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Graphs

* Where do we encounter graphs?

— Social networks, road connections, molecular
interactions, planetary forces, ...

— snap, florida, dimacs, konect, ... J‘%
* Why treat them separately? -
Q a J @

— They can be processed more efficiently.
* What challenges do they pose?

— They provide structural information.

— Load imbalance, poor locality, ...
— lrregularity



What is Ir7eQ Lari'y?

* Data-access or control patterns are
unpredictable at compile time.

Irreqular data-access

Irregular control-flow

int a[N], b[N], c[N];
readinput(a);

c[5] = bla[4]];

int a[N];
readinput(a); Needs dynamic
techniques

if (a[4] > 30) {

}

Pointer-based data structures often contribute to irregularity.



Scalability

e Meta/ Facebook

— 2.2 billion active users
— 1.3 billion is India's population
- e.g. top people in the world

. Milky Way

— over 100 billion stars
- e.g. finding possibility of life

e Human Brain

— 100 billion neurons
— Artificial intelligence
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Finding betweenness centrality on a million node'graph (in a
sequential manner) takes several weeks!



Handling Large Graphs

Storage
Distributed setup

— Graph is partitioned across a cluster.

External memory algorithms

— Graph partitions are processed
sequentially.

Algorithms on compressed data

— Compression needs to maintain
retrieval ability.

Maintaining graph core

— Removal of unnecessary subgraphs.

Time
 Parallelism

— Multi-core, distributed,
GPUs

* Approximations

— Approximate
computing



Parallelism Approaches

e Manual A
- OpenMP, MPI, CUDA 2
» Libraries S
o
— Galois, Ligra, LonestarGPU, Gunrock, ... &
* Domain-Specific Languages Y

— Green-Marl, Elixir, Falcon, ...
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Specifying Parallelism

* Do not specify.

— Sequential input, completely automated, currently
very challenging in general

* Implicit parallelism

— aggregates, aggregate functions, primitive-based
processing, ...

* Explicit parallelism
— pthreads, MPI, OpenCL, ...



ldentifying Dependence

for (i1 = 0; 11 < 10; ++i1) {

}

al2 *11] = ... a[2 * 11 + 1] ...

Dependence equations
0<=ii <ii <10
2% =2%i0i +1

which can be written as

0<=ii_ i -1

i <=ii -1 1

i <=9 —~ 0

2%0i <=2%ii +1 2

2%0i +1<=2%Ii 2
r w _

Is there a flow dependence
between different iterations?

Flow dependence is
read-af ter-write (to the

same memory location).
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Dependence exists if the system has a solution.




Parallel Architectures

e Multicore CPUs

- Intel, ARM, ...
— pthreads, OpenMP, ...

* Distributed systems

— CPUs with interconnects

- MPI
 Manycore GPUs

- NVIDIA, AMD, ...
— CUDA, OpenCL, ...

CPU-GPU processing concepts
have similarity with those in
distributed systems.
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What is a GPU?

e Graphics Processing Unit

e Separate piece of hardware
connected using a bus

e Separate address space
than that of the CPU

* Massive multithreading
* WWarp-based execution
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What is a Warp?




GPU Computation Hierarchy

GPU

Multi-processor

Block

Warp

Thread

Hundreds of
thousands

Tens of
thousands

1024

32
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Challenges with GPUs

Warp-based execution

Locking is expensive

Dynamic memory allocation is costly

Limited data-cache

Programmability issues

separate address space

low recursion support

complex computation hierarchy
exposed memory hierarchy
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Challenges in Graph Algorithms

e Synchronization

— locks are prohibitively expensive on GPUs
— atomic instructions quickly become expensive

* Memory latency

— locality is difficult to exploit
— low caching support

* Thread-divergence
— work done per node varies with graph structure
* Uncoalesced memory accesses

— warp-threads access arbitrary graph elements

15
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~~ Graph Representation

3 a5
1. Adjacency matrix
- |V |x]| V]| matrix

- Each entry [i, j] denotes if edge (i,j)
IS present in G

— Useful for dense graph
— Finding neighbors is O(|V])
2. Adjacency list

- |V| + |E| size

— Each vertex i has a list of its
neighbors

— Useful for sparse graphs

— Finding neighbors is O(max.
degree)
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0 (2
~~_ Graph Representation

3 45
3. Edge list / Coordinate list (COO)
~- | E| pairs

— Useful for edge-based algorithms
— Typically sorted on vertex id
4. Compressed sparse row (CSR)

— Concatenated adjacency lists
— Useful for sparse graphs
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— Useful for data transfer
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TAQO Classification
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Operator formulation: Computation as an iterated application of operator

Topology-driven processing: operator is applied at all the nodes even if
there is no work to do at some nodes (e.g., Bellman-Ford SSSP)

Data-driven processing: operator is applied only at the nodes where
there might be work to be done (e.g., SSSP with delta-stepping)

The TAO of Parallelism in Algorithms, Pingali et a/, PLDI 2011



Data-driven vs. Topology-driven
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data-driven topology-driven
work-efficient e performs extra work
centralized worklist * no worklists

fine-grained synchronization ¢ coarse-grained synchronization
using atomics using barriers

complicates implementation ¢ easier to implement
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Data-driven: Base Version

main {
read input
transfer input
initialize_kernel
initialize worklist(w/in)
clear wlout

while wlin not empty {

operator(wlin, wlout, ..

transfer wlout size
clear wlin

swap(wlin, wlout)
}

transfer results

)

cpu

.
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T
TIT

sssp_operator(wlin, wlout, ...) {

src = wlinl...]

dsrc = distancelsrc]

forall edges (src, dst, wt) {
ddst = distance[dst]
altdist = dsrc + wt
if altdist < ddst {

distancel[dst] = altdist

wlout.push(dst)
I3
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Data-driven: Hierarchical Worklist

. win global memory

1 wllocal on-chip cache
O.. Threadblocks

||| wlout global memory

* Worklist exploits memory hierarchy

* Makes judicious use of limited on-chip cache
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Data-driven: Work Chunking

&

atomic perelement (EDEBE B O(e) atomics
atomic per thread M @E@ O(Y) atomics

* Reserves space for multiple work-items in a single atomic

* May reduce overall synchronization



Data-driven: Atomic-free Worklist Update

atomic per element PEUEE B O(e) atomics

atomic per thread | (@88  O(%) atomics

prefix-sum | @ @@@ O(log ?) barriers

AN

B
[
i
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Data-driven: Work Donation

donate_kernel {
shared donationbox|...];
// determine if I should donate
--barrier--

// donate
--barrier--

// operator execution

// empty donation box

* Work-donation improves load balance
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Data-driven: Variable Kernel Configuration

DMR's parallelism profile (input: mesh with 50K triangles)

I | 1 ! 1 I | 1 ! 1 I [l | ! 1 I [l | 1 1 l 1 | 1 1 l 1 | 1 1 l
0 10 20 30 40 50 60

Computation Step

8000
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= i throughout execution
© _
A 4000
9 i
& 2000 |-
= -
= 5
< 0
i

e Varying configuration improves work-efficiency

* |t also reduces conflicts and may improve performance
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Topology-driven: Base Version

cpu

main { B
read input o
transfer input
initialize_kernel T
transfer false to changed S
operatox(...) ]
transfer changed -
} while changed - N

transfer results | am

|
%

e

o
‘lﬁ}
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Topology-driven: Kernel Unrolling

sssp_operator(src) {
dsrc = distancelsrc]

ddst = distance[dst]
altdist = dsrc + wt

if altdist < ddst
distance[dst] = altdist

* |Improves amount of computation per thread invocation
* Need to ensure absence of races

* Propagates information faster
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Topology-driven: Exploiting Memory Hierarchy

queue
e e
S
\\ 6/3; qc_c_é
on-chip IS
cache S}
O]
“Tolfacor . L~ A A
unroll factor
N/ &

stackl  Reduces memory latency

* Requires careful selection of unroll factor
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Topology-driven: Improved Memory Layout
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* Bring logically close graph nodes also physically close in memory

* |Improves spatial locality
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Improving Synchronization

2 4

push-based pull-based

tfive tseven tfive tseven tfive tseven

2 3 2 3 3
Atomic-free update Lost-update problem Correction by topology-driven

processing, exploiting monotonicity
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Irregular Algorithms on GPUs

1 \
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A
Breadth-first search Barnes-Hut n-body simulation Single-source shortest paths
* Better memory layout
* Kernel unrolling BFS 48
| worklist o >
° L W I
oca O SIS SSSP 45
* Improved synchronization
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ldentify the Celebrity

Source: wikipedia



What is a morph?

Source: wikipedia
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Examples of Morph Algorithms

Delaunay Mesh Refinement

AN

Minimum Spanning
Tree Computation

a = &x a

b=&y | %

p=&a (pla| (bl

*p=0>

c=a c)0
Points-to Analysis

Survey Propagation
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Challenges in Morph Algorithms

e Synchronization

— locks are prohibitively expensive on GPUs
— atomic instructions quickly become expensive

* Memory allocation

— changing graph structure requires new strategies
— memory requirement cannot be predicted

 |Load imbalance

— different modifications to different parts of the graph
— work done per node changes dynamically

— leads to thread-divergence and uncoalesced 35
memory accesses



GPU Optimization Principles

Algorithm selection

, These optimization principles
Work sort!ng are critical for high-performing
Work chunking irregular GPU computations.

Communication onto computation
Following parallelism profile

Pipelined computation Kernel transformations

Data grouping
Exploiting memory hierarchy

Synchronization

Avoiding synchronization
Coarsening synchronization
Race and resolve mechanism
Combining synchronization
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StarPlat: DSL for Parallel Graph Algorithms

OpenMP
MPI
Gra!ah 7 StarPlat
Algorithm Compiler
in DSL SRl
OpenACC

[
(OpenMP, MPI, CUDA, OpenACC, Sycl, OpenCL)
e Currently works with static as well as dynamic graphs
e Able to generate code for popular algorithms (SSsP, BC, PR, TC).
[

heterogeneous computing, ...

Achievements

Qualcomm Innovation Fellowship 2023
StarPlat’s Sycl backend featured at Intel website

India Patent 432922
Hardware access from AMD and Intel
Small survey indicated productivity benefits

Generate code for different backends from the same algorithmic specification

In progress: complex algorithms, program analysis, multi-GPU processing,

-
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https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/academic-program/educators/overview.html#promotions_1762604076

Exercises

* Find if true dependence exists for the loop.
for (i1 = 0; 11 < 10; ++1i1) {

a[2 *1i] = ... a[i1 + 1] ...

a[3 +1i] = ... a[b *1ii] ...

}

Represent a graph as adjacency list on GPU.

Represent an input graph in CSR format, and
then convert it into a COQO format.

* Write a kernel to count degrees of various

vertices. Check finally that the sum equals the
number of edges.

* Implement shortest path algorithm. Check your
implementation against that in CUDA SDK. ?
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FEEDBACK FOR GPU PROGRAMMING

I shall undergo Thread Divergence

As I launch my Feedback Kernel in a poetic way,
Thank you Sir, for being a Host par excellence
To me, a Thread from another Device, I say.

The Stream of your lectures was appealing,

Each day I was hooked, in Pinned Memory,

Awaiting your videos on the PCI Express bus each morning,
All your programs I did diligently cudaMemcpy.

Owing to Coalescing, I couldn't just watch one lecture,
But had to make Strided Access to subsequent ones too;
Till I watched them all -- one big Vector!
And so in Global DRAM, I want to thank you!

You patiently resolved all Race Condition

Of doubts and questions without making Lost Update,
You encouraged interaction and Synchronization,

In everyone's Shared Memory, you earned a place great!

As a Warp Representative from this class,

I perform an Inclusive Scan of all you taught,
You did Reduction of concepts like no one has;
atomicAdd(&likes, 1) to all your analogies' lot.

The Prefix Sum of my feedback is this:

You taught in a SIMD fashion,

wWith a Global Barrier to ensure no one did miss,
Thus, __all(Prof Rupesh 1s awesome) returns 1.

-- Ullas Aparanji, IISc
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What did you learn?

Satya Bhagavan - 1st
Mtech CSE IIT Madras | Btech CSE IIT Indore | Ex - Algorithm Developer @ KLA

dmo- ®

Ever wondered how to sort numbers by simply sleeping? =
Sleep Sort the laziest algorithm out there!

Here is how it works:

1. Spawn a thread for each number in your list.

2. Each thread takes a nap proportional to its number's value.
3. As threads wake up, they print their numbers in order.

It's the only sorting method where procrastination is the key to success! £

Disclaimer: Not recommended for actual use unless you have time to kill and a
sense of humor.

#multithreading #algorithm #threads #os #SleepSort
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