Memory

Rupesh Nasre.

GPU Programming
January 2021



Agenda

* Memory

e Synchronization

* Functions

* Support

* Streams

* Topics

e Case Study — Graphs



CUDA Memory Model Overview

* Global / Video memory

— Main means of communicating data

between host and device

— Contents visible to all GPU threads
— Long latency access (400-800 cycles)

— Throughput ~200 GBPS

* Texture Memory
— Read-only (12 KB)
— ~800 GBPS

Host

— Optimized for 2D spatial locality

* Constant Memory
— Read-only (64 KB)

Grid

Block (0, 0) Block (1, 0)

| |

Thread (0, 0) | Thread (1, 0) Thread (0, 0) | Thread (1, 0)

k_

3
3
The numbers are typical values.




CUDA Memory Model Overview

* L2 Cache
— 768 KB
— Shared among SMs

— Fast atomics

* L1/ Shared Memory
— Configurable 64 KB per SM

— 16 KB shared+48 KB L.1 or vice versa

— Low latency (20-30 cycles)
— High bandwidth (~1 TBPS)

* Registers

Host

Grid

Block (0, 0)

ok

Block (1, 0)

ok

Thread (0, 0) | Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

— 32 K in number, unified, per SM

— ~Makx. 21 registers per thread
— Very high bandwidth (~8 TBPS)

4 4

The numbers are typical values.




Bandwidth

* Big (wide) data bus rather than fast data bus
* Parallel data transfer

* Techniques to improve bandwidth:

- Share / reuse data
- Data compression
- Recompute than store + fetch



Latency

_atency Is time required for 1/O.

_atency should be minimized; ideally zero.

- Processor should have data available in no time.
- In practice, memory |/O becomes the bottleneck.
Latency can be reduced using caches.

- CPU: Regqisters, L1, L2, L3, L4, RAM

- GPUs have small L1 and L2, and many threads.

Latency hiding on GPUs is done by exploiting
massive multi-threading.




Latency Hiding

stall

stall

stall

Time

> Latency

XX

o
botes
%
%

X
08
5%
%

25
dote%es
XKL

%

May lead to super-linear speedup.




Locality

Locality Is important on GPUs also.

All threads In a thread-block access their L1
cache.

- This cache on Pascal GPU iIs 64 KB.

- It can be configured as 48 KB L1 + 16 KB scratchpad
(or 16 KB L1 + 48 KB scratchpad or 32 KB + 32 KB).

Programmer can help exploit locality.

n the GPU setting, another form of spacial
ocality Is critical.




Locality

Spatial Temporal
If a[i] Is accessed, If a[i] Is accessed now,
a[i+k] would also be it would be accessed
accessed. soon again.
ali] =1i;
for (i=0;1i< N; ++i) a[i] += N:

ali] = 0O; b[i] = a[i] * a[il;

The localities are applicable on both CPU as well as GPU. But more
applicable on CPUs.



Classwork

* Check how the localities are in the following
matrix multiplication programs (on CPU).

for (i=0;i<M; ++i) for (i=0;i<M; ++i)
for (j = 0;j < N; ++j) for (k=0; k < P; ++k)
for (k =0; k < P; ++k) for (j =0;j<N; ++j)

Clil[j] += Alil(k] * Blk][j]; Clil[j] += Ali][k] * BIK][jI;

Times taken for (M, N, P) = (1024, 1024, 1024) are 9.5 seconds and 4.7 seconds.

What happens on a GPU? 10




Memory Coalescing

* If warp threads access words from the same
block of 32 words, their memory requests are
clubbed into one.

- That Is, the memory requests are coalesced.

* Without coalescing, each load / store
iInstruction would required one memory cycle.
- A warp would require 32 memory cycles.
- The throughput would significantly reduce.

- GPU would be useful only for compute-heavy
kernels.

11



Memory Coalescing

* If warp threads access words from the same
block of 32 words, their memory requests are
clubbed into one.

- That Is, the memory requests are coalesced.

* This can be effectively achieved for regular
programs (such as dense matrix operations).

el g O
N 97\

Coalesced Uncoalesced Coalesced




Degree of Coalescing

* DoC is the inverse of (33 - ) the number of
memory transactions required for a warp to
execute an instruction.

- al[threadldx.x] has DoC of 32.

— alrand()] has a DoC of 1 in the worst case.

* Classwork: Write a kernel to vary the degree of
coalescing from 1 to 32 based on an input
argument.

13



Memory Coalescing

» Each thread should access + A chunk should be
consecutive elementsofa =~ accessed by consecutive

™ chunk (strided). ~ threads (coalesced).
§) « Array of Structures (AoS) Structure of Arrays (So0A)
has a better locality. ~has a better performance.

start = id * chunksize;
end = start + chunksize;
for (ii = start; ii < end; ++ii)
.. a[id] ... ... a[ii] .. .. a[input[id]] ...

2\

Coalesced Strided Random




A0S versus SoA

struct node { struct node {
int a; int alla[N];
double b; double allb[N];
char c; char allc[N];
}; };
struct node allnodes|[N];
s e Wi @ e, Expectation: When a thread
accesses an attribute of a node,  accesses an attribute of a node,
it also accesses other attrlbutes Its neighboring thread accesses
“of the same node. - the same attribute of the next
| ~ node.

Better locality (on CPU). |
Better coalescing (on GPU).

Classwork: Write code for the two types using cudaMemcpy.

(note that all arrays would be pointers)



A0S versus SoA

_dlobal__void dkernelaos(struct nodeAOS *allnodesAQOS) {

struct nodeAOS { unsigned id = blockIdx.x * blockDim.x + threadldx.x;

ijnt i;l N allnodesAOS[id].a = id;
I(:U ? ; allnodesAOSJ[id].b = 0.0;
char c; allnodesAOS[id].c ="'c";

} *allnodesAOS;

struct nodeSOA { _global__ void dkernelsoa(int *a, double *b, char *c) {
int *a; unsigned id = blockldx.x * blockDim.x + threadldx.x;
double *b; alid] = id;
char *c; b[id] = 0.0;
} allnodesSOA; c[id] ='d";
}

AOS time = 61 units, SOA time = 22 units 16




Classwork

* Copy a linked-list from CPU to GPU.

— Each node contains roll number, name, facad.

- Try a single pass through the list, without knowing
the number of nodes a priori.

17



Shared Memory

* Programmable L1 cache / Scratchpad memory
* Accessible only in a thread block

* Useful for repeated small data or coordination

__shared__float a[N];
_shared__unsigned s;

alid] = id;
if id==0)s=1;




Classwork

* You are given a 1024x1024 integer matrix M.

 Each row is assigned to a thread block.

* Each thread Is assigned a matrix element MJil[jl.

* It changes MJillj] to M[il[j] + Mlil[j+1] (where
possible).

* Exploit shared memory.

19



Shared Memory

#include <stdio.h>
#include <cuda.h>

#define BLOCKSIZE 1024

_gdlobal__void dkernel() {
__shared__unsigned s;

if (threadldx.x==0) s =0;

if (threadldx.x==1)s +=1;

if (threadldx.x == 100) s += 2;

if (threadldx.x == 0) printf("s=%d\n", s);
}

int main() {
dkernel<<<1, BLOCKSIZE>>>();
cudaDeviceSynchronize();

20



Shared Memory

#include <stdio.h>
#include <cuda.h>

#define BLOCKSIZE 1024

_gdlobal__void dkernel() {
__shared__unsigned s;

if (threadldx.x==0) s =0;

if (threadldx.x==1)s +=1;

if (threadldx.x == 100) s += 2;

if (threadldx.x == 0) printf("s=%d\n", s);
}

int main() {
dkernel<<<2, BLOCKSIZE>>>();
cudaDeviceSynchronize();

21



Shared Memory

#include <stdio.h>
#include <cuda.h>

#define BLOCKSIZE 1024

_global__void dkernel() {
_shared__unsigned s;

if (threadldxx==0) s =0;
if (threadldxx==1)s +=1;
if (threadldx.x == 100) s += 2;

if (threadIdx.x == 0) printf("s=%d\n", s);
}
int main() {
int i;
for (i=0;i< 10; ++1i) {
dkernel<<<2, BLOCKSIZE>>>();
cudaDeviceSynchronize();

A A AN o AN o annag
WWWF WWWWWWwwowowawwowwwoww

22



Shared Memory

#include <stdio.h>
#include <cuda.h>

#define BLOCKSIZE 1024

_global__void dkernel() {
_shared__ unsigned s;

if (threadldx.x ==0) s= ;
_syncthreads(); // barrier across threads in a block
if (threadldxx==1)s +=1;
_syncthreads();
if (threadIdx.x == 100) s += 2;
_syncthreads();
if (threadIdx.x == 0) printf("s=%d\n", s);
}
int main() {
int i;
for (i=0;1i< 10; ++1) {
dkernel<<<2, BLOCKSIZE>>>();
cudaDeviceSynchronize();

This one is redundant.

nVuumuununmunmnunuumunmunumunmnununnmnuununonmunuounon
WWWLWWWwWwWwwWwWwwWwwwwwwwwww

23



What is the output of this program?

#include <stdio.h>
#include <cuda.h>

#define BLOCKSIZE

_global__void dkernel() {
__shared__ char str[BLOCKSIZE+1];
str[threadldx.x] = ‘A" + (threadldx.x + blockIdx.x) % BLOCKSIZE;
if (threadldx.x == 0) {
str[BLOCKSIZE] = '\0';

J

if (threadldx.x == 0) { . . . o
printf("%d: %s\n", blockldx.x, str); DO [ e Ll L AL e o

J
J

int main() {
dkernel<<<10, BLOCKSIZE>>>();
cudaDeviceSynchronize();




What is the output of this program?

#include <stdio.h>
#include <cuda.h>

This is redundant if

BLOCKSIZE <= 32.
#define BLOCKSIZE

_global__void dkernel() {
__shared__ char str[BLOCKSIZE+1];
str[threadldx.x] = A" + (threadldx.x +
if (threadldx.x == 0) {

str[BLOCKSIZE] = '\ 0!

~dx.x) % BLOCKSIZE;

J

_syncthreads(); // barrier across threads in a block
if (threadldx.x == 0) {
printf("%d: %s\n", blockldx.x, str);

J
J

int main() {
dkernel<<<10, BLOCKSIZE>>>();
cudaDeviceSynchronize();




L1 versus Shared

e On CPU:

cudaDeviceSetCacheConfig(kernelname, param);
kernelname Is the name of your kernel.
param IS {cudaFuncCachePreferNone, L1, Shared}.

3.x onward, one may also configure it as 32KB L1 +
32KB Shared. This is achieved using

cudaFuncCachePreferEqual.

27



L1 versus Shared

__global __ void dkernel() {
__shared__ unsigned data|[BLOCKSIZE],
data[threadldx.x] = threadldx.x;
}
int main() {
cudaFuncSetCacheConfig(dkernel, cudaFuncCachePreferL1);
//cudaFuncSetCacheConfig(dkernel, cudaFuncCachePreferShared);
dkernel<<<l, BLOCKSIZE>>>();,
cudaDeviceSynchronize();

28



Dynamic Shared Memory

* When the amount of shared memory required Is
unknown at compile-time, dynamic shared
memory can be used.

* This Is specified as the third parameter of
kernel launch.

29



Dynamic Shared Memory

#include <stdio.h>
#include <cuda.h>

__global__ void dynshared() {
extern __shared__ int s[];

s[threadldx.x] = threadldx.x;
__syncthreads(),

if (threadldx.x % 2) printf("%d\n", s[threadldx.x]);
}

int main() {
Int n;
scanf(“%d”, &n);
dynshared<<<1, n, n * sizeof(int)>>>();
cudaDeviceSynchronize();

return O;

30



Bank Conflicts

Shared memory is organized into 32 banks.
Accesses to the same bank are sequential.

Consecutive words are stored In adjacent banks.
- Useful for coalesced access.

Exception: Warp accesses to the same word
are not sequentialized.

__global  void bankNOconflict() { __global _ void bankconflict() {
__shared__ unsigned s[1024], __shared__ unsigned s[1024];
S[1 * threadldx.x] = threadldx.x; s[32 * threadldx.x] = threadldx.x;




Threads:

==L I - T, B - T I =

No bank
conflict

31— p31))

1
19

e
! ]
!/ N =l
24 \[L‘ﬂ!
2s }Y'-.LI-_J,J

A\T5al

==]

2-way bank
conflict

n—"

32



TN
NEENENEEE mﬁﬁﬁﬁ,_m 9E mﬁﬁ,_g g €38
M | .._,..'.,’. e L l-“.._\.w..hh:,r. . m m
_— 4 Ji-..nl.l._._....ul.l.lur....nl..ll ) = @)
TS A, &
B S AmesnerooagdoinsieNaas s ARYR G
£
TN
XX
c O
Qo ‘s
Elf
T emadthornontanatnenaag gy s
= - )
N
B e N T s,
|
2 L ﬁ.r...;r‘_ 2 1) o |} (4 P EY: m.m
| L | [ %4 0
NS ] N DN | 58
Felamndneldndadbindneydannssse 2°
=

33

| 31|/

31 =31 31/

|."_-31.J

31



Shared Memory with Multiple Arrays

__global __ void dynshared(int sz, int n1) {

extern __shared__ int s[];

Int *s1 = s;

Int *s2 = s + nl;

If (threadldx.x < nl) sl[threadldx.x] = threadldx.x;

If (threadldx.x < (sz - nl)) s2[threadldx.x] = threadldx.x * 100;

___Syncthreads(),

iIf (threadldx.x < sz && threadldx.x % 2) printf("%d\n", s1[threadldx.x]);
}
Int main() {

Nt Sz;

scanf("%d", &sz);

dynshared<<<1, 1024, sz * sizeof(int)>>>(sz, sz / 2);

cudaDeviceSynchronize();

return O;




Texture Memory

Fast read-only memory

Optimized for 2D spatial access

Definition: texture<float, 2, cudaReadModeElementType> tex;
N Malin: cudaBindTextureToArray(tex, cuArray, ...);

n kernel: ... = tex2D(tex, ...);

35



Texture Memory

 Example from CUDA SDK

{

__global  void transformKernel(float *output, int width, int height, float theta)

unsigned x = blockldx.x * blockDim.x + threadldx.x;
unsigned y = blockldx.y * blockDim.y + threadldx.y;

float u = (float)x - (float)width / 2;

float v = (float)y - (float)height / 2;

float tu = (u * cosf(theta) - v * sinf(theta)) / width;
float tv = (v * cosf(theta) + u * sinf(theta)) / height;

output[y * width + x] = tex2D(tex, tu + 0.5, tv + 0.5);

36



Constant Memory

Read-only Memory
64KB per SM
Definition: __constant__ unsigned meta;

Main: cudaMemcpyToSymbol(meta, &hmeta,
sizeof(unsigned));

Kernel: data[threadldx.x] = meta[0];

37



Constant Memory

#include <cuda.h>
#include <stdio.h>

__constant__ unsigned metal[1];

__global  void dkernel(unsigned *data) {
data[threadldx.x] = meta[0];
}

__global  void print(unsigned *data) {
printf("%d %d\n", threadldx.x, data[threadldx.x]);
}

int main() {

unsigned hmeta = 10;

cudaMemcpyToSymbol(meta, &hmeta, sizeof(unsigned));
unsigned *data;

cudaMalloc(&data, 32 * sizeof(unsigned));

dkernel<<<1, 32>>>(data);

cudaDeviceSynchronize();

print<<<l, 32>>>(data);

cudaDeviceSynchronize();

return O;

38



Shared Memory with Multiple Arrays

__global __ void dynshared(int sz, int n1) {

extern __shared__ int s[];

Int *s1 = s;

Int *s2 = s + nl;

If (threadldx.x < nl) sl[threadldx.x] = threadldx.x;

If (threadldx.x < (sz - nl)) s2[threadldx.x] = threadldx.x * 100;

___Syncthreads(),

iIf (threadldx.x < sz && threadldx.x % 2) printf("%d\n", s1[threadldx.x]);
}
Int main() {

Nt Sz;

scanf("%d", &sz);

dynshared<<<1, 1024, sz * sizeof(int)>>>(sz, sz / 2);

cudaDeviceSynchronize();

return O;




Compute Capabillity

* Version number: Major.minor (e.g., 6.2)

- Features supported by the GPU hardware.
- Used by the application at runtime (-arch=sm_62).
e CUDA_ARCH__ Is defined (e.g., 620) in device code.

 CUDA version is the software version (e.g., CUDA 10.1).

40



Compute Capabillity

Major number Architecture
1 Tesla

Fermi
Kepler
Maxwell

Volta
Turing
Ampere
10 Lovelace

11 Hopper

2

3

5

6 Pascal
7

8

9



Compute Capabillity

Feature

Atomics int, float
warp-vote

__syncthreads

Unified memory
Dynamic parallelism

Atomics double

Tensor core

Hardware async copy

2.X

Yes
Yes

Yes

3.0

Yes
Yes

Yes

Yes

3.5, 3.7,
5.0,5.2

Yes
Yes
Yes

Yes

Yes

6.X

Yes
Yes

Yes

Yes

Yes

Yes

7.X

Yes
Yes

Yes

Yes

Yes

Yes

Yes

8.0

Yes
Yes

Yes

Yes

Yes

Yes

Yes

Yes

42



Classwork

* Write CUDA code for the following functionality.

- Assume following data type, filled with some values.
struct Point { int x, y; } arr[N];

- Each thread should operate on 4 elements.
- Find the average AVG of x values.

- |f a thread sees y value above the average, it
replaces all 4 y values with AVG.

- Otherwise, it adds y values to a global sum.
— Host prints the number of elements set to AVG.

43



CUDA, In a nutshell

Compute Unified Device Architecture. It is a hardware and software architecture.
Enables NVIDIA GPUs to execute programs written with C, C++, Fortran, OpenCL,
and other languages.

A CUDA program calls parallel kernels. A kernel executes in parallel across a set of
parallel threads.

The programmer or compiler organizes these threads in thread blocks and grids of
thread blocks.

The GPU instantiates a kernel program on a grid of parallel thread blocks.

Each thread within a thread block executes an instance of the kernel, and has a
thread ID within its thread block, program counter, registers, per-thread private
memory, inputs, and output results.

A thread block is a set of concurrently executing threads that can cooperate among
themselves through barrier synchronization and shared memory.

A grid is an array of thread blocks that execute the same kernel, read inputs from
global memory, and write results to global memory.

Each thread has a per-thread private memory space used for register spills,
function calls, and C automatic array variables.

Each thread block has a per-block shared memory space used for inter-thread
communication, data sharing, and result sharing in parallel algorithms.

44



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

