Parallel Graph Algorithms

) & L%

Rupesh Nasre.
[IT Madras

gmggg

igned long sum2
igned n.

dler >> 16) & OXfIFE
Oxftf

no

dler
adler >=BASE o A
N\
AN

yes
adler = BASE

| MOD4(sum2) |

adler += *buf++
sum2 +=adler

MOD(adler)
MOD(sum2)

2

Source: Google images

Graphs

* Where do we encounter graphs?

— Social networks, road connections, molecular
interactions, planetary forces, ...

— snap, florida, dimacs, konect, ... J‘%
* Why treat them separately? -
Q a J @

— They can be processed more efficiently.
* What challenges do they pose?

— They provide structural information.

— Load imbalance, poor locality, ...
— lrregularity

What is Ir7eQ Lari'y?

* Data-access or control patterns are
unpredictable at compile time.

Irreqular data-access

Irregular control-flow

int a[N], b[N], c[N];
readinput(a);

c[5] = bla[4]];

int a[N];
readinput(a); Needs dynamic
techniques

if (a[4] > 30) {

}

Pointer-based data structures often contribute to irregularity.

Scalability

e Meta/ Facebook

— 2.2 billion active users
— 1.3 billion is India's population
- e.g. top people in the world

. Milky Way

— over 100 billion stars
- e.g. finding possibility of life

e Human Brain

— 100 billion neurons
— Artificial intelligence

~ — N
™ .
Ao A2

Finding betweenness centrality on a million node'graph (in a
sequential manner) takes several weeks!

Handling Large Graphs

Storage
Distributed setup

— Graph is partitioned across a cluster.

External memory algorithms

— Graph partitions are processed
sequentially.

Algorithms on compressed data

— Compression needs to maintain
retrieval ability.

Maintaining graph core

— Removal of unnecessary subgraphs.

Time
 Parallelism

— Multi-core, distributed,
GPUs

* Approximations

— Approximate
computing

Parallelism Approaches

e Manual A
- OpenMP, MPI, CUDA 2
» Libraries S
o
— Galois, Ligra, LonestarGPU, Gunrock, ... &
* Domain-Specific Languages Y

— Green-Marl, Elixir, Falcon, ...

aouew.ojiad

Specifying Parallelism

* Do not specify.

— Sequential input, completely automated, currently
very challenging in general

* Implicit parallelism

— aggregates, aggregate functions, primitive-based
processing, ...

* Explicit parallelism
— pthreads, MPI, OpenCL, ...

ldentifying Dependence

for (i1 = 0; 11 < 10; ++i1) {

}

al2 *11] = ... a[2 * 11 + 1] ...

Dependence equations
0<=ii <ii <10
2% =2%i0i +1

which can be written as

0<=ii_ i -1

i <=ii -1 1

i <=9 —~ 0

2%0i <=2%ii +1 2

2%0i +1<=2%Ii 2
r w _

Is there a flow dependence
between different iterations?

Flow dependence is
read-af ter-write (to the

same memory location).
W o> y

0 0

-1 -1

1 I 3 9
w <=

_2 IIr 1

2 -1

Dependence exists if the system has a solution.

Parallel Architectures

e Multicore CPUs

- Intel, ARM, ...
— pthreads, OpenMP, ...

* Distributed systems

— CPUs with interconnects

- MPI
 Manycore GPUs

- NVIDIA, AMD, ...
— CUDA, OpenCL, ...

CPU-GPU processing concepts
have similarity with those in
distributed systems.

10

What is a GPU?

e Graphics Processing Unit

e Separate piece of hardware
connected using a bus

e Separate address space
than that of the CPU

* Massive multithreading
* WWarp-based execution

11

What is a Warp?

GPU Computation Hierarchy

GPU

Multi-processor

Block

Warp

Thread

Hundreds of
thousands

Tens of
thousands

1024

32

13

Challenges with GPUs

Warp-based execution

Locking is expensive

Dynamic memory allocation is costly

Limited data-cache

Programmability issues

separate address space

low recursion support

complex computation hierarchy
exposed memory hierarchy

14

Challenges in Graph Algorithms

e Synchronization

— locks are prohibitively expensive on GPUs
— atomic instructions quickly become expensive

* Memory latency

— locality is difficult to exploit
— low caching support

* Thread-divergence
— work done per node varies with graph structure
* Uncoalesced memory accesses

— warp-threads access arbitrary graph elements

15

@ @ @

~~ Graph Representation

3 a5
1. Adjacency matrix
- |V |x]| V]| matrix

- Each entry [i, j] denotes if edge (i,j)
IS present in G

— Useful for dense graph
— Finding neighbors is O(|V])
2. Adjacency list

- |V| + |E| size

— Each vertex i has a list of its
neighbors

— Useful for sparse graphs

— Finding neighbors is O(max.
degree)

(34

(355

>4

>0k>1

>(05>2]

14

16

0 (2
~~_ Graph Representation

3 45
3. Edge list / Coordinate list (COO)
~- | E| pairs

— Useful for edge-based algorithms
— Typically sorted on vertex id
4. Compressed sparse row (CSR)

— Concatenated adjacency lists
— Useful for sparse graphs

© N 00 A N O

— Useful for data transfer

A =~ N O -~ O O W b W

o o0 b W WDN -~ -~ O O

A~ =2 N -~ O & 01 W b W

17

TAQO Classification

o ®
=
<« A’\~ neighborhood
L h i)

N y /
— . 77///

Operator formulation: Computation as an iterated application of operator

Topology-driven processing: operator is applied at all the nodes even if
there is no work to do at some nodes (e.g., Bellman-Ford SSSP)

Data-driven processing: operator is applied only at the nodes where
there might be work to be done (e.g., SSSP with delta-stepping)

The TAO of Parallelism in Algorithms, Pingali et a/, PLDI 2011

Data-driven vs. Topology-driven

. e

. b] v
o, U e o o, o 0 e
@ ¢ & ® ¢ &
data-driven topology-driven
work-efficient e performs extra work
centralized worklist * no worklists

fine-grained synchronization ¢ coarse-grained synchronization
using atomics using barriers

complicates implementation ¢ easier to implement

19

Data-driven: Base Version

main {
read input
transfer input
initialize_kernel
initialize worklist(w/in)
clear wlout

while wlin not empty {

operator(wlin, wlout, ..

transfer wlout size
clear wlin

swap(wlin, wlout)
}

transfer results

)

cpu

.
S

B

T
TIT

sssp_operator(wlin, wlout, ...) {

src = wlinl...]

dsrc = distancelsrc]

forall edges (src, dst, wt) {
ddst = distance[dst]
altdist = dsrc + wt
if altdist < ddst {

distancel[dst] = altdist

wlout.push(dst)
I3

i)

f/' N \\\
o A
o, r o ®
o e
) / \\\/,/“ ‘\\J/J

N

L wihin

Data-driven: Hierarchical Worklist

. win global memory

1 wllocal on-chip cache
O.. Threadblocks

||| wlout global memory

* Worklist exploits memory hierarchy

* Makes judicious use of limited on-chip cache

21

Data-driven: Work Chunking

&

atomic perelement (EDEBE B O(e) atomics
atomic per thread M @E@ O(Y) atomics

* Reserves space for multiple work-items in a single atomic

* May reduce overall synchronization

Data-driven: Atomic-free Worklist Update

atomic per element PEUEE B O(e) atomics

atomic per thread | (@88 O(%) atomics

prefix-sum | @ @@@ O(log ?) barriers

AN

B
[
i
Sl

23

Data-driven: Work Donation

donate_kernel {
shared donationbox|...];
// determine if I should donate
--barrier--

// donate
--barrier--

// operator execution

// empty donation box

* Work-donation improves load balance

24

Data-driven: Variable Kernel Configuration

DMR's parallelism profile (input: mesh with 50K triangles)

I | 1 ! 1 I | 1 ! 1 I [l | ! 1 I [l | 1 1 l 1 | 1 1 l 1 | 1 1 l
0 10 20 30 40 50 60

Computation Step

8000
= 6000 |- Available parallelism varies
= i throughout execution
© _
A 4000
9 i
& 2000 |-
= -
= 5
< 0
i

e Varying configuration improves work-efficiency

* |t also reduces conflicts and may improve performance

25

Topology-driven: Base Version

cpu

main { B
read input o
transfer input
initialize_kernel T
transfer false to changed S
operatox(...)]
transfer changed -
} while changed - N

transfer results | am

|
%

e

o
‘lﬁ}

26

Topology-driven: Kernel Unrolling

sssp_operator(src) {
dsrc = distancelsrc]

ddst = distance[dst]
altdist = dsrc + wt

if altdist < ddst
distance[dst] = altdist

* |Improves amount of computation per thread invocation
* Need to ensure absence of races

* Propagates information faster

27

Topology-driven: Exploiting Memory Hierarchy

queue
e e
S
\\ 6/3; qc_c_é
on-chip IS
cache S}
O]
“Tolfacor . L~ A A
unroll factor
N/ &

stackl Reduces memory latency

* Requires careful selection of unroll factor

28

Topology-driven: Improved Memory Layout

¢ .0
o 0
. S A N

* Bring logically close graph nodes also physically close in memory

* |Improves spatial locality

29

Improving Synchronization

2 4

push-based pull-based

tfive tseven tfive tseven tfive tseven

2 3 2 3 3
Atomic-free update Lost-update problem Correction by topology-driven

processing, exploiting monotonicity

30

Irregular Algorithms on GPUs

1 \

y N

[\ [) [~ \\\
&/ /f‘\ &/ 9
A
Breadth-first search Barnes-Hut n-body simulation Single-source shortest paths
* Better memory layout
* Kernel unrolling BFS 48
| worklist o >
° L W I
oca O SIS SSSP 45
* Improved synchronization

31

ldentify the Celebrity

Source: wikipedia

What is a morph?

Source: wikipedia

33

Examples of Morph Algorithms

Delaunay Mesh Refinement

AN

Minimum Spanning
Tree Computation

a = &x a

b=&y | %

p=&a (pla| (bl

*p=0>

c=a c)0
Points-to Analysis

Survey Propagation

34

Challenges in Morph Algorithms

e Synchronization

— locks are prohibitively expensive on GPUs
— atomic instructions quickly become expensive

* Memory allocation

— changing graph structure requires new strategies
— memory requirement cannot be predicted

 |Load imbalance

— different modifications to different parts of the graph
— work done per node changes dynamically

— leads to thread-divergence and uncoalesced 35
memory accesses

GPU Optimization Principles

Algorithm selection

, These optimization principles
Work sort!ng are critical for high-performing
Work chunking irregular GPU computations.

Communication onto computation
Following parallelism profile

Pipelined computation Kernel transformations

Data grouping
Exploiting memory hierarchy

Synchronization

Avoiding synchronization
Coarsening synchronization
Race and resolve mechanism
Combining synchronization

36

StarPlat: DSL for Parallel Graph Algorithms

OpenMP
MPI
Gra!ah 7 StarPlat
Algorithm Compiler
in DSL SRl
OpenACC

[
(OpenMP, MPI, CUDA, OpenACC, Sycl, OpenCL)
e Currently works with static as well as dynamic graphs
e Able to generate code for popular algorithms (SSsP, BC, PR, TC).
[

heterogeneous computing, ...

Achievements

Qualcomm Innovation Fellowship 2023
StarPlat’s Sycl backend featured at Intel website

India Patent 432922
Hardware access from AMD and Intel
Small survey indicated productivity benefits

Generate code for different backends from the same algorithmic specification

In progress: complex algorithms, program analysis, multi-GPU processing,

-

-~

-

-~

-

Design b OvenMP [Dynamic Graphs\
Ashwina,Ebenezer, Nli)b dita Shan, Nitish,
Nibedita © . Rushabh
MPI ™ e ™
.. CUDA
Ebenezer, Nitish, St a rP I at Ashwina
Robert) L
h Quadtree
Analysis OpenACC ’
i . Octree
Naveen, Shriram Krishna o
Y, Nibedita)

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/academic-program/educators/overview.html#promotions_1762604076

Exercises

* Find if true dependence exists for the loop.
for (i1 = 0; 11 < 10; ++1i1) {

a[2 *1i] = ... a[i1 + 1] ...

a[3 +1i] = ... a[b *1ii] ...

}

Represent a graph as adjacency list on GPU.

Represent an input graph in CSR format, and
then convert it into a COQO format.

* Write a kernel to count degrees of various

vertices. Check finally that the sum equals the
number of edges.

* Implement shortest path algorithm. Check your
implementation against that in CUDA SDK. ?

Parallel Graph Algorithms

) & L%

Rupesh Nasre.

FEEDBACK FOR GPU PROGRAMMING

I shall undergo Thread Divergence

As I launch my Feedback Kernel in a poetic way,
Thank you Sir, for being a Host par excellence
To me, a Thread from another Device, I say.

The Stream of your lectures was appealing,

Each day I was hooked, in Pinned Memory,

Awaiting your videos on the PCI Express bus each morning,
All your programs I did diligently cudaMemcpy.

Owing to Coalescing, I couldn't just watch one lecture,
But had to make Strided Access to subsequent ones too;
Till I watched them all -- one big Vector!
And so in Global DRAM, I want to thank you!

You patiently resolved all Race Condition

Of doubts and questions without making Lost Update,
You encouraged interaction and Synchronization,

In everyone's Shared Memory, you earned a place great!

As a Warp Representative from this class,

I perform an Inclusive Scan of all you taught,
You did Reduction of concepts like no one has;
atomicAdd(&likes, 1) to all your analogies' lot.

The Prefix Sum of my feedback is this:

You taught in a SIMD fashion,

wWith a Global Barrier to ensure no one did miss,
Thus, __all(Prof Rupesh 1s awesome) returns 1.

-- Ullas Aparanji, IISc

41

What did you learn?

Satya Bhagavan - 1st
Mtech CSE IIT Madras | Btech CSE IIT Indore | Ex - Algorithm Developer @ KLA

dmo- ®

Ever wondered how to sort numbers by simply sleeping? =
Sleep Sort the laziest algorithm out there!

Here is how it works:

1. Spawn a thread for each number in your list.

2. Each thread takes a nap proportional to its number's value.
3. As threads wake up, they print their numbers in order.

It's the only sorting method where procrastination is the key to success! £

Disclaimer: Not recommended for actual use unless you have time to kill and a
sense of humor.

#multithreading #algorithm #threads #os #SleepSort

42

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

