. . . [sizeN];
int matrix [10][10];

• How is a two-dimensional array stored in memory?

• Initializing a two-dimensional array.

#include<stdio.h>

main() {

int matrix[3][4] = {

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

}

}

Multi-dimensional arrays in C

• Declaring a multi-dimensional array
int myArray[size1][size2]. . . [sizeN];
int matrix [10][10];

• How is a two-dimensional array stored in memory?

• Initializing a two-dimensional array.

#include<stdio.h>

main() {

int matrix[3][4] = {

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

}

}

Multi-dimensional arrays in C

• Accessing elements of the array : A[i][j] - element in row i
and column j of array A.

• Rows/columns numbered from 0.

• Storage: row-major ordering elements of row 0, elements of
row 1, etc.

Multi-dimensional arrays in C

• Accessing elements of the array : A[i][j] - element in row i
and column j of array A.

• Rows/columns numbered from 0.

• Storage: row-major ordering elements of row 0, elements of
row 1, etc.

Multi-dimensional arrays in C

• Accessing elements of the array : A[i][j] - element in row i
and column j of array A.

• Rows/columns numbered from 0.

• Storage: row-major ordering elements of row 0, elements of
row 1, etc.

Multi-dimensional arrays in C

• Accessing elements of the array : A[i][j] - element in row i
and column j of array A.

• Rows/columns numbered from 0.

• Storage: row-major ordering elements of row 0, elements of
row 1, etc.

Initializing Multi-dimensional arrays

#include<stdio.h>

main() {

int matrix1[3][4] = {

1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12};

int matrix2[][4] = {

1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12};

}

• Cannot omit the
column size.

Initializing Multi-dimensional arrays

#include<stdio.h>

main() {

int matrix1[3][4] = {

1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12};

int matrix2[][4] = {

1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12};

}

• Cannot omit the
column size.

Initializing Multi-dimensional arrays

What does the program print?

/* Assume N1=3, N2=4 */

main() {

int matrix[N1][N2] = {

1, 2, 3, 4,

5, 6, 7, 8,

9, 10, 11, 12};

int i;

for (i = 0; i<N1; i++) {

printf("%d\n", matrix[i][2]++);

}

for (i = 0; i<N2; i++) {

printf("%d\t", matrix[2][i]);

}

printf("\n");

}

Reading/Writing matrices at the input

mat : name of the matrix
rows, cols : number of rows and columns.

Reading Matrices from the input:

for (int i = 0; i < rows; i++)

for (int j = 0; j < cols; j++)

scanf("%d", &mat[i][j]);

Writing matrices to the output:

for (int i = 0; i < rows; i++)

{

for (int j = 0; j < cols; j++) /* print a row */

{ printf ("%d ", mat[i][j]); } /* notice missing \n */

printf ("\n"); /* print a newline at the end a row */

}

Reading/Writing matrices at the input

mat : name of the matrix
rows, cols : number of rows and columns.

Reading Matrices from the input:

for (int i = 0; i < rows; i++)

for (int j = 0; j < cols; j++)

scanf("%d", &mat[i][j]);

Writing matrices to the output:

for (int i = 0; i < rows; i++)

{

for (int j = 0; j < cols; j++) /* print a row */

{ printf ("%d ", mat[i][j]); } /* notice missing \n */

printf ("\n"); /* print a newline at the end a row */

}

Reading/Writing matrices at the input

mat : name of the matrix
rows, cols : number of rows and columns.

Reading Matrices from the input:

for (int i = 0; i < rows; i++)

for (int j = 0; j < cols; j++)

scanf("%d", &mat[i][j]);

Writing matrices to the output:

for (int i = 0; i < rows; i++)

{

for (int j = 0; j < cols; j++) /* print a row */

{ printf ("%d ", mat[i][j]); } /* notice missing \n */

printf ("\n"); /* print a newline at the end a row */

}

Matrix Operations : Addition

• Write a program to add two matrices A and B

#include<stdio.h>

main() {

/* Assume N1 and N2 are defined as const int */

int A[N1][N2];

int B[N1][N2];

/*initialize M1, M2 suitably */

int C[N1][N2];

int i, j;

for (i = 0; i<N1; i++) {

for (j = 0; j<N2; j++) {

A[i][j] = B[i][j] + C[i][j];

}

}

}

Matrix Operations : Addition

• Write a program to add two matrices A and B

#include<stdio.h>

main() {

/* Assume N1 and N2 are defined as const int */

int A[N1][N2];

int B[N1][N2];

/*initialize M1, M2 suitably */

int C[N1][N2];

int i, j;

for (i = 0; i<N1; i++) {

for (j = 0; j<N2; j++) {

A[i][j] = B[i][j] + C[i][j];

}

}

}

Matrix Operations : Multiplication

• Write a program to multiply matrices A and B

Matrix Operations : Multiplication

• Write a program to multiply matrices A and B

Matrix Operations : Multiplication

• Write a program to multiply matrices A and B

int main() {

const int N1;

int A[N1][N1], B[N1][N1], C[N1][N1];

int i, j, k, sum;

/* Assume A, B are initialized suitably */

for (i = 0; i<N1; i++) {

for (j = 0; j<N1; j++) {

sum = 0;

for (k=0; k<N1; k++) {

/* fill in your code here */

}

C[i][j] = sum;

}

}

}

Matrix Operations : Multiplication

• Write a program to multiply matrices A and B

int main() {

const int N1;

int A[N1][N1], B[N1][N1], C[N1][N1];

int i, j, k, sum;

/* Assume A, B are initialized suitably */

for (i = 0; i<N1; i++) {

for (j = 0; j<N1; j++) {

sum = 0;

for (k=0; k<N1; k++) {

/* fill in your code here */

}

C[i][j] = sum;

}

}

}

Summary

• Technical: Learned about single, multidimensional arrays,
character arrays, strings. Declaration, Initialization, reading,
writing.

• Problem Solving : Writing programs to solve various tasks
associated where use of arrays, matrices, strings are natural.

• Meta-level message about the approach : Writing
algorithms/pseudo-code/programs - identify simpler tasks
within the given task, solve them and and then try to combine
them to get the bigger solution.

• Observation: Subtasks that appear once solved, can be used
in several parts of the program. Functions !!

Summary

• Technical: Learned about single, multidimensional arrays,
character arrays, strings. Declaration, Initialization, reading,
writing.

• Problem Solving : Writing programs to solve various tasks
associated where use of arrays, matrices, strings are natural.

• Meta-level message about the approach : Writing
algorithms/pseudo-code/programs - identify simpler tasks
within the given task, solve them and and then try to combine
them to get the bigger solution.

• Observation: Subtasks that appear once solved, can be used
in several parts of the program. Functions !!

Summary

• Technical: Learned about single, multidimensional arrays,
character arrays, strings. Declaration, Initialization, reading,
writing.

• Problem Solving : Writing programs to solve various tasks
associated where use of arrays, matrices, strings are natural.

• Meta-level message about the approach : Writing
algorithms/pseudo-code/programs - identify simpler tasks
within the given task, solve them and and then try to combine
them to get the bigger solution.

• Observation: Subtasks that appear once solved, can be used
in several parts of the program.

Functions !!

Summary

• Technical: Learned about single, multidimensional arrays,
character arrays, strings. Declaration, Initialization, reading,
writing.

• Problem Solving : Writing programs to solve various tasks
associated where use of arrays, matrices, strings are natural.

• Meta-level message about the approach : Writing
algorithms/pseudo-code/programs - identify simpler tasks
within the given task, solve them and and then try to combine
them to get the bigger solution.

• Observation: Subtasks that appear once solved, can be used
in several parts of the program. Functions !!

