
CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Lectures : Three per week (F1 slot)

• Wednesday: 11:00 - 11:50 pm

• Thursday: 9:00 - 9:50 pm

• Friday: 8:00 - 8:50 pm

Lab : One session per week

• Wednesday (R1) /Thursday (S1): 2-5 pm

1 / 96

CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Lectures : Three per week (F1 slot)

• Wednesday: 11:00 - 11:50 pm

• Thursday: 9:00 - 9:50 pm

• Friday: 8:00 - 8:50 pm

Lab : One session per week

• Wednesday (R1) /Thursday (S1): 2-5 pm

2 / 96

CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Lectures : Three per week (F1 slot)

• Wednesday: 11:00 - 11:50 pm

• Thursday: 9:00 - 9:50 pm

• Friday: 8:00 - 8:50 pm

Lab : One session per week

• Wednesday (R1) /Thursday (S1): 2-5 pm

3 / 96

CS1100 – Introduction to Programming

Instructor:

Shweta Agrawal (shweta.a@cse.iitm.ac.in)

Lectures : Three per week (F1 slot)

• Wednesday: 11:00 - 11:50 pm

• Thursday: 9:00 - 9:50 pm

• Friday: 8:00 - 8:50 pm

Lab : One session per week

• Wednesday (R1) /Thursday (S1): 2-5 pm

4 / 96

Course Outline

• Introduction to Computing and Computers.

• Programming (in C).

• Exercises and examples from various domains.

• Problem solving using computers.

5 / 96

Course Requirements

• Labs: 12 assignments, total weight 30%.

• Quiz 1 (Feb 23): 20 %.

• Quiz 2 (March 22): 20%

• Final (May 13): 30%

• Attendance: As per institute policy, no exceptions.

• Ethical violations reported to disciplinary committee.

6 / 96

Course Requirements

• Labs: 12 assignments, total weight 30%.

• Quiz 1 (Feb 23): 20 %.

• Quiz 2 (March 22): 20%

• Final (May 13): 30%

• Attendance: As per institute policy, no exceptions.

• Ethical violations reported to disciplinary committee.

7 / 96

Course Requirements

• Labs: 12 assignments, total weight 30%.

• Quiz 1 (Feb 23): 20 %.

• Quiz 2 (March 22): 20%

• Final (May 13): 30%

• Attendance: As per institute policy, no exceptions.

• Ethical violations reported to disciplinary committee.

8 / 96

What is a computer?

9 / 96

What is a computer?

10 / 96

What is the difference between a human and a computer?

11 / 96

What is the difference between a human and a computer?

12 / 96

Simpler: Difference between Calculator and Computer?

• Calculators are single-purpose devices that perform
mathematical operations input by the user.

• Computers are calculators that have vastly expanded
capabilities, and are often called “general purpose computing
devices”.

13 / 96

Simpler: Difference between Calculator and Computer?

• Calculators are single-purpose devices that perform
mathematical operations input by the user.

• Computers are calculators that have vastly expanded
capabilities, and are often called “general purpose computing
devices”.

14 / 96

Simpler: Difference between Calculator and Computer?

• Calculators are single-purpose devices that perform
mathematical operations input by the user.

• Computers are calculators that have vastly expanded
capabilities, and are often called “general purpose computing
devices”.

15 / 96

What is a computer?

We started with machines that can do one job.

What is a computer?

• A huge electrical circuit.

• Can accept data from external
world, remember, process it, return
results to the external world.

• Data : Text typed in your mobile,
electrical signals from a sensor
which senses the temperature in
farms, speech, handwriting, touch.

• Program : A precise description of
steps that we want to perform on
the data.

16 / 96

What is a computer?

We started with machines that can do one job.

What is a computer?

• A huge electrical circuit.

• Can accept data from external
world, remember, process it, return
results to the external world.

• Data : Text typed in your mobile,
electrical signals from a sensor
which senses the temperature in
farms, speech, handwriting, touch.

• Program : A precise description of
steps that we want to perform on
the data.

17 / 96

What is a computer?

We started with machines that can do one job.

What is a computer?

• A huge electrical circuit.

• Can accept data from external
world, remember, process it, return
results to the external world.

• Data : Text typed in your mobile,
electrical signals from a sensor
which senses the temperature in
farms, speech, handwriting, touch.

• Program : A precise description of
steps that we want to perform on
the data.

18 / 96

Goal for today – have fun!

Observe the following patterns:

**

* *
* *
* *

• It is very easy to draw these patterns on paper.

• How would you describe the same to a friend on the phone?

19 / 96

Goal for today – have fun!

Observe the following patterns:

**

* *
* *
* *

• It is very easy to draw these patterns on paper.

• How would you describe the same to a friend on the phone?

20 / 96

Goal for today – have fun!

Observe the following patterns:

**

* *
* *
* *

• It is very easy to draw these patterns on paper.

• How would you describe the same to a friend on the phone?

21 / 96

Describing a pattern

• How do you communicate?
• Use commonly understood commands.

• draw a star.
• go to new line.
• repeat a set of commands k times.

• repeat 8 times
• draw a star.

• go to new line.
• repeat 8 times

• draw a star.

22 / 96

Describing a pattern

• How do you communicate?
• Use commonly understood commands.

• draw a star.
• go to new line.
• repeat a set of commands k times.

• repeat 8 times
• draw a star.

• go to new line.
• repeat 8 times

• draw a star.

23 / 96

Describing a pattern

• How do you communicate?
• Use commonly understood commands.

• draw a star.
• go to new line.
• repeat a set of commands k times.

• repeat 8 times
• draw a star.

• go to new line.
• repeat 8 times

• draw a star.

24 / 96

Can you describe all patterns in that list?

**

* *
* *
* *

• draw a star.

• go to new line.

• repeat a set of commands k times.

• move right (without drawing a star).

25 / 96

Can you describe all patterns in that list?

**

* *
* *
* *

• draw a star.

• go to new line.

• repeat a set of commands k times.

• move right (without drawing a star).

26 / 96

Your computer is your friend ...

What have we achieved?

• Describe simple patterns using a set of commands.

• When required, introduce new commands.
(and also inform the friend of its meaning).

• Recall: A Program is a precise description of steps that we
want to perform on the data.

• So, is the above a “program”? Yes. But the computer does
not know the above language.

• Is the above a “computer program”? No

• Goal of the course: learn to program the computer to perform
different tasks.

27 / 96

Your computer is your friend ...

What have we achieved?

• Describe simple patterns using a set of commands.

• When required, introduce new commands.
(and also inform the friend of its meaning).

• Recall: A Program is a precise description of steps that we
want to perform on the data.

• So, is the above a “program”? Yes. But the computer does
not know the above language.

• Is the above a “computer program”? No

• Goal of the course: learn to program the computer to perform
different tasks.

28 / 96

Your computer is your friend ...

What have we achieved?

• Describe simple patterns using a set of commands.

• When required, introduce new commands.
(and also inform the friend of its meaning).

• Recall: A Program is a precise description of steps that we
want to perform on the data.

• So, is the above a “program”?

Yes. But the computer does
not know the above language.

• Is the above a “computer program”? No

• Goal of the course: learn to program the computer to perform
different tasks.

29 / 96

Your computer is your friend ...

What have we achieved?

• Describe simple patterns using a set of commands.

• When required, introduce new commands.
(and also inform the friend of its meaning).

• Recall: A Program is a precise description of steps that we
want to perform on the data.

• So, is the above a “program”? Yes. But the computer does
not know the above language.

• Is the above a “computer program”? No

• Goal of the course: learn to program the computer to perform
different tasks.

30 / 96

Your computer is your friend ...

What have we achieved?

• Describe simple patterns using a set of commands.

• When required, introduce new commands.
(and also inform the friend of its meaning).

• Recall: A Program is a precise description of steps that we
want to perform on the data.

• So, is the above a “program”? Yes. But the computer does
not know the above language.

• Is the above a “computer program”?

No

• Goal of the course: learn to program the computer to perform
different tasks.

31 / 96

Your computer is your friend ...

What have we achieved?

• Describe simple patterns using a set of commands.

• When required, introduce new commands.
(and also inform the friend of its meaning).

• Recall: A Program is a precise description of steps that we
want to perform on the data.

• So, is the above a “program”? Yes. But the computer does
not know the above language.

• Is the above a “computer program”? No

• Goal of the course: learn to program the computer to perform
different tasks.

32 / 96

Your computer is your friend ...

What have we achieved?

• Describe simple patterns using a set of commands.

• When required, introduce new commands.
(and also inform the friend of its meaning).

• Recall: A Program is a precise description of steps that we
want to perform on the data.

• So, is the above a “program”? Yes. But the computer does
not know the above language.

• Is the above a “computer program”? No

• Goal of the course: learn to program the computer to perform
different tasks.

33 / 96

Illustrative Example : Turtle Drawing

Imagine that we have taught the computer to display a turtle and
move it according to the following commands.

• forward(n) : “Move the
turtle n pixels in the
direction it is currently
headed.”

• left(d) : “Make the turtle,
turn d degrees to the left.”

• wait(t) : “Do nothing for t
seconds.”

• Ignore first four lines; they
just make sure computer
knows what to do in the
above commands.

#include simplecpp

main_program

{

turtleSim();

forward(100); left(90);

forward(100); left(90);

forward(100); left(90);

forward(100);

wait(5);

}

34 / 96

Illustrative Example : Turtle Drawing

Imagine that we have taught the computer to display a turtle and
move it according to the following commands.

• forward(n) : “Move the
turtle n pixels in the
direction it is currently
headed.”

• left(d) : “Make the turtle,
turn d degrees to the left.”

• wait(t) : “Do nothing for t
seconds.”

• Ignore first four lines; they
just make sure computer
knows what to do in the
above commands.

#include simplecpp

main_program

{

turtleSim();

forward(100); left(90);

forward(100); left(90);

forward(100); left(90);

forward(100);

wait(5);

}

35 / 96

Turtle Computer - More exercises

• How will you make the turtle draw a triangle?

• how about a hexagon?

• how about a decagon?

• how about a picture which “looks like” a circle?

36 / 96

Summarizing . . .

The pattern drawing, turtle drawings ... what have we achieved?

• We made our “trained friend” to draw patterns using simple
instructions. This was more English instructions.

• We made our “turtle-trained computer” to draw patterns
using simple instructions. This was more “short instructions”.

• Bottomline : the computer should know the meaning of the
commands that we give.

• Computers are “trained” in some languages.

37 / 96

Summarizing . . .

The pattern drawing, turtle drawings ... what have we achieved?

• We made our “trained friend” to draw patterns using simple
instructions. This was more English instructions.

• We made our “turtle-trained computer” to draw patterns
using simple instructions. This was more “short instructions”.

• Bottomline : the computer should know the meaning of the
commands that we give.

• Computers are “trained” in some languages.

38 / 96

Summarizing . . .

The pattern drawing, turtle drawings ... what have we achieved?

• We made our “trained friend” to draw patterns using simple
instructions. This was more English instructions.

• We made our “turtle-trained computer” to draw patterns
using simple instructions. This was more “short instructions”.

• Bottomline : the computer should know the meaning of the
commands that we give.

• Computers are “trained” in some languages.

39 / 96

Summarizing . . .

The pattern drawing, turtle drawings ... what have we achieved?

• We made our “trained friend” to draw patterns using simple
instructions. This was more English instructions.

• We made our “turtle-trained computer” to draw patterns
using simple instructions. This was more “short instructions”.

• Bottomline : the computer should know the meaning of the
commands that we give.

• Computers are “trained” in some languages.

40 / 96

Summarizing . . .

The pattern drawing, turtle drawings ... what have we achieved?

• We made our “trained friend” to draw patterns using simple
instructions. This was more English instructions.

• We made our “turtle-trained computer” to draw patterns
using simple instructions. This was more “short instructions”.

• Bottomline : the computer should know the meaning of the
commands that we give.

• Computers are “trained” in some languages.

41 / 96

What Languages are Computers Taught with . . .

Programming languages : C, C++, Java, Python . . .

• the languages that the computers are apriori trained on.
(how? - for later !).

• means of communication with a computer.

• In this course : The C Programming Language
• Developed by Dennis Ritchie (1969 – 1973).
• One of the most popular programming languages.
• Used to “write” large softwares, scientific computing etc.

• Was the “turtle program”, a program in written in C? No

• To be able to write programs in C, we need to learn the
language.

• That is the goal of this course.

42 / 96

What Languages are Computers Taught with . . .

Programming languages : C, C++, Java, Python . . .

• the languages that the computers are apriori trained on.
(how? - for later !).

• means of communication with a computer.
• In this course : The C Programming Language

• Developed by Dennis Ritchie (1969 – 1973).
• One of the most popular programming languages.
• Used to “write” large softwares, scientific computing etc.

• Was the “turtle program”, a program in written in C? No

• To be able to write programs in C, we need to learn the
language.

• That is the goal of this course.

43 / 96

What Languages are Computers Taught with . . .

Programming languages : C, C++, Java, Python . . .

• the languages that the computers are apriori trained on.
(how? - for later !).

• means of communication with a computer.
• In this course : The C Programming Language

• Developed by Dennis Ritchie (1969 – 1973).
• One of the most popular programming languages.
• Used to “write” large softwares, scientific computing etc.

• Was the “turtle program”, a program in written in C?

No

• To be able to write programs in C, we need to learn the
language.

• That is the goal of this course.

44 / 96

What Languages are Computers Taught with . . .

Programming languages : C, C++, Java, Python . . .

• the languages that the computers are apriori trained on.
(how? - for later !).

• means of communication with a computer.
• In this course : The C Programming Language

• Developed by Dennis Ritchie (1969 – 1973).
• One of the most popular programming languages.
• Used to “write” large softwares, scientific computing etc.

• Was the “turtle program”, a program in written in C? No

• To be able to write programs in C, we need to learn the
language.

• That is the goal of this course.

45 / 96

What Languages are Computers Taught with . . .

Programming languages : C, C++, Java, Python . . .

• the languages that the computers are apriori trained on.
(how? - for later !).

• means of communication with a computer.
• In this course : The C Programming Language

• Developed by Dennis Ritchie (1969 – 1973).
• One of the most popular programming languages.
• Used to “write” large softwares, scientific computing etc.

• Was the “turtle program”, a program in written in C? No

• To be able to write programs in C, we need to learn the
language.

• That is the goal of this course.

46 / 96

What Languages are Computers Taught with . . .

Programming languages : C, C++, Java, Python . . .

• the languages that the computers are apriori trained on.
(how? - for later !).

• means of communication with a computer.
• In this course : The C Programming Language

• Developed by Dennis Ritchie (1969 – 1973).
• One of the most popular programming languages.
• Used to “write” large softwares, scientific computing etc.

• Was the “turtle program”, a program in written in C? No

• To be able to write programs in C, we need to learn the
language.

• That is the goal of this course.

47 / 96

Summarizing . . .

• Programming is fun.

• Programming is useful - computational techniques to
simulate, visualize and conclude without actually making the
physical system.

• Programming is the Designer and the Programmer of a
company. You need to know how to manage both!

• The Designer designs – MUST be accurate. The product
must be relevant – so we need a CTO too.

• The programmer converts the design verbatim to a program in
a language that the computer understands! S/he is
responsible for efficient programming too.

• “Why this course”, “What is in the course”.

48 / 96

Summarizing . . .

• Programming is fun.

• Programming is useful - computational techniques to
simulate, visualize and conclude without actually making the
physical system.

• Programming is the Designer and the Programmer of a
company. You need to know how to manage both!

• The Designer designs – MUST be accurate. The product
must be relevant – so we need a CTO too.

• The programmer converts the design verbatim to a program in
a language that the computer understands! S/he is
responsible for efficient programming too.

• “Why this course”, “What is in the course”.

49 / 96

Summarizing . . .

• Programming is fun.

• Programming is useful - computational techniques to
simulate, visualize and conclude without actually making the
physical system.

• Programming is the Designer and the Programmer of a
company. You need to know how to manage both!

• The Designer designs – MUST be accurate. The product
must be relevant – so we need a CTO too.

• The programmer converts the design verbatim to a program in
a language that the computer understands! S/he is
responsible for efficient programming too.

• “Why this course”, “What is in the course”.

50 / 96

Summarizing . . .

• Programming is fun.

• Programming is useful - computational techniques to
simulate, visualize and conclude without actually making the
physical system.

• Programming is the Designer and the Programmer of a
company. You need to know how to manage both!

• The Designer designs – MUST be accurate. The product
must be relevant – so we need a CTO too.

• The programmer converts the design verbatim to a program in
a language that the computer understands! S/he is
responsible for efficient programming too.

• “Why this course”, “What is in the course”.

51 / 96

Books for the course

• Paul Deitel and Harvey Deitel. C: How to Program.

• V. Rajaraman: Computer Programming in C.

• R. G. Dromey: How to Solve It By Computer?

• Kernighan and Ritchie: The C Programming Language.

52 / 96

Acknowledgements

• Slides for the course are based on material prepared by faculty
of CSE department IITM.

• Ideas will also be drawn from a book by Prof. Abhiram
Ranade (IITB) (Introduction to programming using C++).

• All images – courtsey Google Images.

• This applies for all slides throughout the course.

53 / 96

Rest of this week..

• More on turtle graphics. (today !)

• A brief history about computers. (some of them today !)

• What is a computer made of?
• Do we need to know internals of a computer to be able to

program it?

• How does a computer perform so many diverse tasks (number
crunching, weather prediction, playing chess, ...)?
• Convert every task into a task on numbers.
• How to represent numbers on computers?

54 / 96

Rest of this week..

• More on turtle graphics. (today !)

• A brief history about computers. (some of them today !)
• What is a computer made of?

• Do we need to know internals of a computer to be able to
program it?

• How does a computer perform so many diverse tasks (number
crunching, weather prediction, playing chess, ...)?
• Convert every task into a task on numbers.
• How to represent numbers on computers?

55 / 96

Rest of this week..

• More on turtle graphics. (today !)

• A brief history about computers. (some of them today !)
• What is a computer made of?

• Do we need to know internals of a computer to be able to
program it?

• How does a computer perform so many diverse tasks (number
crunching, weather prediction, playing chess, ...)?
• Convert every task into a task on numbers.
• How to represent numbers on computers?

56 / 96

Rest of this week..

• More on turtle graphics. (today !)

• A brief history about computers. (some of them today !)
• What is a computer made of?

• Do we need to know internals of a computer to be able to
program it?

• How does a computer perform so many diverse tasks (number
crunching, weather prediction, playing chess, ...)?

• Convert every task into a task on numbers.
• How to represent numbers on computers?

57 / 96

Rest of this week..

• More on turtle graphics. (today !)

• A brief history about computers. (some of them today !)
• What is a computer made of?

• Do we need to know internals of a computer to be able to
program it?

• How does a computer perform so many diverse tasks (number
crunching, weather prediction, playing chess, ...)?
• Convert every task into a task on numbers.
• How to represent numbers on computers?

58 / 96

More on the Turtle Language

Question : What do we get by this program?

#include simplecpp

main_program

{

turtleSim();

forward(100); left(72);

forward(100); left(72);

forward(100); left(72);

forward(100); left(72);

forward(100);

wait(5);

}

59 / 96

What about a Decagon?

Turtle knows more ...

• forward(n)

• right(d)

• left(d)

• wait(t)

• repeat(k) { commands }
repeats the commands k
times.

#include <simplecpp>

main_program

{

turtleSim();

repeat(10)

{

forward(100);

left(36);

wait(1);

}

wait(5);

}

60 / 96

What about a Decagon?

Turtle knows more ...

• forward(n)

• right(d)

• left(d)

• wait(t)

• repeat(k) { commands }
repeats the commands k
times.

#include <simplecpp>

main_program

{

turtleSim();

repeat(10)

{

forward(100);

left(36);

wait(1);

}

wait(5);

}

61 / 96

More fun with Turtle ...

What will the following
program draw?

#include <simplecpp>

main_program

{

turtleSim();

left(72);

repeat(5)

{

forward(200);

wait(1);

left(144);

}

wait(20);

}

Make the turtle draw this !

62 / 96

More fun with Turtle ...

What will the following
program draw?

#include <simplecpp>

main_program

{

turtleSim();

left(72);

repeat(5)

{

forward(200);

wait(1);

left(144);

}

wait(20);

}

Make the turtle draw this !

63 / 96

Turtle knows more ...

• Turtle can print messages. cout << ‘‘Hello World";

• Turtle can wait for an input to be typed by you and use it for
the drawing (computation). Command is : cin >> n; where
n is a “variable”.

• penUp(): Causes the pen to be raised.

• penDown(): Causes the pen to be lowered.

• sqrt(x) : square root of x.

• sine(x), cosine(x), tangent(x) : trigonometric functions, x is in
degrees.

64 / 96

Turtle knows more ...

• Turtle can print messages. cout << ‘‘Hello World";

• Turtle can wait for an input to be typed by you and use it for
the drawing (computation). Command is : cin >> n; where
n is a “variable”.

• penUp(): Causes the pen to be raised.

• penDown(): Causes the pen to be lowered.

• sqrt(x) : square root of x.

• sine(x), cosine(x), tangent(x) : trigonometric functions, x is in
degrees.

65 / 96

Text-only Turtle

Predict the output:

#include <simplecpp>

main_program

{

cout << "a";

repeat(5)

{

cout << "b";

repeat(2){ cout << "c"; }

cout << "d";

}

}

The program will print
abccdbccdbccdbccdbccd

66 / 96

Text-only Turtle

Predict the output:

#include <simplecpp>

main_program

{

cout << "a";

repeat(5)

{

cout << "b";

repeat(2){ cout << "c"; }

cout << "d";

}

}

The program will print
abccdbccdbccdbccdbccd

67 / 96

Drawing a polygon with “given” number of sides

#include <simplecpp>

main_program

{

turtleSim();

cout << "How many sides?";

int nsides;

cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

wait(1);

}

wait(10);

}

cout << msg; : Print mes-

sage msg on the screen.

int nsides; : “Reserve a

space in the “blackboard” in

which I will store some inte-

ger value, and call that cell

nsides”.

cin >> nsides; : Read

an integer value from the key-

board and put it in the cell

nsides.

360.0/nsides : represents

the value obtained after di-

viding 360 by whatever is in

nsides.

68 / 96

Drawing a polygon with “given” number of sides

#include <simplecpp>

main_program

{

turtleSim();

cout << "How many sides?";

int nsides;

cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

wait(1);

}

wait(10);

}

cout << msg; : Print mes-

sage msg on the screen.

int nsides; : “Reserve a

space in the “blackboard” in

which I will store some inte-

ger value, and call that cell

nsides”.

cin >> nsides; : Read

an integer value from the key-

board and put it in the cell

nsides.

360.0/nsides : represents

the value obtained after di-

viding 360 by whatever is in

nsides.

69 / 96

Drawing a polygon with “given” number of sides

#include <simplecpp>

main_program

{

turtleSim();

cout << "How many sides?";

int nsides;

cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

wait(1);

}

wait(10);

}

cout << msg; : Print mes-

sage msg on the screen.

int nsides; : “Reserve a

space in the “blackboard” in

which I will store some inte-

ger value, and call that cell

nsides”.

cin >> nsides; : Read

an integer value from the key-

board and put it in the cell

nsides.

360.0/nsides : represents

the value obtained after di-

viding 360 by whatever is in

nsides.

70 / 96

Drawing a polygon with “given” number of sides

#include <simplecpp>

main_program

{

turtleSim();

cout << "How many sides?";

int nsides;

cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

wait(1);

}

wait(10);

}

cout << msg; : Print mes-

sage msg on the screen.

int nsides; : “Reserve a

space in the “blackboard” in

which I will store some inte-

ger value, and call that cell

nsides”.

cin >> nsides; : Read

an integer value from the key-

board and put it in the cell

nsides.

360.0/nsides : represents

the value obtained after di-

viding 360 by whatever is in

nsides.

71 / 96

Drawing a polygon with “given” number of sides

#include <simplecpp>

main_program

{

turtleSim();

cout << "How many sides?";

int nsides;

cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

wait(1);

}

wait(10);

}

cout << msg; : Print mes-

sage msg on the screen.

int nsides; : “Reserve a

space in the “blackboard” in

which I will store some inte-

ger value, and call that cell

nsides”.

cin >> nsides; : Read

an integer value from the key-

board and put it in the cell

nsides.

360.0/nsides : represents

the value obtained after di-

viding 360 by whatever is in

nsides.
72 / 96

Drawing a polygon with “given” number of sides

#include <simplecpp>

main_program

{

turtleSim();

cout << "How many sides?";

int nsides;

cin >> nsides;

repeat(nsides){

forward(100);

right(360.0/nsides);

wait(1);

}

wait(10);

}

cout << msg; : Print mes-

sage msg on the screen.

int nsides; : “Reserve a

space in the “blackboard” in

which I will store some inte-

ger value, and call that cell

nsides”.

cin >> nsides; : Read

an integer value from the key-

board and put it in the cell

nsides.

360.0/nsides : represents

the value obtained after di-

viding 360 by whatever is in

nsides.
73 / 96

A few general ideas . . .

• Control is at statement w : Computer is currently executing
statement w .

• Control flow : The order in which statements get executed.
Execution starts at top and goes down. Retraced if there is a
repeat statement.

• Variable used for storing data.

• Computer memory : blackboard

• Variable : Region on the board in which you can write a value.

• Variables have names, e.g. nsides. We can use the name to
refer to the value written in the variable. Details later.

74 / 96

The Computing Machine

• The computer is made up of a processor and a memory.

• The memory can be thought of as a series of locations to
store information.

75 / 96

The Computing Machine

• The computer is made up of a processor and a memory.

• The memory can be thought of as a series of locations to
store information.

76 / 96

The Computing Machine

• A program is a sequence of instructions assembled for some
given task.

• Most instructions operate on data.

• Some instructions control the flow of the operations.

77 / 96

The Computing Machine : von Neuman Architecture

78 / 96

Coming up...

• How does the computer execute a program?

• How does the computer represent data/programs?

• Introduction to C programming language.

79 / 96

