
Streams

Rupesh Nasre.

IIT Madras
January 2024

2

Learning Outcomes

 Concurrent computation using streams
 Overlapped computation and communication
 Cooperative kernels
 Callbacks
 Events

3

Asynchronous Processing

● Independent tasks can run simultaneously.
● C semantics are sequential.

– Assume a barrier after every instruction.
● What can be concurrent?

– Computation on the host
– Computation on the device
– CPU → GPU memory transfer
– CPU ← GPU memory transfer
– GPU → GPU memory transfer on a device
– GPU → GPU memory transfer across devices

11

22

33

44

55

66

4

Computation on the host

● Following device operations are asynchronous with
the host:
– Kernel launches
– Memory copies within a device
– ≤ 64 KB memory copy from CPU → GPU

– Memory copies by Async functions

– memset function calls

● For debugging:
– Disable asynchronicity by setting environment variable

CUDA_LAUNCH_BLOCKING = 1.

11

5

Computation on the device

● Kernels can execute concurrently.
– Compute capability ≥ 2.x
– Maximum number of resident grids: 32 … 128
– Kernels using large amount of local memory is less

likely to execute concurrently with other kernels.
– By default, kernels execute sequentially.

22

K1<<<...>>>();
K2<<<...>>>();
K3<<<...>>>();
cudaDeviceSynchronize();

K1<<<...>>>();
K2<<<...>>>();
K3<<<...>>>();
cudaDeviceSynchronize();

Need streams to
make them concurrent.

Need streams to
make them concurrent.

6

Memory transfer

● Concurrent data transfer
– Overlap copies to and from the device
– Support kernel execution concurrently with data transfer
– Compute capability ≥ 2.x

33

Concurrent copy and kernel execution: Yes with
2 copy engine(s)

44

55 66

7

__global__ void K1() {
 unsigned num = 0;
 for (unsigned ii = 0; ii < threadIdx.x; ++ii)
 num += ii;
 printf("K1: %d\n", threadIdx.x);
}
__global__ void K2() {
 printf("K2\n");
}
int main() {

 K1<<<1, 1024>>>();
 K2<<<1, 32>>>();
 cudaDeviceSynchronize();

 return 0;
}

__global__ void K1() {
 unsigned num = 0;
 for (unsigned ii = 0; ii < threadIdx.x; ++ii)
 num += ii;
 printf("K1: %d\n", threadIdx.x);
}
__global__ void K2() {
 printf("K2\n");
}
int main() {

 K1<<<1, 1024>>>();
 K2<<<1, 32>>>();
 cudaDeviceSynchronize();

 return 0;
}

K1
K1
…
K2
K2

Output

To specify stream, we need the fourth parameter of the kernel launch.

8

__global__ void K1() {
 unsigned num = 0;
 for (unsigned ii = 0; ii < threadIdx.x; ++ii)
 num += ii;
 printf("K1: %d\n", threadIdx.x);
}
__global__ void K2() {
 printf("K2\n");
}
int main() {
 cudaStream_t s1, s2;
 cudaStreamCreate(&s1);
 cudaStreamCreate(&s2);

 K1<<<1, 1024, 0, s1>>>();
 K2<<<1, 32, 0, s2>>>();
 cudaDeviceSynchronize();

 return 0;
}

__global__ void K1() {
 unsigned num = 0;
 for (unsigned ii = 0; ii < threadIdx.x; ++ii)
 num += ii;
 printf("K1: %d\n", threadIdx.x);
}
__global__ void K2() {
 printf("K2\n");
}
int main() {
 cudaStream_t s1, s2;
 cudaStreamCreate(&s1);
 cudaStreamCreate(&s2);

 K1<<<1, 1024, 0, s1>>>();
 K2<<<1, 32, 0, s2>>>();
 cudaDeviceSynchronize();

 return 0;
}

K2
K2
...
K1
K1

Possible
Output

9

Streams

● A stream is a queue of device work
– Host enqueues work and returns immediately.
– Device schedules work from streams when

resources are free
● CUDA operations are placed within a stream

– kernel launches, memcpy, etc.
● Operations within a stream are ordered and

cannot overlap.
● Operations across streams are unordered and

can overlap.

10

Classwork

● Write a code to overlap two data transfers.
● Write a code to overlap data transfer with kernel

execution.

 for (unsigned ii = 0; ii < N; ++ii) {
 cudaMemcpyAsync(dinptr + ii * nbytesperstream, hptr + ii * nbytesperstream,

 nbytesperstream, cudaMemcpyHostToDevice, stream[ii]);
 K<<<nbytesperstream / 512, 512, 0, stream[ii]>>>(

doutptr + ii * nbytesperstream,
dinptr + ii * nbytesperstream,
nbytesperstream);

 cudaMemcpyAsync(hptr + ii * nbytesperstream, doutptr + ii * nbytesperstream,
 nbytesperstream, cudaMemcpyDeviceToHost, stream[ii]);

 }

11

Homework

● Given a large array which does not fit into GPU
memory, you want to bring in partitions of the
array into memory, process on GPU and store
results back (either in CPU memory or disk).

● Each partition has H2D, K and D2H processing.
● This can be implemented in a pipelined fashion,

with D2H of ith partition, K of i+1th partition and
H2D of i+2th partition happening concurrently.

● Write CUDA code for the same.
● Discuss issues with this approach.

12

Overlapped Computation and
Communication: 3 streams

KH2D D2H

Zero latency
1/3 space

Zero latency
Half space

for all i {
H2D(i)
K(i)
D2H(i)

}

for all i: H2D(i)
for all i: K(i)
for all i: D2H(i)

Time

St
re

am
s

for all i {
H2D(i)
K(i)

}
for all i: D2H(i)

fill full throttle drain

N
 S

tr
ea

m
s

Note that H2D from two streams may not happen in the order as shown in the figure.

13

Overlapped Computation and
Communication: N streams

14

Overlapped Computation and
Communication

● Sometimes the number of streams may be limited.
● We may have to unroll the loop more depending

upon the number of streams.

H2D(0, s0)
K(0, s0)
for all i (i+=2){

D2H(i, s0)
H2D(i+1, s1)
K(i+1, s1)
D2H(i+1, s1)
H2D(i+2, s0)
K(i+2, s0)

}
D2H(n-1, s1)

fill

full throttle

drain

s0

s0

s1

s1

15

Across-Stream Synchronization

● Implement a global barrier across two kernels
running in different streams.
– Can there be a deadlock? Compare with resident

blocks.
● Can there be a deadlock between two stream

operations where:
– one is a kernel and another is a memory transfer?
– two memory transfers are involved?

16

Classwork (Cooperative Kernels)

● You want to perform a preprocessing and then
process each element of an N-sized array.

● You launch a kernel with M threads (M << N).
● If only one kernel is launched, M threads

preprocess and then process all N elements.
● If another kernel is launched during

preprocessing (in another stream), then 2*M
threads divide the work equally.

● Generalize the above for arbitrary number of
streams.

17

Pseudocode

1. Preprocessing

2. Global barrier (for this grid)

3. If (another kernel)
 Work = N / 2

4. Else
 Work = N

5. Process work

1. Work = N / 2

2. Process work

Kernel 1

1. Preprocessing

2. Global barrier (for this grid)

3. If (another kernel)
 Work = N / 2

4. Else
 Work = N

5. Process work

Kernel 2

Source: cooperative-kernels.cu

18

Khush’s Algorithm
● A kernel uses atomicAdd to update a counter by

M (number of threads).
● M elements are then processed by the kernel in

the first round.
● Each kernel continues the same operation as

above repeatedly.
● This way, if the second kernel arrives, it can

process the next chunk.
● If not, then the chunk is processed by the first

kernel.
● Generalized well to multiple kernels.

19

Classwork (Generalization)

● Devise a scheme such that a kernel dynamically
shrinks or expands its work based on the
availability or non-availability of other kernels.
– Initially, each thread plans to work on X number of

items.
– If another kernel gets launched, each thread decides

to work on X/2 items.
– If yet another kernel gets launched, each thread

decides to work on X/3 items, and so on.
– If a kernel terminates, each thread decides to work

on X/2 items again.

20

Find all possible outputs.

__global__ void K1() {
 printf("K1\n”);
}
__global__ void K2() {
 printf("K2\n");
}
__global__ void K3() {
 printf("K3\n");
}
int main() {
 cudaStream_t s1, s2, s3;
 cudaStreamCreate(&s1);
 cudaStreamCreate(&s2);
 cudaStreamCreate(&s3);

 K1<<<1, 32, 0, s1>>>();
 K2<<<1, 32, 0, s2>>>();
 K3<<<1, 32, 0, s3>>>();
 cudaDeviceSynchronize();

 return 0;
}

__global__ void K1() {
 printf("K1\n”);
}
__global__ void K2() {
 printf("K2\n");
}
__global__ void K3() {
 printf("K3\n");
}
int main() {
 cudaStream_t s1, s2, s3;
 cudaStreamCreate(&s1);
 cudaStreamCreate(&s2);
 cudaStreamCreate(&s3);

 K1<<<1, 32, 0, s1>>>();
 K2<<<1, 32, 0, s2>>>();
 K3<<<1, 32, 0, s3>>>();
 cudaDeviceSynchronize();

 return 0;
}

21

Find all possible outputs.
__global__ void K1() {
 printf("K1\n”);
}
__global__ void K2() {
 printf("K2\n");
}
__global__ void K3() {
 printf("K3\n");
}
int main() {

 int *ptr;
 cudaStream_t s1, s2, s3;
 cudaStreamCreate(&s1);
 cudaStreamCreate(&s2);
 cudaStreamCreate(&s3);

 K1<<<1, 32, 0, s1>>>();
 cudaHostAlloc(&ptr, 1, 0);

 K2<<<1, 32, 0, s2>>>();
 K3<<<1, 32, 0, s3>>>();
 cudaDeviceSynchronize();

 return 0;
}

__global__ void K1() {
 printf("K1\n”);
}
__global__ void K2() {
 printf("K2\n");
}
__global__ void K3() {
 printf("K3\n");
}
int main() {

 int *ptr;
 cudaStream_t s1, s2, s3;
 cudaStreamCreate(&s1);
 cudaStreamCreate(&s2);
 cudaStreamCreate(&s3);

 K1<<<1, 32, 0, s1>>>();
 cudaHostAlloc(&ptr, 1, 0);

 K2<<<1, 32, 0, s2>>>();
 K3<<<1, 32, 0, s3>>>();
 cudaDeviceSynchronize();

 return 0;
}

22

Stream Synchronization
● CudaDeviceSynchronize() waits for all commands from all

streams.
● CudaStreamSynchronize(s) waits for all commands from a

particular stream s.

– For non-blocking check, use cudaStreamQuery(s).
● Commands from different streams cannot run concurrently

if they are separated by:

– Page-locked host memory allocation
– Device memory allocation
– Device memset
– Memcpy on the same device memory
– CUDA commands to the default stream
– Switch between L1/shared memory configurations

23

Classwork
● Double it up:

– Host launches K1, K2, K3 concurrently.
– K1, K2, K3 print a random number of elements each.
– K1 returns to the host and host knows how many

elements were printed by K1, say N1. It informs this to
already running K2.

– K2 makes sure it prints at least 2*N1 elements.
– K2 returns now and host knows its number of elements,

say N2.
– K3 makes sure it prints at least 2*N2 elements in total.

24

Streams with Priorities

● By default, all streams have the same priority.
● Streams can be created with varying priorities.

Enrollment

Hostel allotment

Mess registration

Gym registration

Join service

Quarter allotment

Vehicle registration

Gym registration

Earn Roti

Earn Kapda

Earn Makaan

Earn brickbats

StudentStudent StaffStaff FacultyFaculty

Priority

cudaStreamCreateWithPriority(
&student, …, 2);

cudaStreamCreateWithPriority(
&staff, …, 1);

cudaStreamCreateWithPriority(
&faculty, …, 0);

25

Streams with Priorities

● Supported with CUDA >= 7.0

#include <stdio.h>
#include <cuda.h>

int main() {
int plow, phigh;
cudaDeviceGetStreamPriorityRange(&plow, &phigh);
printf(“%d -- %d\n”, plow, phigh);

}

#include <stdio.h>
#include <cuda.h>

int main() {
int plow, phigh;
cudaDeviceGetStreamPriorityRange(&plow, &phigh);
printf(“%d -- %d\n”, plow, phigh);

}

26

Classwork
● Find the execution sequence with a single

execution unit with preemption under:
– Round-robin scheduling (quantum = 1)

– Prioritized scheduling (s1 has priority over s2)
Task Burst

time
Arrival
time

Stream

C1 1 0 s1

K1 4 0 s1

C2 2 2 s1

K2 3 2 s2

C3 1 4 s2

C1 K1 C2 K2 K1 C2 C3 K2 K1 K2 K1

0 1 2 3 4 5 6 7 8 9 10

C1 K1 K1 C2 K1 C2 K1 K2 C3 K2 K2

Timeslots

Note that in real GPU,
all the tasks in a stream
are executed sequentially.
In this example, we will
deviate from this for
exposition purpose.

Note that in real GPU,
all the tasks in a stream
are executed sequentially.
In this example, we will
deviate from this for
exposition purpose.

27

Asynchronous Execution

● is good, but
– Increases number of concurrent behaviors; makes

code understanding difficult
– Satisfying dependencies becomes difficult
– With streams, multiple tasks may execute at their own

pace, making interception difficult.
● needs callbacks to satisfy dependencies

– Let me know!

– Compare with sleep and wakeup (I am talking about OS threads)

28

Stream Callbacks

● We can insert a callback into a stream.
● The callback function gets executed on the host

after all previous commands have completed.
● Callbacks in the default stream are executed

after all the preceding commands issued in all
streams have completed.

● Callbacks are blocking.

29

#include <stdio.h>
#include <cuda.h>
#define N 2

void mycallback(cudaStream_t stream, cudaError_t status, void *data) {
printf(“inside callback %d\n”, (long)data);

}
__global__ void K() {

printf(“in kernel K\n”);
}
int main() {

cudaStream_t stream[N];
for (long ii = 0; ii < N; ++ii) {

cudaStreamCreate(&stream[ii]);
K<<<1, 1, 0, stream[ii]>>>();
cudaStreamAddCallback(stream[ii], mycallback, (void *)ii, 0);
cudaDeviceSynchronize();

}
}

in kernel K
inside callback 0
in kernel K
inside callback 1

30

#include <stdio.h>
#include <cuda.h>
#define N 2

void mycallback(cudaStream_t stream, cudaError_t status, void *data) {
printf(“inside callback %d\n”, (long)data);

}
__global__ void K() {

printf(“in kernel K\n”);
}
int main() {

cudaStream_t stream[N];
for (long ii = 0; ii < N; ++ii) {

cudaStreamCreate(&stream[ii]);
K<<<1, 1, 0, stream[ii]>>>();
cudaStreamAddCallback(stream[ii], mycallback, (void *)ii, 0);
K<<<1, 1, 0, stream[ii]>>>();
cudaDeviceSynchronize();

}
}

in kernel K
inside callback 0
in kernel K
in kernel K
in kernel K
inside callback 1

Impossible

31

#include <stdio.h>
#include <cuda.h>
#define N 2

void mycallback(cudaStream_t stream, cudaError_t status, void *data) {
printf(“inside callback %d\n”, (long)data);

}
__global__ void K() {

printf(“in kernel K\n”);
}
int main() {

cudaStream_t stream[N];
for (long ii = 0; ii < N; ++ii) {

cudaStreamCreate(&stream[ii]);
K<<<1, 1, 0, stream[ii]>>>();
cudaStreamAddCallback(stream[ii], mycallback, (void *)ii, 0);
K<<<1, 1, 0, stream[ii]>>>();
cudaDeviceSynchronize();

}
}

in kernel K
inside callback 0
in kernel K
in kernel K
inside callback 1
in kernel K

32

#include <stdio.h>
#include <cuda.h>
#define N 2
__global__ void K() {

printf(“in kernel K\n”);
}
void mycallback(cudaStream_t stream, cudaError_t status, void *data) {

printf(“inside callback %d\n”, (long)data);
K<<<1, 1, 0, stream>>>();
cudaDeviceSynchronize();

}
int main() {

cudaStream_t stream[N];
for (long ii = 0; ii < N; ++ii) {

cudaStreamCreate(&stream[ii]);
K<<<1, 1, 0, stream[ii]>>>();
cudaStreamAddCallback(stream[ii], mycallback, (void *)ii, 0);
K<<<1, 1, 0, stream[ii]>>>();
cudaDeviceSynchronize();

}
}

in kernel K
inside callback 0
in kernel K
in kernel K
inside callback 1
in kernel K

33

#include <stdio.h>
#include <cuda.h>
#define N 2
__global__ void K() {

printf(“in kernel K\n”);
}
void mycallback(cudaStream_t stream, cudaError_t status, void *data) {

printf(“inside callback %d\n”, (long)data);
K<<<1, 1, 0, stream>>>();
CudaDeviceSynchronize();
cudaError_t err = cudaGetLastError();
printf(“%d, %s, %s\n”, err, cudaGetErrorName(err), cudaGetErrorString(err));

}
int main() {

cudaStream_t stream[N];
for (long ii = 0; ii < N; ++ii) {

cudaStreamCreate(&stream[ii]);
K<<<1, 1, 0, stream[ii]>>>();
cudaStreamAddCallback(stream[ii], mycallback, (void *)ii, 0);
K<<<1, 1, 0, stream[ii]>>>();
cudaDeviceSynchronize();

}
}

in kernel K
inside callback 0
error=70, cudaErrorNotPermitted, operation not permitted
in kernel K
in kernel K
inside callback 1
error=70, cudaErrorNotPermitted, operation not permitted
in kernel K

Takeaway: cannot make CUDA API calls from the callback.

34

Events

● Sometimes we want to communicate across
streams.

● Events can help.

#include <stdio.h>
#include <cuda.h>

int main() {
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
…
cudaEventDestroy(start);
cudaEventDestroy(stop);

}

35

Synchronization across Streams
● Callbacks allow us to communicate / synchronize

within a stream.
● Events allow us to communicate / synchronize

across streams.

cudaStream_t streamA, streamB;
cudaEvent_t event;

cudaStreamCreate(&streamA);
cudaStreamCreate(&streamB);
cudaEventCreate(&event);

K1<<<1,1,0, streamA>>>(arg_1);
cudaEventRecord(event, streamA);
K2<<<1,1,0,streamA>>>(arg_2);

cudaStreamWaitEvent(streamB, event, 0);
K3<<<1,1, 0, streamB>>>(arg_3);

cudaStream_t streamA, streamB;
cudaEvent_t event;

cudaStreamCreate(&streamA);
cudaStreamCreate(&streamB);
cudaEventCreate(&event);

K1<<<1,1,0, streamA>>>(arg_1);
cudaEventRecord(event, streamA);
K2<<<1,1,0,streamA>>>(arg_2);

cudaStreamWaitEvent(streamB, event, 0);
K3<<<1,1, 0, streamB>>>(arg_3);

Source: http://cedric-augonnet.com/

K3 won't execute until K1 is over.
K2 and K3 may execute concurrently.
Note:K1 is in stream A and K3 is in B.

36

Events

● Events can help us time.

#include <stdio.h>
#include <cuda.h>

int main() {
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
K<<<...>>>(); cudaDeviceSynchronize();
cudaEventRecord(stop, 0);
float elapsedtime;
cudaEventElapsedTime(&elapsedtime, start, stop);
printf(“time = %f ms\n”, elapsedtime);

}

37

Classwork

● Create a parent stream and N child streams.

● The parent stream enqueus kernels preamble

and postamble. Each child stream enqueues a
kernel work.

● Make sure all work kernels start and complete
in-between preamble and postamble.

38

int N = 16;
cudaStream_t parent_stream, child_streams[N];
cudaEvent_t parent_event, child_events[N];

cudaStreamCreate(&parent_stream);
preamble<<<1,1,0, parent_stream>>>(arg1);

/* Create a Synchronization point in the parent stream */
cudaEventCreate(&parent_event);
cudaEventRecord(parent_event, parent_stream);

/* Create N concurrent streams */
for (i = 0; i < N; i++)
{
 cudaStreamCreate(&child_streams[i]);
 cudaStreamWaitEvent(child_streams[i], parent_event, 0);
 work<<<1,1,0,child_streams[i]>>>(arg2);

 /* Create a Synchronization point in the child stream */
 cudaEventCreate(&child_events[i]);
 cudaEventRecord(child_events[i], child_streams[i]);
 cudaStreamWaitEvent(parent_stream, child_events[i], 0);
}

/* Enqueue work in the parent stream again, this work will not be
 * executed until all work is done in the children. */
postamble<<<1,1,0, parent_stream>>>(arg3);

Source: http://cedric-augonnet.com/

39

Learning Outcomes

✔ Concurrent computation using streams
✔ Overlapped computation and communication
✔ Cooperative kernels
✔ Callbacks
✔ Events

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

