CS6023: GPU Programming Assignment 1

Problem specification

Write three separate CUDA C++ kernels for adding up two integer matrices i.e. add elements at the same *i*, *j* position in both the matrices. In the first kernel *per_row_kernel*, each thread should process a complete row of the input matrices. In the second kernel *per_column_kernel*, each thread should process a complete column of the input matrices. In the third kernel *per_element_kernel*, each thread should process exactly one element from both the input matrices. For the evaluation purpose, *per_row_kernel* will be invoked with *1D grid and 1D blocks*, *per_column_kernel* will be invoked with *1D grid and 2D blocks* and *per_element_kernel* will be invoked with *2D grid and 2D blocks*.

Input: Size of matrix (*m* and *n*) and two integer matrices **A** and **B** of same size.

Output: A matrix C of the same size (say $m \ge n$) as A and B, storing the result of A+B. C will be provided in the kernel function as a parameter, you need to modify that only.

Points to be noted:

- The file **kernels.h** provided by us contains the prototypes of the three kernels.
- Do NOT change the names and the signatures of the kernels provided.
- Sample input and sample output matrices are shown below. Pay attention to the position of each element in the input and the output matrices.
- The size *m* and *n*, of the input matrices used for evaluation will be in the range: $5 \le m \le 2^{13}$ and $5 \le n \le 2^{13}$.
- The updates should be performed on the C matrix and should finally store A+B as result. Do not use any intermediate matrices.
- Do not write any print statements inside the kernel.
- You can use your own main.cu to test your code.
- Test your code on large matrices.

[1	2	3	4		[10	20	30	40]		1 1	22	33	44]	
5	6	7	8	+	-50	-60	-70	-80	=	-45	-54	-63	-72	
9	11	12	13		90	110	120	130		99	121	132	143	
13	14	15	16		130	140	150	160		143	154	165	176	
Α				В								С		
			Fi	gur	e 1: Sa	mple i	nput a	nd out	put 1	natrico	es			

Learning suggestions:

• Write a CPU-version of code achieving the same functionality. Time the CPU code and GPU code separately for large matrices and compare the performances