Synchronization

Rupesh Nasre.

Learning Outcomes

- Data Race, Mutual Exclusion, Deadlocks
- Atomics, Locks, Barriers
- Reduction
- Prefix Sum
- Concurrent List Insertion
- CPU-GPU Synchronization

Data Race

- A datarace occurs if all of the following hold:
 - 1. Multiple threads
 - 2. Common memory location
 - 3. At least one write
 - 4. Concurrent execution
- Ways to remove datarace:
 - 1. Execute sequentially
 - 2. Privatization / Data replication
 - 3. Separating reads and writes by a barrier
 - 4. Mutual exclusion

Classwork

- What does the code ensure?
- Is there a datarace in this code?

If initially flag == 0, then S2 executes before S1. If initially flag == 1, then S2 executes and after that S1 may execute or T1 may hang.

 Can mutual exclusion be generalized for N threads?

Classwork: Grading

- Given roll numbers and marks of 80 students in GPU Programming, assign grades.
 - -S = 90, A = 80, B = 70, ..., E = 40, and U.
 - No W grades (for this classwork).
 - Use input arrays and output arrays.
- Compute the histogram.
 - Count the number of students with a grade.

Let's Compute the Shortest Paths

- You are given an input graph of India, and you want to compute the shortest path from Nagpur to every other city.
- Assume that you are given a GPU graph library and the associated routines.


```
_global__ void dsssp(Graph g, unsigned *dist) {
    unsigned id = ...
    for each n in g.allneighbors(id) {        // pseudo-code.
        unsigned altdist = dist[id] + weight(id, n);
        if (altdist < dist[n]) {
            dist[n] = altdist;
        }
    }
}</pre>
What is the error in this code?
```

Synchronization

- Control + data flow
- Atomics
- Barriers

Classwork: Implement mutual exclusion for two threads.

Classwork: Can we allow either **S1** or **S2** to happen first?

•

Initially, flag == false.

```
while (!flag);
```

S1;

```
S2;
```

Synchronization

- Control + data flow
- Atomics
- Barriers

Classwork: Implement mutual exclusion for two threads.

Classwork: Can we allow either **S1** or **S2** to happen first?

• ...

It helps to abstract this out into an API.

Initially, flag could be true or false.

while (!flag);

S1;

flag = false;

while (flag);

S2;

flag = true;

Assumptions:

- Reading of and writing to flag is atomic (seemingly one step).
- Both the threads execute their codes.
- flag is volatile.

Mutual Exclusion: 2 threads

- Let's implement lock() and unlock() methods.
- The methods should be the same for both the threads (can have threadid == 0, etc.).
- Should use only control + data flow.

Mutual Exclusion: 2 threads

- Thread ids are 0 and 1.
- Primitive type assignments are atomic.

```
lock:
   me = tid;
   other = 1 - me;
   flag[me] = true;
   while (flag[other])
unlock():
   flag[tid] = false;
```

- Mutual exclusion is guaranteed (if volatile).
- May lead to deadlock.
- If one thread runs before the other, all goes well.

Mutual Exclusion: 2 threads

- Thread ids are 0 and 1.
- victim needs to be volatile.

```
volatile int victim;
lock:
   me = tid;
   victim = me;
   while (victim == me)
unlock():
```

- Mutual exclusion is guaranteed.
- May lead to starvation.
- If threads repeatedly take locks, all goes well.

Peterson's Lock

```
volatile bool flag[2];
volatile int victim;
lock:
   me = tid;
   other = 1 - me;
   flag[me] = true;
   victim = me;
   while (flag[other] &&
          victim == me)
unlock():
      flag[tid] = false;
```

- Mutual exclusion is guaranteed.
- Does not lead to deadlock.
- The algorithm is starvation-free.

- flag indicates if a thread is interested.
- victim = me is pehle aap.

What about N threads?

Peterson's Lock

```
volatile bool flag[2];
volatile int victim;
lock:
   me = tid;
   other = 1 - me;
   flag[me] = true;
   victim = me;
   while (flag[other] &&
          victim == me)
unlock():
      flag[tid] = false;
```

```
flag[me] = true;
victim = me;
while (flag[other] &&
     victim == me)
victim = me;
flag[me] = true;
while (flag[other] &&
     victim == me)
victim = me;
flag[me] = true;
while (victim == me &&
    flag[other])
flag[me] = true;
victim = me:
while (victim == me &&
    flag[other])
```

Peterson's Lock

Thread 0	Thread 1
	victim = 1
victim = 0	
flag[0] = true	
while (flag[1]	
enters CS	
	flag[1] = true
	while (flag[0] &&
	victim == 1)
	enters CS

```
flag[me] = true;
victim = me;
while (flag[other] &&
     victim == me)
victim = me;
flag[me] = true;
while (flag[other] &&
     victim == me)
victim = me;
flag[me] = true;
while (victim == me &&
    flag[other])
flag[me] = true;
victim = me;
while (victim == me &&
    flag[other])
```

Bakery Algorithm

- Devised by Lamport
- Works with N threads.
- Maintains FCFS using ever-increasing numbers.

```
bool flag[N]; // false

    The code works in absence of caches.

    In presence of caches, mutual exclusion

int label[N]; // 0
                                is <u>not</u> guaranteed.

    There are variants to address the issue.

lock:
   me = tid;
                                            flag[tid] = false;
   flag[me] = true;
                                                max is not atomic.
   label[me] = 1 + max(label);
   while (∃k!= me: flag[k] &&
            (label[k], k) < (label[me], me))
```

Bakery Algorithm: GPU?

- Across warps is similar to CPU.
- What happens within warp-threads?
- Threads get the same label, < prioritizes.

```
bool flag[N]; // false
int label[N]; // 0
lock:
                                        unlock():
                                        flag[tid] = false;
   me = tid;
   flag[me] = true;
                                            max is not atomic.
   label[me] = 1 + max(label);
   while (∃k!= me: flag[k] &&
           (label[k], k) < (label[me], me))
```

Bakery Algorithm: GPU?

- Across warps is similar to CPU.
- What happens within warp-threads?
- Threads get the same label, < prioritizes.

- On GPUs, locks are usually prohibited.
- High spinning cost at large scale.
- But locks are feasible!
- Locks can also be implemented using atomics.

Synchronization

- Control + data flow
- Atomics
- Barriers

•

atomics

- Atomics are primitive operations whose effects are visible either none or fully (never partially).
- Need hardware support.
- Several variants: atomicCAS, atomicMin, atomicAdd, ...
- Work with both global and shared memory.

atomics

```
__global__ void dkernel(int *x) {
    ++x[0];
}
```

After dkernel completes, what is the value of x[0]?

dkernel<<<2, 1>>>(x);

Classwork: What if the kernel configuration is <<<1, 2>>>?

```
++x[0] is equivalent to:
```

Load x[0], R1

Increment R1

Store R1, x[0]

Time

 $\begin{array}{ccc} Load \ x[0], R1 & Load \ x[0], R2 \\ Increment \ R1 & Increment \ R2 \\ & Store \ R2, x[0] \end{array}$

Store R1, x[0]

Final value stored in x[0] could be 1 (rather than 2). What if x[0] is split into multiple instructions? What if there are more threads?

Atomics in ATMs

Twins at ATMs

Twin withdraws 1000 rupees.

System executes the steps:

- Check if balance is >= 1000.
- If yes, reduce balance by 1000 and give cash to the user.
- Otherwise, issue error.

Twins may be able to get 2000 rupees!
The balance can be negative!

Load x[0], R1

Load x[0], R2

Increment R1

Increment R2

Store R2, x[0]

Store R1, x[0]

atomics

- Ensure all-or-none behavior.
 - e.g., atomicInc(&x[0], ...);
- dkernel<<<K1, K2>>> would ensure x[0] to be incremented by exactly K1*K2 – irrespective of the thread execution order.
 - When would this effect be visible?

Let's Compute the Shortest Paths

- You are given an input graph of India, and you want to compute the shortest path from Nagpur to every other city.
- Assume that you are given a GPU graph library and the associated routines.

AtomicCAS

Syntax: oldval = atomicCAS(&var, x, y);

Typical usecases:

- Locks: critical section processing
- Single: Only one arbitrary thread executes the block.
- Other atomic variants

Classwork: Implement lock with atomicCAS.

Lock using atomicCAS

Does this work?

atomicCAS(&lockvar, 0, 1);

Does not ensure mutual exclusion.

Then how about

```
if (atomicCAS(&lockvar, 0, 1) == 0)
```

Does not block other threads.

// critical section

} while (old != 0);

Make the above code blocking.

```
do {
    old = atomicCAS(&lockvar, 0, 1);
```

Correct code?

Lock using atomicCAS

- The code works on CPU.
- It also works on GPU across warps.
- But it hangs for threads belonging to the same warp.
 - When one warp-thread acquires the lock, it waits for other warp-threads to reach the instruction just after the do-while.
 - Other warp-threads await this successful thread in the do-while.

```
do {
   old = atomicCAS(&lockvar, 0, 1);
} while (old != 0);
```

Correct code?

Lock using atomicCAS

Single using atomicCAS

```
if (atomicCAS(&lockvar, 0, 1) == 0)
```

// single section

Important not to set lockvar to 0 at the end of the single section.

What is the output?

```
#include <stdio.h>
#include <cuda.h>
  _global___ void k1(int *gg) {
     int old = atomicCAS(gg, 0, threadIdx.x + 1);
     if (old == 0) {
          printf("Thread %d succeeded 1.\n", threadIdx.x);
     old = atomicCAS(gg, 0, threadIdx.x + 1);
     if (old == 0) {
          printf("Thread %d succeeded 2.\n", threadIdx.x);
     old = atomicCAS(gg, threadIdx.x, -1);
     if (old == threadIdx.x) {
          printf("Thread %d succeeded 3.\n", threadIdx.x);
int main() {
     int *gg;
     cudaMalloc(&gg, sizeof(int));
     cudaMemset(&gg, 0, sizeof(int));
     k1<<<2, 32>>>(gg);
     cudaDeviceSynchronize();
     return 0;
```

- Some thread out of 64 updates gg to its threadid+1.
- Warp threads do not execute atomics together! That is also done sequentially.
- Irrespective of which thread executes the first atomicCAS, no thread would see gg to be 0. Hence second printf is not executed at all.
- If gg was updated by some thread 0..30, then the corresponding thread with id 1..31 from either of the blocks would update gg to -1, and execute the third printf.
- Otherwise, no one would update gg to -1, and no one would execute the third printf.
- On most executions, you would see the output to be that thread 0 would execute the first printf, and thread 1 would execute the third printf.

Classwork

- Each thread adds elements to a worklist.
 - e.g., next set of nodes to be processed in SSSP.
 - worklist is implemented as an array.
- Initially, assume that each thread adds exactly K elements.
- Later, relax the constraint.

atomic-worklist.cu

Convolution Filter

- Each output cell contains weighted sum of input data element and its neighbors. The weights are specified as a filter (array).
- The idea can be applied in multiple dimensions.
- We will work with 1D convolution and odd filter size.

Source: Prof. Marco Bertini's slides

Synchronization

- Control + data flow
- Atomics
- Barriers

•

Barriers

- A barrier is a program point where all threads need to reach before any thread can proceed.
- End of kernel is an implicit barrier for all GPU threads (global barrier).
- There is no explicit global barrier supported in CUDA.
- Threads in a thread-block can synchronize using __syncthreads().
- How about barrier within warp-threads?

Barriers

```
<u>__global__</u> void dkernel(unsigned *vector, unsigned vectorsize) {
    unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
                           S1
    vector[id] = id;
    _syncthreads();
                                                                    S2
    if (id < vectorsize - 1 && vector[id + 1] != id + 1)
      printf("syncthreads does not work.\n");
                                            Thread block
                                                    S1
                                              S1
                            S2
                       S2
               Thread block
```

Barriers

- <u>_syncthreads()</u> is not only about control synchronization, it also has data synchronization mechanism.
- It performs a memory fence operation.
 - A memory fence ensures that the writes from a thread are made visible to other threads.
 - _syncthreads() executes a fence for all the block-threads.
- There is a separate __threadfence_block() instruction also. Then, there is __threadfence().
- [In general] A fence does not ensure that other thread will read the updated value.
 - This can happen due to caching.
 - The other thread needs to use volatile data.
- [In CUDA] a fence applies to both read and write.

Classwork

- Write a CUDA kernel to find maximum over a set of elements, and then let thread 0 print the value in the same kernel.
- Each thread is given work[id] amount of work.
 Find average work per thread and if a thread's work is above average + K, push extra work to a worklist.
 - This is useful for load-balancing.
 - Also called work-donation.

Taxonomy of Synchronization Primitives

Primitive	Control-sync	Data-sync
syncthreads	Block	Block
atomic		Block for shared All for global
threadfence_block		block
threadfence		All
Global barrier (simulated)	All	All
while loop	Customizable	– (but not useful without data-synchronization)
volatile		All

- Converting a set of values to few values (typically 1)
- Computation must be reducible.
 - Must satisfy associativity property (a.(b.c) = (a.b).c).
 - Min, Max, Sum, XOR, ...
- Can be often implemented using atomics
 - atomicAdd(&sum, a[i]);
 - atomicMin(&min, a[i]);
 - But adds sequentiality.
- Reductions allow improving parallelism.
 - Different from reductions in OpenMP and MPI.

- Converting a set of values to few values (typically 1)
- Computation must be reducible.
 - Must satisfy associativity property (a.(b.c) = (a.b).c).
 - Min, Max, Sum, XOR, ...
- Complexity measures


```
for (int off = n/2; off; off /= 2) {
    if (threadIdx.x < off) {
        a[threadIdx.x] += a[threadIdx.x + off];
    }
    __syncthreads();
}</pre>
```

Input:	4 3	9	3	5	7	3	2	n numbers
	7	12		12		5		barrier
log(n) steps	19					17		
Output:	36							

n must be a power of 2

```
for (int off = n/2; off; off /= 2) {
    if (threadIdx.x < off) {
        a[threadIdx.x] += a[threadIdx.x + off];
    }
    __syncthreads();
}</pre>
```

```
Input: 4 3 9 3 5 7 3 2 n numbers
9 10 12 5 5 7 3 2 n/2 threads
log(n) steps
21 15 12 5 5 7 3 2 ...
Output: 36 17 12 5 5 7 3 2 1 thread
```

```
for (int off = n/2; off; off /= 2) {
    if (threadIdx.x < off) {
        a[threadIdx.x] += a[threadIdx.x + off];
    }
    __syncthreads();
}</pre>
```

Write the reduction as: 4 3 9 3 5 7 3 2

```
for (int off = n/2; off; off /= 2) {
    if (threadIdx.x < off) {
        a[threadIdx.x] += a[2 * off - threadIdx.x - 1];
    }
    __syncthreads();
}</pre>
```

Let's go back to our first diagram.

This can be implemented as

Input:	4	3	9	3	5	7	3	2	n numbers
	7	12	12	5	5	7	3	2	n/2 threads
log(n) steps	19	17	12	5	5	7	3	2	•••
Output:	36	17	12	5	5	7	3	2	1 thread

- A challenge in the implementation is:
 - a[1] is read by thread 0 and written by thread 1.
 - This is a data-race.
 - Can be resolved by separating R and W.
 - This requires another barrier and a temporary.

Input:	4	3	9	3	5	7	3	2	n numbers
	7	12	12	5	5	7	3	2	n/2 threads
log(n) steps	19	17	12	5	5	7	3	2	•••
Output:	36	17	12	5	5	7	3	2	1 thread

Classwork

- Assuming each a[i] is a character, find a concatenated string using reduction.
- String concatenation cannot be done using a[i] and a[i + n/2], but computing sum was possible; why?
- What other operations can be cast as reductions?

- Imagine threads wanting to push work-items to a central worklist.
- Each thread pushes different number of workitems.
- This can be computed using atomics or prefix sum (also called as *scan*).

```
Input: 4 3 9 3 5 7 3 2 Output: 4 7 16 19 24 31 34 36
```

OR

```
for (int off = n/2; off; off /= 2) {
    if (threadIdx.x < off) {
        a[threadIdx.x] += a[threadIdx.x + off];
    }
    __syncthreads();
}</pre>
```


This is reduction.

```
for (int off = n; off; off /= 2) {
    if (threadIdx.x < off) {
        a[threadIdx.x] += a[threadIdx.x + off];
    }
    __syncthreads();
}</pre>
```


Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 33 35
OR
Output: 0 4 7 16 19 24 31 33

```
for (int off = n/2; off; off /= 2) {
    if (threadIdx.x < off) {</pre>
        a[threadIdx.x] += a[threadIdx.x + (n - off)];
    _syncthreads();
for (int off = 0; off < n; off *= 2) {
    if (threadIdx.x > off) {
        a[threadIdx.x] += a[threadIdx.x - off];
    _syncthreads();
```



```
Input: 4 3 9 3 5 7 3 2
Output: 4 7 16 19 24 31 33 35
OR
Output: 0 4 7 16 19 24 31 33
```

X_1 X_2 X_3 X_4 X_5	X ₀	X ₂	X ₃ X ₄	X ₅ X ₆	X ₇
-------------------------------	----------------	----------------	-------------------------------	---	----------------

Input: 4 3 9 3 5 7 3 2 Output: 4 7 16 19 24 31 33 35

OR

Input: 4 3 9 3 5 7 3 2 Output: 4 7 16 19 24 31 33 35

OR

Input: 4 3 9 3 5 7 3 2

Output: 4 7 16 19 24 31 33 35

OR

```
Datarace
for (int off = 1; off < n; off *= 2) {</pre>
    if (threadIdx.x > off) {
        a[threadIdx.x] += a[threadIdx.x - off];
    _syncthreads();
for (int off = 1; off < n; off *= 2) {
                                                                Separating
    if (threadIdx.x > off) {
                                                                  R and W
         tmp = a[threadIdx.x - off];
                                                                   in time
         _syncthreads();
         a[threadIdx.x] += tmp;
    _syncthreads();
```

```
for (int off = 1; off < n; off *= 2) {
    if (threadIdx.x >= off) {
        tmp = a[threadIdx.x - off];
    }
    __syncthreads();

if (threadIdx.x >= off) {
        a[threadIdx.x] += tmp;
    }
    __syncthreads();
}
```


Can this be done with single syncthreads()?

Application of Prefix Sum

- Assuming that you have the prefix sum kernel, insert elements into the worklist.
 - Each thread inserts nelem[tid] many elements.
 - The order of elements is not important.
 - You are forbidden to use atomics.
- Computing cumulative sum
 - Histogramming
 - Area under the curve
 - Fenwick Tree (Binary Indexed Tree)

Global Barrier

- Barrier across all the GPU threads.
- Useful to store transient data, partial computations, shared memory usage, etc.
- Can be readily implemented using atomics.
- Can use hierarchical synchronization for efficiency.
 - syncthreads() within each thread block.
 - Representative from each block then synchronizes using atomics.

Concurrent Data Structures

- Array
 - atomics for index update
 - prefix sum for coarse insertion
- Singly linked list
 - insertion
 - deletion [marking, actual removal]

Concurrent Data Structures

```
struct node {
    char item;
    struct node *next;
};

G->next = P2;
P1->next = G;
```

- In the concurrent setting, the exact order of insertions is not expected.
- Elements can be inserted in any order.
- So, w.l.o.g. we assume elements being added at the head.

head G P P U Classwork: Write the code to insert G2 at head. G2->next = head; head = G2;

Solution 1: Keep a lock with the list.

- Coarse-grained synchronization
- Low concurrency / sequential access
- Easy to implement
- Easy to argue about correctness

Solution 2: Keep a lock with each node.

- Fine-grained synchronization
- Better concurrency
- Moderately difficult to implement,
 need to finalize the supported operations
- Difficult to argue about correctness when multiple nodes are involved

Classwork: Check if two concurrent inserts work.

Classwork: Implement

insert().


```
void insert(Node *naya) {
void insert(Node *naya) {
                                                  ptr = head;
    head→lock();
                                                  ptr→lock();
    naya \rightarrow next = head;
                                                  naya \rightarrow next = head;
    head = naya;
                                                  head = naya;
                        Danger
    head→unlock();
                                                                      Danger
                                                  ptr→unlock();
}
      head changes.
                                                  By the time, ptr \rightarrow lock happens,
                                                  head may have changed!
                                          Н
                                                     T2
                  G
                                                  P
                                          G
                                                                                      64
```

```
void insert(Node *naya) {
                                             void insert(Node *naya) {
    head→lock();
                                                 ptr = head;
    ptr = head;
                                                 ptr→lock();
    naya \rightarrow next = head;
                                                 naya \rightarrow next = head;
    head = naya;
                                                 head = naya;
    ptr→unlock();
                                                                      Danger
                                                 ptr→unlock();
  Lock head first, then copy.
                                                 By the time, ptr \rightarrow lock happens,
                                                 head may have changed!
                                          Н
                                                     T2
                  G
                                                  P
   Classwork: Implement this
                                          G
          with atomics.
                                                                                     65
```

```
void insert(Node *naya) {
    head→lock();
    ptr = head;
    naya \rightarrow next = head;
    head = naya;
    ptr→unlock();
```

```
void insert(Node *naya) {
     head→lock();
     naya \rightarrow next = head \rightarrow next:
     head \rightarrow next = naya;
     head→unlock();
```

Lock head first, then copy.

(It is important to reload head in head → lock.)

Insert naya as the second node.

Source: linkedlist-add.cu

CPU-GPU Synchronization

- While GPU is busy doing work, CPU may perform useful work.
- If CPU-GPU collaborate, they require synchronization.

Classwork: Implement a functionality to print sequence 0..10.

CPU prints even numbers,

GPU prints odd.

CPU-GPU Synchronization

```
#include <cuda.h>
#include <stdio.h>
 global void printk(int *counter) {
                               // in general, this can be arbitrary processing
    ++*counter:
    printf("\t%d\n", *counter);
int main() {
    int hcounter = 0, *counter;
    cudaMalloc(&counter, sizeof(int));
    do {
          printf("%d\n", hcounter);
         cudaMemcpy(counter, &hcounter, sizeof(int), cudaMemcpyHostToDevice);
          printk <<<1, 1>>>(counter);
         cudaMemcpy(&hcounter, counter, sizeof(int), cudaMemcpyDeviceToHost);
    } while (++hcounter < 10); // in general, this can be arbitrary processing
    return 0;
```

Pinned Memory

- Typically, memories are pageable (swappable).
- CUDA allows to make host memory pinned.
- CUDA allows direct access to pinned host memory from device.
- cudaHostAlloc(&pointer, size, 0);

Classwork: Implement the same functionality to print sequence 0..10.

CPU prints even numbers,

GPU prints odd.

Pinned Memory

```
#include <cuda.h>
#include <stdio.h>
  _global___ void printk(int *counter) {
                                                      No cudaMempcy!
     ++*counter:
    printf("\t%d\n", *counter);
int main() {
    int *counter;
    cudaHostAlloc(&counter, sizeof(int), 0);
    do {
         printf("%d\n", *counter);
         printk <<<1, 1>>>(counter);
         cudaDeviceSynchronize();
         ++*counter;
    } while (*counter < 10);</pre>
                                       Classwork: Can we avoid
    cudaFreeHost(counter);
                                          repeated kernel calls?
    return 0;
```

Persistent Kernels

```
_global___ void printk(int *counter) {
     do {
          while (*counter % 2 == 0);
           printf("\t%d\n", *counter);
           ++*counter:
     } while (*counter < 10);</pre>
int main() {
     int *counter;
     cudaHostAlloc(&counter, sizeof(int), 0);
     printk <<<1, 1>>>(counter);
     do {
          while (*counter % 2 == 1);
           printf("%d\n", *counter);
           ++*counter;
     } while (*counter < 10);</pre>
     cudaFreeHost(counter);
     return 0;
}
```

Hierarchy of Barriers

- Warp: SIMD
- Block: __syncthreads
- Grid: Global Barrier
- CPU-GPU: cudaDeviceSynchronize

Who will use CPU-GPU for printing odd-even numbers?

- Increment is replaceable by arbitrary computation.
 - A matrix needs three computation steps. Each step can be parallelized on CPU and GPU. The matrix can be divided accordingly.
 - A graph can be partitioned. CPU and GPU compute shortest paths on different partitions. Their results are merged. Then iterate similarly.
 - ...
- Very useful when data does not fit in GPU memory (e.g., billions of data items, twitter graph, ...)
- Useful when CPU prepares data for the next GPU₃ iteration.

Synchronization Patterns

- Common situations that demand the same way of synchronizing
- Useful in applications from various domains
- Can be optimized, and applied to all
- Can be further optimized customized to an application

Barrier-based Synchronization

- Disjoint accesses
- Overlapping accesses
- Benign overlaps

Barrier-based Synchronization

- Disjoint accesses
- Overlapping accesses
- Benign overlaps

e.g., for owning cavities in Delaunay mesh refinement Consider threads trying to own a set of elements

atomic per element

Race and resolve

e.g., for inserting unique elements into a worklist

Barrier-based Synchronization

without atomics

- Disjoint accesses
- Overlapping accesses
- Benign overlaps

e.g., level-by-level breadth-first search

Consider threads updating shared variables to the same value

Exploiting Algebraic Properties

Monotonicity

- Idempotency
- Associativity

Consider threads updating distances in shortest paths computation

Lost-update problem

Correction by topology-driven processing, exploiting monotonicity

Exploiting Algebraic Properties

- Monotonicity
- Idempotency
- Associativity

Consider threads updating distances in shortest paths computation

Update by multiple threads

Multiple instances of a node in the worklist

Same node processed by multiple threads

Exploiting Algebraic Properties

- Monotonicity
- Idempotency

Associativity

Consider threads pushing information to a node

Associativity helps push information using prefix-sum

Scatter-Gather

Learning Outcomes

- Data Race, Mutual Exclusion, Deadlocks
- Atomics, Locks, Barriers
- Reduction
- Prefix Sum
- Concurrent List Insertion
- CPU-GPU Synchronization