
GPU Programming

Rupesh Nasre.

IIT Madras
January 2021

2

Agenda

● Computation
● Memory
● Synchronization
● Functions
● Support
● Streams
● Topics
● Case Study – Graphs

3

Hello World.

#include <stdio.h>

int main() {

 printf("Hello World.\n");

 return 0;

}

Compile: nvcc hello.cu
Run: a.out

4

GPU Hello World.

#include <stdio.h>

#include <cuda.h>

__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 1>>>();

 return 0;

}

Compile: nvcc hello.cu
Run: ./a.out
 – No output. --

Kernel

Kernel Launch

5

GPU Hello World.

#include <stdio.h>

#include <cuda.h>

__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 1>>>();

 cudaDeviceSynchronize();

 return 0;

}

Compile: nvcc hello.cu
Run: ./a.out
Hello World.

CPU function
and GPU kernel
run asynchronously.

Takeaway

6

GPU Hello World.
#include <stdio.h>

#include <cuda.h>

__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 1>>>();

 dkernel<<<1, 1>>>();

 dkernel<<<1, 1>>>();

 cudaDeviceSynchronize();

 printf(“on CPU\n”);

 return 0;

}

Kernels (by default)
are executed one
after another.

CPU launches them
and moves ahead.

CPU waits at CDS.

Takeaway

7

Homework
__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 1>>>();

 printf(“CPU one\n”);

 dkernel<<<1, 1>>>();

 printf(“CPU two\n”);

 dkernel<<<1, 1>>>();

 printf(“CPU three\n”);

 cudaDeviceSynchronize();

 printf(“on CPU\n”);

 return 0;

}

Identify which printfs
can execute in parallel.

Identify which printfs
can execute in parallel.

8

Homework

● Find out where nvcc is.
● Find out the CUDA version.
● Find out where deviceQuery is.

9

GPU Hello World in Parallel.

#include <stdio.h>

#include <cuda.h>

__global__ void dkernel() {

 printf(“Hello World.\n”);

}

int main() {

 dkernel<<<1, 32>>>();

 cudaDeviceSynchronize();

 return 0;

}

Compile: nvcc hello.cu
Run: ./a.out
Hello World.
Hello World.
...

32 times

10

Parallel Programming Concepts

● Process: a.out, notepad, chrome
● Thread: light-weight process
● Operating system: Windows, Android, Linux

– OS is a software, but it manages the hardware.
● Hardware

– Cache, memory
– Cores

● Core
– Threads run on cores.
– A thread may jump from one core to another.

11

Classwork

● Write a CUDA code corresponding to the
following sequential C code.

#include <stdio.h>

#define N 100

int main() {

 int i;

 for (i = 0; i < N; ++i)

 printf("%d\n", i * i);

 return 0;

}

#include <cuda.h>

#define N 100

__global__ void fun() {

 for (int i = 0; i < N; ++i)

 printf("%d\n", i * i);

}

int main() {

 fun<<<1, 1>>>();

 cudaDeviceSynchronize();

 return 0;

}

Can this be made parallel?Can this be made parallel?

12

Classwork

● Write a CUDA code corresponding to the
following sequential C code.

#include <stdio.h>

#define N 100

int main() {

 int i;

 for (i = 0; i < N; ++i)

 printf("%d\n", i * i);

 return 0;

}

#include <cuda.h>

#define N 100

__global__ void fun() {

 printf("%d\n", threadIdx.x *

 threadIdx.x);

}

int main() {

 fun<<<1, N>>>();

 cudaDeviceSynchronize();

 return 0;

}

Note that there is
no loop here.

Note that there is
no loop here.

13

Classwork

● Write a CUDA code corresponding to the
following sequential C code.

#include <stdio.h>

#define N 100

int main() {

 int a[N], i;

 for (i = 0; i < N; ++i)

 a[i] = i * i;

 return 0;

}

#include <stdio.h>
#include <cuda.h>
#define N 100
__global__ void fun(int *a) {
 a[threadIdx.x] = threadIdx.x * threadIdx.x;
}
int main() {
 int a[N], *da;
 int i;

 cudaMalloc(&da, N * sizeof(int));
 fun<<<1, N>>>(da);
 cudaMemcpy(a, da, N * sizeof(int),
 cudaMemcpyDeviceToHost);
 for (i = 0; i < N; ++i)
 printf("%d\n", a[i]);
 return 0;
}No cudaDeviceSynchronize required.

Observation

14

GPU Hello World with a Global.

#include <stdio.h>

#include <cuda.h>

const char *msg = "Hello World.\n";

__global__ void dkernel() {

 printf(msg);

}

int main() {

 dkernel<<<1, 32>>>();

 cudaDeviceSynchronize();

 return 0;

}

Compile: nvcc hello.cu
error: identifier "msg" is undefined in device code

CPU and GPU
memories are
separate
(for discrete GPUs).

Takeaway

15

Separate Memories

● CPU and its associated (discrete) GPUs have
separate physical memory (RAM).

● A variable in CPU memory cannot be accessed
directly in a GPU kernel.

● A programmer needs to maintain copies of variables.
● It is programmer's responsibility to keep them in sync.

D R A M D R A M

PCI Express
Bus

CPU GPU

16

Typical CUDA Program Flow

CPUCPU GPUGPU

File
System

Load data
into CPU
memory.

Copy data from CPU
to GPU memory.

Copy results from
GPU to CPU memory.

Execute
GPU
kernel.

Use
results on

CPU.

1

2

4

35

17

Typical CUDA Program Flow
 Load data into CPU memory.

 - fread / rand

 Copy data from CPU to GPU memory.

 - cudaMemcpy(..., cudaMemcpyHostToDevice)

 Call GPU kernel.

 - mykernel<<<x, y>>>(...)

 Copy results from GPU to CPU memory.

 - cudaMemcpy(..., cudaMemcpyDeviceToHost)

 Use results on CPU.

1

2

3

4

5

18

Typical CUDA Program Flow

 Copy data from CPU to GPU memory.

 - cudaMemcpy(..., cudaMemcpyHostToDevice)

This means we need two copies of the same
variable – one on CPU another on GPU.

e.g., int *cpuarr, *gpuarr;

 Matrix cpumat, gpumat;

 Graph cpug, gpug;

2

19

CPU-GPU Communication
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(char *arr, int arrlen) {
 unsigned id = threadIdx.x;
 if (id < arrlen) {
 ++arr[id];
 }
}

int main() {
 char cpuarr[] = "Gdkkn\x1fVnqkc-",
 *gpuarr;

 cudaMalloc(&gpuarr, sizeof(char) * (1 + strlen(cpuarr)));
 cudaMemcpy(gpuarr, cpuarr, sizeof(char) * (1 + strlen(cpuarr)), cudaMemcpyHostToDevice);
 dkernel<<<1, 32>>>(gpuarr, strlen(cpuarr));
 cudaDeviceSynchronize(); // unnecessary, but okay.
 cudaMemcpy(cpuarr, gpuarr, sizeof(char) * (1 + strlen(cpuarr)), cudaMemcpyDeviceToHost);
 printf(cpuarr);

 return 0;
}

20

Classwork

1. Write a CUDA program to initialize an array of
size 32 to all zeros in parallel.

2. Change the array size to 1024.

3. Create another kernel that adds i to array[i].

4. Change the array size to 8000.

5. Check if answer to problem 3 still works.

21

Homework (z = x2 + y3)

● Read a sequence of integers from a file.
● Square each number.
● Read another sequence of integers from

another file.
● Cube each number.
● Sum the two sequences element-wise, store in

the third sequence.
● Print the computed sequence.

22

Thread Organization

● A kernel is launched as a grid of threads.
● A grid is a 3D array of thread-blocks

(gridDim.x, gridDim.y and gridDim.z).
– Thus, each block has blockIdx.x, .y, .z.

● A thread-block is a 3D array of threads
(blockDim.x, .y, .z).
– Thus, each thread has threadIdx.x, .y, .z.

23

Grids, Blocks, Threads

Each thread uses IDs to decide what
data to work on.

● Block ID: 1D, 2D, or 3D
● Thread ID: 1D, 2D, or 3D

Simplifies memory addressing when
processing multi-dimensional data

● Image processing
● Solving PDEs on volumes
● …

Typical configuration:
● 1-5 blocks per SM
● 128-1024 threads per block.
● Total 2K-100K threads.
● You can launch a kernel with

millions of threads.

Each thread uses IDs to decide what
data to work on.

● Block ID: 1D, 2D, or 3D
● Thread ID: 1D, 2D, or 3D

Simplifies memory addressing when
processing multi-dimensional data

● Image processing
● Solving PDEs on volumes
● …

Typical configuration:
● 1-5 blocks per SM
● 128-1024 threads per block.
● Total 2K-100K threads.
● You can launch a kernel with

millions of threads.

CPU GPU

Grid with
2x2 blocks

A single
thread in

4x2x2
threads

24

Accessing Dimensions

#include <stdio.h>
#include <cuda.h>
__global__ void dkernel() {
 if (threadIdx.x == 0 && blockIdx.x == 0 &&
 threadIdx.y == 0 && blockIdx.y == 0 &&
 threadIdx.z == 0 && blockIdx.z == 0) {
 printf("%d %d %d %d %d %d.\n", gridDim.x, gridDim.y, gridDim.z,
 blockDim.x, blockDim.y, blockDim.z);
 }
}
int main() {
 dim3 grid(2, 3, 4);
 dim3 block(5, 6, 7);
 dkernel<<<grid, block>>>();
 cudaDeviceSynchronize();
 return 0;
}

Number of threads launched = 2 * 3 * 4 * 5 * 6 * 7.
Number of threads in a thread-block = 5 * 6 * 7.
Number of thread-blocks in the grid = 2 * 3 * 4.

ThreadId in x dimension is in [0..5).
BlockId in y dimension is in [0..3).

Number of threads launched = 2 * 3 * 4 * 5 * 6 * 7.
Number of threads in a thread-block = 5 * 6 * 7.
Number of thread-blocks in the grid = 2 * 3 * 4.

ThreadId in x dimension is in [0..5).
BlockId in y dimension is in [0..3).

How many times the kernel printf
gets executed when the if
condition is changed to
if (threadIdx.x == 0) ?

How many times the kernel printf
gets executed when the if
condition is changed to
if (threadIdx.x == 0) ?

25

2D
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *matrix) {
 unsigned id = threadIdx.x * blockDim.y + threadIdx.y;
 matrix[id] = id;
}
#define N 5
#define M 6

int main() {
 dim3 block(N, M, 1);
 unsigned *matrix, *hmatrix;

 cudaMalloc(&matrix, N * M * sizeof(unsigned));
 hmatrix = (unsigned *)malloc(N * M * sizeof(unsigned));

 dkernel<<<1, block>>>(matrix);
 cudaMemcpy(hmatrix, matrix, N * M * sizeof(unsigned), cudaMemcpyDeviceToHost);

 for (unsigned ii = 0; ii < N; ++ii) {
 for (unsigned jj = 0; jj < M; ++jj) {
 printf("%2d ", hmatrix[ii * M + jj]);
 }
 printf("\n");
 }
 return 0;
}

$ a.out
 0 1 2 3 4 5
 6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29

$ a.out
 0 1 2 3 4 5
 6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29

What is the output of this
program?

What is the output of this
program?

Write the kernel to initialize
the matrix to unique ids.

Write the kernel to initialize
the matrix to unique ids.

26

1D
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *matrix) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 matrix[id] = id;
}
#define N 5
#define M 6
int main() {
 unsigned *matrix, *hmatrix;

 cudaMalloc(&matrix, N * M * sizeof(unsigned));
 hmatrix = (unsigned *)malloc(N * M * sizeof(unsigned));

 dkernel<<<N, M>>>(matrix);
 cudaMemcpy(hmatrix, matrix, N * M * sizeof(unsigned), cudaMemcpyDeviceToHost);

 for (unsigned ii = 0; ii < N; ++ii) {
 for (unsigned jj = 0; jj < M; ++jj) {
 printf("%2d ", hmatrix[ii * M + jj]);
 }
 printf("\n");
 }
 return 0;
}

One can perform
computation on

multi-dimensional
data using a one-
dimensional block.

Takeaway

If I want the launch configuration to be
<<<2, X>>>, what is X?

The rest of the code should be intact.

If I want the launch configuration to be
<<<2, X>>>, what is X?

The rest of the code should be intact.

Write the kernel to initialize
the matrix to unique ids.

Write the kernel to initialize
the matrix to unique ids.

27

Launch Configuration for Huge Data
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *vector) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 vector[id] = id;
}
#define BLOCKSIZE 1024
int main(int nn, char *str[]) {
 unsigned N = atoi(str[1]);
 unsigned *vector, *hvector;
 cudaMalloc(&vector, N * sizeof(unsigned));
 hvector = (unsigned *)malloc(N * sizeof(unsigned));

 unsigned nblocks = ceil(N / BLOCKSIZE);
 printf("nblocks = %d\n", nblocks);

 dkernel<<<nblocks, BLOCKSIZE>>>(vector);
 cudaMemcpy(hvector, vector, N * sizeof(unsigned), cudaMemcpyDeviceToHost);
 for (unsigned ii = 0; ii < N; ++ii) {
 printf("%4d ", hvector[ii]);
 }
 return 0;
}

Find two issues
with this code.

Find two issues
with this code.

Needs floating-point
division

Access out-of-bounds

28

Launch Configuration for Large Size
#include <stdio.h>
#include <cuda.h>
__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 if (id < vectorsize) vector[id] = id;
}
#define BLOCKSIZE 1024
int main(int nn, char *str[]) {
 unsigned N = atoi(str[1]);
 unsigned *vector, *hvector;
 cudaMalloc(&vector, N * sizeof(unsigned));
 hvector = (unsigned *)malloc(N * sizeof(unsigned));

 unsigned nblocks = ceil((float)N / BLOCKSIZE);
 printf("nblocks = %d\n", nblocks);

 dkernel<<<nblocks, BLOCKSIZE>>>(vector, N);
 cudaMemcpy(hvector, vector, N * sizeof(unsigned), cudaMemcpyDeviceToHost);
 for (unsigned ii = 0; ii < N; ++ii) {
 printf("%4d ", hvector[ii]);
 }
 return 0;
}

29

Classwork

● Read several points as (x, y) coordinates from
input.

● For each pair of points, compute euclidean
distance sqrt((x2 - x1)2 + (y2 - y1)2) in parallel.

● Print the maximum distance.

30
GPGPU: General Purpose Graphics Processing Unit

31

Earlier GPGPU Programming

● Applications: Protein Folding, Stock Options Pricing, SQL Queries, MRI Reconstruction.
● Required intimate knowledge of graphics API and GPU architecture.
● Program complexity: Problems expressed in terms of vertex coordinates, textures and

shaders programs.
● Random memory reads/writes not supported.
● Lack of double precision support.

GPUCPU

ApplicationApplication Transform
& Light

Transform
& Light RasterizeRasterize ShadeShade Video

Memory
(Textures)

Video
Memory

(Textures)

X
fo

rm
e
d
, Lit V

e
rtice

s (2
D

)

Graphics State

Render-to-texture

Assemble
Primitives
Assemble
Primitives

V
e
rtice

s (3
D

)

S
cre

e
n
sp

a
ce

 tria
n
g
le

s (2
D

)

Fra
g
m

e
n
ts (p

re
-p

ixe
ls)

Fin
a
l P

ixe
ls (C

o
lo

r, D
e
p
th

)

GPGPU = General Purpose Graphics Processing Units.

32

GPU Vendors
● NVIDIA
● AMD
● Intel
● QualComm
● ARM
● Broadcom
● Matrox Graphics
● Vivante
● Samsung
● ...

33

GPU Languages
● CUDA (compute unified device language)

– Proprietary, NVIDIA specific
● OpenCL (open computing language)

– Universal, works across all computing devices
● OpenACC (open accelerator)

– Universal, works across all accelerators

● There are also interfaces:
– Python → CUDA
– Javascript → OpenCL
– LLVM → PTX

34

Feature P100 V100

of SMX Units 56 80

of CUDA Cores 3584 5120

Tensor Cores NA 640

Peak FP64 FLOPS 5.3 TF 7.5 TF

Register File Size ~14 MB ~20 MB

Compute Capability 6.0 7.0

Onboard GDDR5 Memory 16 GB 16 / 32 GB

Two Configurations

35

top500.org

● Listing of most powerful machines.
– Ranked by performance (FLOPS)

● As of November 2020
– Rank 1: Fugaku from Japan (over 7.6 million cores)
– Rank 2: Summit from USA (over 2.4 million cores)
– Rank 3: Sierra from USA (over 1.5 million cores)
– Rank 4: TaihuLight from China (10.6 million cores)
– Rank 5: Selene from USA (0.5 million cores)

Homework: What is India's rank? Where is this computer? How many cores?

39

Matrix Squaring

void squarecpu(unsigned *matrix, unsigned *result,
 unsigned matrixsize /* = 64*/) {
 for (unsigned ii = 0; ii < matrixsize; ++ii) {
 for (unsigned jj = 0; jj < matrixsize; ++jj) {

 for (unsigned kk = 0; kk < matrixsize; ++kk) {
 result[ii * matrixsize + jj] +=
 matrix[ii * matrixsize + kk] * matrix[kk * matrixsize + jj];
 }
 }
 }
}

void squarecpu(unsigned *matrix, unsigned *result,
 unsigned matrixsize /* = 64*/) {
 for (unsigned ii = 0; ii < matrixsize; ++ii) {
 for (unsigned jj = 0; jj < matrixsize; ++jj) {

 for (unsigned kk = 0; kk < matrixsize; ++kk) {
 result[ii * matrixsize + jj] +=
 matrix[ii * matrixsize + kk] * matrix[kk * matrixsize + jj];
 }
 }
 }
}

CPU time = 1.527 ms

40

Matrix Squaring (version 1)

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 for (unsigned jj = 0; jj < matrixsize; ++jj) {

 for (unsigned kk = 0; kk < matrixsize; ++kk) {
 result[id * matrixsize + jj] +=

 matrix[id * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} } }

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 for (unsigned jj = 0; jj < matrixsize; ++jj) {

 for (unsigned kk = 0; kk < matrixsize; ++kk) {
 result[id * matrixsize + jj] +=

 matrix[id * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} } }

square<<<1, N>>>(matrix, result, N); // N = 64square<<<1, N>>>(matrix, result, N); // N = 64

CPU time = 1.527 ms, GPU v1 time = 6.391 ms

41

Matrix Squaring (version 2)

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned ii = id / matrixsize;

 unsigned jj = id % matrixsize;
 for (unsigned kk = 0; kk < matrixsize; ++kk) {

 result[ii * matrixsize + jj] += matrix[ii * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} }

__global__ void square(unsigned *matrix,
 unsigned *result,
 unsigned matrixsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned ii = id / matrixsize;

 unsigned jj = id % matrixsize;
 for (unsigned kk = 0; kk < matrixsize; ++kk) {

 result[ii * matrixsize + jj] += matrix[ii * matrixsize + kk] *

 matrix[kk * matrixsize + jj];
} }

square<<<N, N>>>(matrix, result, N); // N = 64square<<<N, N>>>(matrix, result, N); // N = 64

CPU time = 1.527 ms, GPU v1 time = 6.391 ms,
GPU v2 time = 0.1 ms

Homework: What if you
interchange ii and jj?

42

GPU Computation Hierarchy

...

...

...

...

Thread

Warp

Block

Multi-processor

GPU

1

32

1024

Tens of
thousands

Hundreds of
thousands

43

What is a Warp?

Source: Wikipedia

44

Warp
● A set of consecutive threads (currently 32) that

execute in SIMD fashion.
● SIMD == Single Instruction Multiple Data
● Warp-threads are fully synchronized. There is

an implicit barrier after each step / instruction.
● Memory coalescing is closely related to warps.

It is a misconception that all
threads in a GPU execute in
lock-step. Lock-step execution is
true for threads only within a warp.

Takeaway

45

Warp with Conditions
__global__ void dkernel(unsigned *vector, unsigned vectorsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;

 if (id % 2) vector[id] = id;

 else vector[id] = vectorsize * vectorsize;

vector[id]++;

}

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;

 if (id % 2) vector[id] = id;

 else vector[id] = vectorsize * vectorsize;

vector[id]++;

}

 0 1 2 3 4 5 6 7

S1

S2

S1 S1 S1

S1

NOP

S2

S2 S2 S2T
im

e

S0

S3

S0 S0 S0 S0 S0 S0 S0 S0

S3 S3 S3 S3 S3 S3 S3 S3

46

Warp with Conditions

 0 1 2 3 4 5 6 7

S1

S2

S1 S1 S1

S2 S2 S2T
im

e

S0 S0 S0 S0 S0 S0 S0 S0

S3 S3 S3 S3 S3 S3 S3 S3

● When different warp-threads execute different
instructions, threads are said to diverge.

● Hardware executes threads satisfying same condition
together, ensuring that other threads execute a no-op.

● This adds sequentiality to the execution.
● This problem is termed as thread-divergence.

47

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;

for (unsigned ii = 0; ii < id; ++ii)

vector[id] += ii;

}

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;

for (unsigned ii = 0; ii < id; ++ii)

vector[id] += ii;

}

Classwork

Does this code diverge?Does this code diverge?

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;

if (id % 2) vector[id] = id;

else if (vector[id] % 2) vector[id] = id / 2;

else vector[id] = id * 2;

}

vector is initialized to {0, 1, 2, 3, …}.

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {

 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;

if (id % 2) vector[id] = id;

else if (vector[id] % 2) vector[id] = id / 2;

else vector[id] = id * 2;

}

vector is initialized to {0, 1, 2, 3, …}.

Does this code diverge further?Does this code diverge further?

48

Degree of Divergence

● DoD for a warp is the number of steps required
to complete one instruction for each thread in
the warp.

● Without any thread-divergence, DoD = 1.
● For fully divergent code, DoD = 32.
● Classwork: Write a code to achieve DoD = 4.
● The DoD for a construct is the sum of DoDs for

its instructions. One can define max./avg. DoD
for a sequence of instructions.

49

Thread-Divergence
__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 switch (id) {
 case 0: vector[id] = 0; break;
 case 1: vector[id] = vector[id]; break;
 case 2: vector[id] = vector[id - 2]; break;
 case 3: vector[id] = vector[id + 3]; break;
 case 4: vector[id] = 4 + 4 + vector[id]; break;
 case 5: vector[id] = 5 - vector[id]; break;
 case 6: vector[id] = vector[6]; break;
 case 7: vector[id] = 7 + 7; break;
 case 8: vector[id] = vector[id] + 8; break;
 case 9: vector[id] = vector[id] * 9; break;

 }
}

__global__ void dkernel(unsigned *vector, unsigned vectorsize) {
 unsigned id = blockIdx.x * blockDim.x + threadIdx.x;
 switch (id) {
 case 0: vector[id] = 0; break;
 case 1: vector[id] = vector[id]; break;
 case 2: vector[id] = vector[id - 2]; break;
 case 3: vector[id] = vector[id + 3]; break;
 case 4: vector[id] = 4 + 4 + vector[id]; break;
 case 5: vector[id] = 5 - vector[id]; break;
 case 6: vector[id] = vector[6]; break;
 case 7: vector[id] = 7 + 7; break;
 case 8: vector[id] = vector[id] + 8; break;
 case 9: vector[id] = vector[id] * 9; break;

 }
}

What is switch’s Degree of Divergence?What is switch’s Degree of Divergence?

50

Thread-Divergence

Conditions are not bad;
they evaluating to different truth-values is also not bad;
they evaluating to different truth-values for warp-threads is bad.

Takeaway

● Since thread-divergence makes execution sequential,
conditions are evil in the kernel codes?

● Then, conditions evaluating to different truth-values
are evil?

if (vectorsize < N) S1; else S2;if (vectorsize < N) S1; else S2; Condition but no divergence

if (id / 32) S1; else S2;if (id / 32) S1; else S2; Different truth-values but no divergence

51

Classwork

● Rewrite the following program fragment to
remove thread-divergence.

// assert(x == y || x == z);

if (x == y) x = z;

else x = y;

// assert(x == y || x == z);

if (x == y) x = z;

else x = y;

52

Classwork

● Find the maximum in a large array as follows:
– Let the array have N elements.
– Launch a kernel with N/K threads.
– Each thread finds the maximum among K elements.
– The K elements are written to same or different array.
– The same kernel is launched with K threads to find

the final maximum.
● Find an element in parallel.

– Return its index.

53

Homework

● Write kernels to encrypt and decrypt messages.
Assume that the message contains only a..z.
– Encrypt: each character c becomes c+1. z becomes a.
– Encrypt: each ith character c becomes c+i.

● Parallelize run-length-encoding to compress data.
– e.g., if input is 0001101000100011110111010001 then the

output is 032113134131131. The initial bit is same as
input, followed by frequencies of that bit and its negation.

– For the same input, another compression output is
4271111154213261301. This stores index and frequency.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	GPU Fundamentals: Graphics Pipeline
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

