
$�FXELF�UHJXODUL]HG�SROLF\�1HZWRQ
DOJRULWKP�IRU�UHLQIRUFHPHQW�OHDUQLQJ

Project Report

6XEPLWWHG�E\

0L]KDDQ�3UDMLW�0DQL\DU

1$��%���

LQ�SDUWLDO�IXOıOPHQW�RI�UHTXLUHPHQWV

IRU�WKH�DZDUG�RI�WKH�GXDO�GHJUHH�RI

BACHELOR OF TECHNOLOGY in
NAVAL ARCHITECTURE AND OCEAN ENGINEERING

DQG

MASTER OF TECHNOLOGY in
ROBOTICS

DEPARTMENT OF ENGINEERING DESIGN INDIAN

INSTITUTE OF TECHNOLOGY MADRAS CHENNAI

600 036

June, 2022

CERTIFICATE

This is to certify that the project titled A cubic-regularized policy Newton algorithm for reinforcement

learning, submitted by Mizhaan Prajit Maniyar (NA17B014) to the Indian Institute of Technology, Madras,

for the award of the degree of Bachelor of Technology in Naval Architecture and Ocean Engineering

and Master of Technology in Robotics, is a bona fide record of the research work done by him under our

supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Name of Guide: Name of student:

Prashanth L. A. Mizhaan Prajit Maniyar

Signature: Signature:
Polly

MP
Manik

ABSTRACT

KEYWORDS : Reinforcement Learning, Newton methods, Cubic Regularized Newton methods, Policy

Gradient theorem, Policy Hessian Theorem, Stochastic optimization.

We consider the problem of control in a reinforcement learning (RL) context. Policy gradient algorithms are

a popular solution approach for this problem, and are usually shown to converge to a stationary point of the

value function. In this paper, we propose a policy Newton algorithm that incorporates cubic regularization.

Our algorithm employs the likelihood ratio method to form estimates of the gradient and Hessian of the value

function using sample trajectories. We establish convergence of our proposed algorithm to a second-order

stationary point of the value function, which implies avoidance of traps in the form of saddle points. Further,

we numerically validate our algorithm on a few simple benchmarks.

Contents

1 Introduction 1

2 Problem formulation 2

3 Cubic-regularized policy Newton algorithm 3

4 Main results 6

5 Convergence analysis 8

5.1 Proof of Theorem 1 . 8

5.2 Proof of Theorem 2 . 9

6 Conclusions and future work 19

A Proof of Lemma 5 22

B A few probabilistic inequalities 23

1 Introduction

Markov decision processes (MDPs) provide a framework for analyzing problems in sequential decision mak-

ing under uncertainty. An algorithm solving the MDP finds a policy that maximizes a performance objective

such as the discounted cumulative reward. A direct solution approach for MDPs requires the knowledge

of the underlying transition dynamics. In practical settings, such information is seldom available, and one

usually resorts to reinforcement learning (RL) algorithms that solve an MDP using sample trajectories.

Classic RL algorithms suffer from the curse of dimensionality associated with large state spaces. A

popular solution approach to overcome this problem is to consider a parametric representation of policies,

and search for the best policy within this class using a stochastic gradient (SG) algorithm. This constitutes

the ‘policy gradient’ approach, and an expression for the gradient of the objective forms the basis of such

algorithms.

The analysis of policy gradient algorithms usually establish convergence to stationary points in the long

run, or to approximate stationary points in the non-asymptotic regime. However, such points also include

traps such as local minima and saddle points. Using second-order information, one can avoid such traps, and

we adopt such an approach in this paper.

Our contributions are summarized as follows: First, we propose a cubic-regularized policy Newton

method for solving a finite horizon MDP. Second, we establish convergence of our proposed algorithm to an

approximate second order stationary point of the objective function. To the best of our knowledge, a policy

Newton algorithm incorporating cubic-regularization has not been studied earlier in the literature.

Related work. Policy gradient algorithms and their analysis has received a lot of research attention,

cf. [Fazel et al., 2018, Agarwal et al., 2020, Sutton et al., 1999, Mohammadi et al., 2021, Papini et al.,

2018, Vijayan and Prashanth, 2021, Zhang et al., 2020]. In [Furmston et al., 2016], the authors propose

policy Newton algorithms for solving an MDP in a setting where the model (or the transition dynamics) is

known. In [Shen et al., 2019], the authors propose a policy gradient algorithm that incorporates second-order

information, and establish convergence to an approximate stationary point. In contrast, we show that our

algorithm, which also uses second-order information, avoids traps and converges to a local maxima of the

objective.

Summary of previous work. In the last report, we followed the objective formulation as given by Furmston

et al. [2016]. However, in this paper we follow the formulation given by Shen et al. [2019], which avoids the

calculation of of the derivative of the Q-values for the Hessian estimation as before. Furthermore, instead of

using the method of PT-inverse, we use a regularization technique called cubic-regularization proposed by

Nesterov and Polyak [2006] to tackle the cases where the Hessian estimate can be degenerate.

1

2 Problem formulation

An MDP is a tuple of the form (S,A, P,R) where S is the state space, A is the action space, P is the

underlying transition dynamics that govern the state evolution of the MDP agent and R be the transition

rewards accumulated by the agent during its trajectory. Let the condition probability distribution of transition

into the next state sh+1 given that the agent is at state sh ∈ S and action ah ∈ A is P (sh+1|sh, ah). The

actions are chosen according to a probability distribution π(ah|sh) which is conditioned over the current

state. We shall call π the policy that our agent follows. We also assume that the policy is parametrized by a

vector θ ∈ Rd and use the notation πθ as a shorthand for the distribution π(ah|sh; θ). If our agent follows a

trajectory for a given time horizon H then we define the trajectory τ := (s1, a1, . . . , sH , aH) as a collection

of states and actions pairs. We first define the probability of a trajectory τ following a policy π as

p(τ ;π) := π(aH |sH)

(
H−1∏
h=1

P (sh+1|sh, ah)π(ah|sh)

)
ρ(s1). (1)

Also, note that p(τ ;πθ) = p(τ ; θ) as they are both conditioned on the same information. The discounted

cumulative reward for a trajectory τ with a discount factor γ < 1 is given as

G(τ) :=
H∑

h=1

γh−1r(sh, ah),

where the transition reward r is just a function of the current state and action. Our objective is to maximize

the expected discounted cumulative reward given by

J(θ) := Eτ∼p(τ ;θ) [G(τ)] = Eτ∼p(τ ;θ)

[
H∑

h=1

γh−1r(sh, ah)

]
. (2)

Our aim is to find the policy that maximizes the above objective, i.e.

θ∗ ∈ argmax
θ∈Rd

J(θ), (3)

where θ∗ is an optimal policy.

2

3 Cubic-regularized policy Newton algorithm

A stochastic gradient algorithm to find a local optima of the objective function in the problem (3), would

perform an incremental update of the policy parameter as follows:

θk+1 = θk + ηM(θk)∇J(θk),

where η ∈ R+ is the step size and M(θ) is a preconditioning matrix that could depend on our policy

parameter θ. If J is smooth and M(θ) is positive-definite, then the policy parameter update ensures an

increase in the objective viz. the total expected reward, for sufficiently small η. Note that if M(θ) is the

identity matrix, then the update rule above corresponds to a gradient step, while M(θ) = −∇2J(θ)−1 would

result in a Newton step.

In a typical RL setting, it is not feasible to find the exact gradient or Hessian of the objective function,

since the underlying transition dynamics of the environment are unknown. Instead, one has to form sample-

based estimates of these quantities. Now, if we use an estimate of the Hessian in place of the preconditioning

matrix we cannot assure a stable gradient ascent as our estimate may not be negative-definite as is required.

This makes the classical Newton update a bad candidate for our policy search algorithm. Nesterov and

Polyak [2006] motivates an algorithm called cubic-regularized Newton method in a deterministic setting

which tackles these issues and more. They show that the standard Newton step (η = 1) can alternatively be

presented as follows:

θk+1 = argmax
θ∈Rd

{
⟨∇J(θk), θ − θk⟩+

1

2

〈
∇2J(θk)(θ − θk), θ − θk

〉}
.

The quantity that we are optimizing in the above equation is called as the auxiliary function. The cubic

regularized Newton step adds a cubic term to this auxiliary function in the following manner:

θk+1 = argmax
θ∈Rd

{
⟨∇J(θk), θ − θk⟩+

1

2

〈
∇2J(θk)(θ − θk), θ − θk

〉
− α

6
∥θ − θk∥3

}
,

where α ∈ R+ is called the regularization parameter. In this modified newton step, we can now use the

estimates of the gradient and Hessian and come to a convergence bound as shown by Balasubramanian and

Ghadimi [2022]. We present a similar algorithm to Balasubramanian and Ghadimi [2022] but by using the

estimates derived by Shen et al. [2019] in the reinforcement learning setting.

We now start with the following assumptions that are standard on the regularity of the MDP and the

smoothness of our parameterized policy πθ.

3

(A1) (Bounded rewards). The absolute value of the reward function of the MDP is bounded, i.e.

|r(s, a)| ≤ R, ∀(s, a) ∈ (S ×A) .

(A2) (Parametrization regularity). For any choice of the parameters θ and any state-action pair (s, a), we

have

∥∇ log π(a|s; θ)∥ ≤ G and
∥∥∇2 log π(a|s; θ)

∥∥ ≤ L.

(A3) (Lipschitz Hessian). For any set of parameters (θ1, θ2) and any state-action pair (s, a), we have

∥∥∇2 log π(a|s; θ1)−∇2 log π(a|s; θ2)
∥∥ ≤ C ∥θ1 − θ2∥ .

Note that (A1) and (A2) are standard in the literature of policy gradient and actor-critic algorithms as shown

in Shen et al. [2019]. Furthermore, (A3) is also standard in second order policy search algorithms like Zhang

et al. [2020]. Also, from the above assumptions, it can be shown that (see Lemmas 1 and 2 in Appendix 5.1)

∥∇J(θ1)−∇J(θ2)∥ ≤ GH ∥θ1 − θ2∥ , and
∥∥∇2J(θ1)−∇2J(θ2)

∥∥ ≤ LH ∥θ1 − θ2∥ , where

GH :=
HG2R+ LR

(1− γ)2
and LH :=

H2G3R+ 3HGLR+ CR

(1− γ)2
. (4)

The above result tells us that the objective is smooth and thus its gradient and Hessian are well defined. We

now present the policy gradient and Hessian theorem.

Theorem 1 (Policy gradient and Hessian theorem). Let Ψi(τ) :=
∑H

h=i γ
h−1r(sh, ah), and Φ(θ; τ) =∑H

i=1 Ψi(τ) log π(ai|si; θ). Then, under the assumptions (A1), (A2), (A3) the gradient ∇J(θ) and the

Hessian ∇2J(θ) of the objective (2) are given by

∇J(θ) = Eτ∼p(τ ;θ) [∇Φ(θ; τ)] ,

∇2J(θ) = Eτ∼p(τ ;θ)

[
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

]
.

Proof. Refer to Section 5.1.

Note that the above theorem gives us a way to formulate unbiased estimates which would be the terms under

the expectation denoted as

g(θ; τ) := ∇Φ(θ; τ), H(θ; τ) := ∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ).

The above estimates are calculated by the information obtained from a given trajectory τ and policy parameter

4

θ. We simulate multiple trajectories and calculate these estimates for each of them and then take its average

as the final estimates for our algorithm 1.

Algorithm 1: Cubic-regularized policy Newton

Input :Initial parameter θ0 ∈ Rd, a non-negative sequence {αk}, positive integer sequences
{mk} and {bk}, and an iteration limit N ≥ 1.

for k = 1, . . . , N do
/* Monte Carlo simulation */
Simulate max{mk, bk} number of trajectories according to θk−1, randomly pick mk trajectories

for set Tm and bk trajectories for set Tb;
/* Gradient and Hessian estimation */

ḡk =
1

mk

∑
τ∈Tm

H∑
h=1

Ψh(τ)∇ log π(ah|sh; θk−1),

H̄k =
1

bk

∑
τ∈Tb

(
H∑

h=1

Ψh(τ)∇ log π(ah|sh; θk−1)

H∑
h′=1

∇⊤ log π(ah′ |sh′ ; θk−1)

)

+
1

bk

∑
τ∈Tb

H∑
h=1

Ψh(τ)∇2 log π(ah|sh; θk−1)

where the state-action pairs (sh, ah) ∈ τ belong to the respective trajectories;
/* Policy update (cubic regularized Newton step) */
Compute

θk = argmax
θ∈Rd

{
J̃k(θ) ≡ J̃(θ, θk−1, H̄k, ḡk, αk)

}
,

where

J̃(x, y,H, g, α) = ⟨g, x− y⟩+ 1

2
⟨H(x− y), x− y⟩ − α

6
∥x− y∥3 . (5)

end for
Output :Policy θN

5

4 Main results

In this section, we mathematically define a first and second order stationary point in optimization and then

prove that our proposed algorithm 1 achieves the same.

Definition 1 (ϵ-First-order stationary point). Assume that a solution x̄ ∈ X as output of an algorithm

and a target accuracy ϵ > 0 are given, and the function to be maximized f is non-convex. Then x̄ is

called an ϵ first-order stationary point (ϵ-FOSP), if

E [∥∇f(x̄)∥] ≤ ϵ,

The above definition states that a first-order stationary point is a point where the gradient is zero if ϵ = 0.

This could potentially be a saddle point. In order to verify whether it is an optima, we need information with

regards to the curvature. This motivates us to our second definition:

Definition 2 (ϵ-Second-order stationary point). Assume that a solution x̄ ∈ X as output of an algorithm

and a target accuracy ϵ > 0 are given, and the function to be maximized f is non-convex. Then for

some ρ > 0, x̄ is called an ϵ second-order stationary point (ϵ-SOSP) if

max

{√
E [∥∇f(x̄)∥], 1

√
ρ
E
[
λmax

(
∇2f(x̄)

)]}
≤

√
ϵ,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalue of a given matrix, respec-

tively.

In the above definition, if ϵ = 0 then x̄ is a second-order stationary point. Therefore, a second order stationary

point is where the gradient is zero and the Hessian is negative semi-definite. Such definitions are standard

in many second order optimization literature, cf. [Balasubramanian and Ghadimi, 2022, Tripuraneni et al.,

2018]. It is now evident that such an algorithm that outputs an ϵ-SOSP avoids saddle points.

We now state the result that establishes convergence of Algorithm 1 to an ϵ-SOSP of the objective (2).

Theorem 2. Let {θ1, . . . , θN} be computed by Algorithm 1 with the following parameters:

αk = 3LH, N =
12
√
LH (J∗ − J(θ0))

ϵ
3
2

,mk =
25G2

g

4ϵ2
, bk =

36 3
√
30(1 + 2 log 2d)d

2
3G2

H
ϵ

. (6)

Let θR be picked uniformly at random from {θ1, . . . , θN}. Then, we have

5
√
ϵ ≥ max

{√
E [∥∇J(θR)∥],

5

6
√
LH

E
[
λmax

(
∇2J(θR)

)]}
, (7)

6

where GH and LH are defined as in (4).

Proof. Refer to Section 5.2.

Remark 1. As a consequence of Theorem 2, to obtain an ϵ second-order stationary point of the problem,

the total number of trajectories required to compute the gradient and the Hessian are bounded by O
(

1

ϵ
7
2

)
and O

(
d

2
3

ϵ
5
2

)
, respectively. This is of a higher order in contrast to the HAPG algorithm proposed by Shen

et al. [2019], which requires O
(

1
ϵ3

)
number of trajectories. However, the total number of time steps that

it required for our algorithm to converge is of O
(

1
ϵ1.5

)
versus the O

(
1
ϵ2

)
from HAPG. Furthermore, our

algorithm ensures a convergence to an ϵ-SOSP thereby avoiding saddle points, while HAPG is shown to

converge to a first-order stationary point which could potentially include traps.

7

5 Convergence analysis

5.1 Proof of Theorem 1

Proof. We can re-write the objective function (2) as follows:

J(θ) := Eτ∼p(τ ;θ) [G(τ)] = Eτ∼p(τ ;θ)

[
H∑

h=1

γh−1r(sh, ah)

]
=

H∑
h=1

Eτh∼p(τh;θ)

[
γh−1r(sh, ah)

]
.

The equality above uses the fact that trajectories are independent. last two lines are equal as the term

inside the expectation is independent of future events, i.e. the trajectory (s1:h, a1:h) does not depend on the

trajectory (sh+1:H , ah+1:H). Replacing the expectation by the integral over all trajectories

J(θ) =

H∑
h=1

∫
τh

γh−1r(sh, ah)p(τh; θ) dτh.

Taking the derivative of the above equation

∇J(θ) =

H∑
h=1

∫
τh

γh−1r(sh, ah)∇p(τh; θ) dτh.

using the log trick where ∇p(τh; θ) = p(τh; θ)∇ log p(τh; θ), we obtain

∇J(θ) =

H∑
h=1

∫
τh

γh−1r(sh, ah)∇ log p(τh; θ) p(τh; θ) dτh

=

H∑
h=1

Eτh∼p(τh;θ)

[
γh−1r(sh, ah)∇ log p(τh; θ)

]
.

From (1), we can show that ∇ log p(τ ; θ) =
∑H

h=1 ∇ log π(ah|sh; θ), and thus

∇J(θ) =

H∑
h=1

Eτh∼p(τh;θ)

[
γh−1r(sh, ah)

h∑
i=1

∇ log π(ai|si; θ)

]

=

H∑
h=1

h∑
i=1

Eτh∼p(τh;θ)

[
γh−1r(sh, ah)∇ log π(ai|si; θ)

]
=

H∑
h=1

h∑
i=1

Eτ∼p(τ ;θ)

[
γh−1r(sh, ah)∇ log π(ai|si; θ)

]
.

where in the last equality we use that γh−1r(sh, ah)∇ log π(ai|si; θ) with i ≤ h is independent of the

randomness after ah. Exchanging the order of summation

∇J(θ) =

H∑
i=1

H∑
h=i

Eτ∼p(τ ;θ)

[
γh−1r(sh, ah)∇ log π(ai|si; θ)

]

8

=

H∑
i=1

Eτ∼p(τ ;θ)

[(
H∑
h=i

γh−1r(sh, ah)

)
∇ log π(ai|si; θ)

]

=

H∑
i=1

Eτ∼p(τ ;θ) [Ψi(τ)∇ log π(ai|si; θ)] .

This concludes the proof of the first claim.

For the second claim, notice that

∇2J(θ) = ∇
(∫

τ

∇Φ(θ; τ)p(τ ; θ) dτ

)
=

∫
τ

∇Φ(θ; τ)∇⊤p(τ ; θ) +∇2Φ(θ; τ)p(τ ; θ) dτ

=

∫
τ

(
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

)
p(τ ; θ) dτ

= Eτ∼p(τ ;θ)

[
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

]
.

Hence, we conclude the proof.

5.2 Proof of Theorem 2

The proof proceeds through a sequence of lemmas.

Lemma 1. Under Assumptions (A1) and (A2), we have for any parameter θ and trajectory τ

∥∇Φ(θ; τ)∥ ≤ GR

(1− γ)2
,
∥∥∇2Φ(θ; τ)

∥∥ ≤ LR

(1− γ)2

∥g(θ; τ)∥ ≤ Gg, and ∥H(θ; τ)∥ ≤ GH,

where Gg = GR
(1−γ)2 , and GH := HG2R+LR

(1−γ)2 .

Proof. Using the definition of Φ(θ; τ), we have

∥∇Φ(θ; τ)∥ =

∥∥∥∥∥
H∑
i=1

Ψi(τ)∇ log π(ai|si; θ)

∥∥∥∥∥ ≤
H∑
i=1

|Ψi(τ)| · ∥∇ log π(ai|si; θ)∥ ≤ G

H∑
i=1

|Ψi(τ)|.

We can establish a bound on |Ψi(τ)| as follows:

|Ψi(τ)| = |
H∑
h=i

γh−1r(sh, ah)| ≤ R

H∑
h=i

γh−1 ≤ Rγi−1

1− γ
.

9

Therefore,

∥∇Φ(θ; τ)∥ ≤ G

H∑
i=1

Rγi−1

1− γ
≤ GR

1− γ

H∑
i=1

γi−1 ≤ GR

(1− γ)2
.

Similarly,

∥∥∇2Φ(θ; τ)
∥∥ =

∥∥∥∥∥
H∑
i=1

Ψi(τ)∇2 log π(ai|si; θ)

∥∥∥∥∥
≤

H∑
i=1

|Ψi(τ)| ·
∥∥∇2 log π(ai|si; θ)

∥∥
≤ L

H∑
i=1

|Ψi(τ)| ≤
LR

(1− γ)2
.

It is now easy to show that the gradient estimate g(θ; τ) is bounded as follows:

∥g(θ; τ)∥ = ∥∇Φ(θ; τ)∥ ≤ GR

(1− γ)2
:= Gg.

Next, we show that the Hessian estimate H(θ; τ) is bounded. Notice that

∥H(θ; τ)∥ =
∥∥∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

∥∥
≤ ∥∇Φ(θ; τ)∥ · ∥∇ log p(τ ; θ)∥+

∥∥∇2Φ(θ; τ)
∥∥

≤ GR

(1− γ)2
∥∇ log p(τ ; θ)∥+ LR

(1− γ)2
.

Using the relation ∇ log p(τ ; θ) =
∑H

h=1 ∇ log π(ah|sh; θ), we have

∥∇ log p(τ ; θ)∥ ≤
H∑

h=1

∥∇ log π(ah|sh; θ)∥ ≤ HG.

Therefore, we obtain

∥H(θ; τ)∥ ≤ HG2R+ LR

(1− γ)2
= GH.

We now conclude the proof.

From the above lemma, one can easily interpret that the objective function, i.e. J(θ) and its gradient, i.e.

∇J(θ) are Lipschitz continuous. We now need to show that the Hessian of the objective, i.e. ∇2J(θ) is

Lipschitz.

10

Lemma 2. Under Assumptions (A1), (A2) and (A3), we have for any (θ1, θ2),

∥∥∇2J(θ1)−∇2J(θ2)
∥∥ ≤ LH ∥θ1 − θ2∥ , where (8)

LH :=
H2G3R+ 3HGLR+ CR

(1− γ)2
.

Proof. We begin with the integral expression for the Hessian of our objective, i.e.

∇2J(θ) =

∫
τ

∇Φ(θ; τ)∇⊤p(τ ; θ) + p(τ ; θ)∇2Φ(θ; τ) dτ.

Therefore, we have

∇2J(θ1)−∇2J(θ2) =

∫
τ

∇Φ(θ1; τ)∇⊤p(τ ; θ1) + p(τ ; θ1)∇2Φ(θ1; τ) dτ

−
∫
τ

∇Φ(θ2; τ)∇⊤p(τ ; θ2) + p(τ ; θ2)∇2Φ(θ2; τ) dτ

=

∫
τ

(
∇Φ(θ1; τ)∇⊤p(τ ; θ1)−∇Φ(θ2; τ)∇⊤p(τ ; θ2)

)
dτ

−
∫
τ

(
p(τ ; θ1)∇2Φ(θ1; τ)− p(τ ; θ2)∇2Φ(θ2; τ)

)
dτ

Hence,
∥∥∇2J(θ1)−∇2J(θ2)

∥∥ ≤
∫
τ

∥∥∇Φ(θ1; τ)∇⊤p(τ ; θ1)−∇Φ(θ2; τ)∇⊤p(τ ; θ2)
∥∥ dτ

−
∫
τ

∥∥p(τ ; θ1)∇2Φ(θ1; τ)− p(τ ; θ2)∇2Φ(θ2; τ)
∥∥ dτ. (9)

For ease of notation, let Φj := Φ(θj ; τ) and pj := p(τ ; θi). Considering the first integrand in (9)

∥∥∇Φ1∇⊤p1 −∇Φ2∇⊤p2
∥∥ ≤

∥∥∇Φ1∇⊤p1 −∇Φ1∇⊤p2
∥∥+ ∥∥∇Φ1∇⊤p2 −∇Φ2∇⊤p2

∥∥
≤ ∥∇Φ1∥ ∥∇p1 −∇p2∥+ ∥∇p2∥ ∥∇Φ1 −∇Φ2∥ . (10)

Using mean value theorem for vector-valued functions, we have

∇p1 −∇p2 = ∇2ph1
(θ1 − θ2),

where ph1 = p(τ ; θh1), and θh1 = (1− h1)θ1 + h1θ2 for some h1 ∈ [0, 1]. Therefore,

∥∇p1 −∇p2∥ ≤
∥∥∇2ph1

∥∥ ∥θ1 − θ2∥

= ∥∇(ph1
∇ log ph1

)∥ ∥θ1 − θ2∥

=
∥∥∇ph1

∇⊤ log ph1
+ ph1

∇2 log ph1
)
∥∥ ∥θ1 − θ2∥

11

≤ ph1

(
∥∇ log ph1

∥2 +
∥∥∇2 log ph1

∥∥) ∥θ1 − θ2∥

≤ ph1

(
H2G2 +HL

)
∥θ1 − θ2∥ . (11)

Similarly,

∥∇Φ1 −∇Φ2∥ ≤
∥∥∇2Φh2

∥∥ ∥θ1 − θ2∥ , (12)

where Φh2
= Φ(θh2

; τ), and θh2
= (1− h2)θ1 + h2θ2 for some h2 ∈ [0, 1]. Plugging (11) and (12) in (10),

we have

∥∥∇Φ1∇⊤p1 −∇Φ2∇⊤p2
∥∥ ≤ ph1

(
H2G2 +HL

)
∥∇Φ1∥ ∥θ1 − θ2∥+ p2 ∥∇ log p2∥

∥∥∇2Φh2

∥∥ ∥θ1 − θ2∥

≤ ph1

H2G3R+HGLR

(1− γ)2
∥θ1 − θ2∥+ p2

HGLR

(1− γ)2
∥θ1 − θ2∥ .

We used the results from Lemma 1 in the second inequality. Integrating on both sides of the above inequality,

we obtain

∫
τ

∥∥∇Φ1∇⊤p1 −∇Φ2∇⊤p2
∥∥ dτ ≤ H2G3R+ 2HGLR

(1− γ)2
∥θ1 − θ2∥ .

In the above inequality, we used the fact that
∫
τ
p(τ ; θ) dτ = 1 for all θ. Moving on to the second integrand

in (9)

∥∥p1∇2Φ1 − p2∇2Φ2

∥∥ ≤
∥∥p1∇2Φ1 − p1∇2Φ2

∥∥+ ∥∥p1∇2Φ2 − p2∇2Φ2

∥∥ ,
≤ p1

∥∥∇2Φ1 −∇2Φ2

∥∥+ ∥∥∇2Φ2

∥∥ |p1 − p2|. (13)

Using mean value theorem,

|p1 − p2| ≤ ∥∇ph3∥ ∥θ1 − θ2∥

≤ ph3
∥∇ log ph3

∥ ∥θ1 − θ2∥

≤ ph3
(HG) ∥θ1 − θ2∥ .

Considering the first term in (13),

∥∥∇2Φ1 −∇2Φ2

∥∥ =

∥∥∥∥∥
H∑
i=1

Ψi(τ)
(
∇2 log π(ai|si; θ1)−∇2 log π(ai|si; θ2)

)∥∥∥∥∥
12

≤
H∑
i=1

|Ψi(τ)|
∥∥∇2 log π(ai|si; θ1)−∇2 log π(ai|si; θ2)

∥∥
≤ C ∥θ1 − θ2∥

H∑
i=1

Rγi−1

1− γ
≤ CR

(1− γ)2
∥θ1 − θ2∥ .

Where we used (A3) in the second last inequality above. Plugging the above results in (13), we have

∥∥p1∇2Φ1 − p2∇2Φ2

∥∥ ≤ p1
CR

(1− γ)2
∥θ1 − θ2∥+ ph3

HGLR

(1− γ)2
∥θ1 − θ2∥ .

Integrating on both sides, we obtain

∫
τ

∥∥p1∇2Φ1 − p2∇2Φ2

∥∥ dτ ≤ HGLR+ CR

(1− γ)2
∥θ1 − θ2∥ .

Therefore, substituting in the original equation

∥∥∇2J(θ1)−∇2J(θ2)
∥∥ ≤ H2G3R+ 2HGLR

(1− γ)2
∥θ1 − θ2∥+

HGLR+ CR

(1− γ)2
∥θ1 − θ2∥

=
H2G3R+ 3HGLR+ CR

(1− γ)2
∥θ1 − θ2∥ .

Hence, we conclude the proof.

Remark 2. From (8), it can be easily seen that

∥∥∇J(θ1)−∇J(θ2)−∇2J(θ2)(θ1 − θ2)
∥∥ ≤ LH

2
∥θ1 − θ2∥2 ,

|J(θ1)− J(θ2)− ⟨∇J(θ2), θ1 − θ2⟩ −
1

2

〈
θ1 − θ2,∇2J(θ2)(θ1 − θ2)

〉
| ≤ LH

6
∥θ1 − θ2∥3 .

Lemma 3. Let θ̄ = argmaxx∈Rd J̃(x, θ,H, g, α). Then, we have

g +H(θ̄ − θ)− α

2

∥∥θ̄ − θ
∥∥ (θ̄ − θ) = 0,

H− α

2

∥∥θ̄ − θ
∥∥ Id ⪯ 0.

Proof. See Lemma 4.3 from Balasubramanian and Ghadimi [2022].

We now derive the second and third order error bounds on our Hessian estimate.

13

Lemma 4. Let ḡk and H̄k be computed by 1, and assume bk ≥ 4(1 + 2 log 2d). Then we have

E
[
∥ḡk −∇J(θk−1)∥2

]
≤

G2
g

mk
, E

[∥∥H̄k −∇2J(θk−1)
∥∥3] ≤ 4

√
15(1 + 2 log 2d)dG3

H

b
3
2

k

.(14)

Proof. Using the fact that the estimate ḡk is unbiased, we have

E
[
∥ḡk −∇J(θk−1)∥2

]
≤ E

[
∥ḡk∥2

]
≤ 1

m2
k

E

[∑
τ∈Tm

∥g(θk−1; τ)∥2
]
≤

G2
g

mk
.

This establishes the first bound in (14).

Now we turn to proving the second bound in (14). By Theorem 1 in Tropp [2016], we have

E
[∥∥H̄k −∇2J(θk−1)

∥∥2] ≤ 2C(d)

b2k

(∥∥∥∥∥∑
τ∈Tb

E
[
∆2

k,τ

]∥∥∥∥∥+ C(d)E
[
max

i
∥∆k,τ∥2

])
,

where ∆k,τ = H(θk−1; τ)−∇2J(θk−1) and C(d) = 4(1 + 2 log 2d). Hence, we can see that

E
[
∥∆k,τ∥2

]
≤ E

[
∥H(θk−1; τ)∥2

]
≤ G2

H,

which together with the above inequality and the fact that

∥∥∥∥∥∑
τ∈Tb

E
[
∆2

k,τ

]∥∥∥∥∥ ≤
∑
τ∈Tb

∥∥E [∆2
k,τ

]∥∥ ≤
∑
τ∈Tb

E
[
∥∆k,τ∥2

]
,

implies

E
[∥∥H̄k −∇2J(θk−1)

∥∥2] ≤ 2C(d)

b2k

(
bkG

2
H + C(d)G2

H
)
≤ 4C(d)

bk
G2

H,

where in the last inequality we use the assumption that bk ≥ C(d). Using Holder’s inequality, we have

E
[∥∥H̄k −∇2J(θk−1)

∥∥3] ≤ E
[∥∥H̄k −∇2J(θk−1)

∥∥ · ∥∥H̄k −∇2J(θk−1)
∥∥2
F

]
(15)

≤
(
E
[∥∥H̄k −∇2J(θk−1)

∥∥2] · E [∥∥H̄k −∇2J(θk−1)
∥∥4
F

]) 1
2

.

Note that H̄k −∇2J(θk−1) =
1
bk

∑
τ∈Tb

∆k,τ , therefore we have

E
[∥∥H̄k −∇2J(θk−1)

∥∥4
F

]
= E

∥∥∥∥∥ 1

bk

∑
τ∈Tb

∆k,τ

∥∥∥∥∥
4

F

 =
1

b4k
E

∥∥∥∥∥∑
τ∈Tb

∆k,τ

∥∥∥∥∥
4

F

 ,

14

which together with Rosenthal’s inequality (see Lemma 10 in Appendix B) implies

E
[∥∥H̄k −∇2J(θk−1)

∥∥4
F

]
≤

3E
[
∥∆k,τ∥4F

]
b2k

.

Using the fact that ∥·∥F ≤
√
d ∥·∥ and the inequality from Lemma 9 in Appendix B, we have

E
[∥∥H̄k −∇2J(θk−1)

∥∥4
F

]
≤

3d2E
[
∥∆k,τ∥4

]
b2k

≤
15d2E

[
∥H(θk−1; τi)∥4

]
b2k

≤ 15d2G4
H

b2k
,

which when combined in (15) leads to the second bound in (14).

We next state a result that will be used in a subsequent lemma.

Lemma 5. If for any two matrices A and B, and a scalar c, we have

A ⪯ B + cI,

where I is the identity matrix of the appropriate dimensions, then the following holds

c ≥ λmax(A)− ∥B∥

Proof. See Appendix A.

Lemma 6. Let {θk} be computed by Algorithm 1. Then, we have

√
E
[
∥θk − θk−1∥2

]
(16)

≥ max


√

E [∥∇J(θk)∥]− δgk − δHk
LH + αK

,
2

αk + 2LH

[
E
[
λmax

(
∇2J(θk)

)]
−
√

2(αk + LH)δHk

] ,

where δgk, δ
H
k > 0 are chosen such that

E
[
∥∇J(θk−1)− ḡk∥2

]
≤ (δgk)

2
, E

[∥∥∇2J(θk−1)− H̄k

∥∥3] ≤ (2(LH + αk)δ
H
k

) 3
2 . (17)

Proof. Firstly, note that δgk and δHk are inversely proportional to
√
mk and bk, respectively and are therefore

well-defined. Now, by the equality condition in Lemma 3, we have

∥∇J(θk)∥ ≤
∥∥∇J(θk)−∇J(θk−1)−∇2J(θk−1)(θk − θk−1)

∥∥+ ∥∇J(θk−1)− ḡk∥

15

+
∥∥∇2J(θk−1)− H̄k

∥∥ · ∥θk − θk−1∥+
αk

2
∥θk − θk−1∥2

≤ (LH + αk)

2
∥θk − θk−1∥2 + ∥∇J(θk−1)− ḡk∥+

∥∥∇2J(θk−1)− H̄k

∥∥ · ∥θk − θk−1∥

≤ (LH + αk) ∥θk − θk−1∥2 + ∥∇J(θk−1)− ḡk∥+
∥∥∇2J(θk−1)− H̄k

∥∥2
2(LH + αk)

,

where in the inequality comes from Young’s inequality. We now take expectation on both sides to obtain

(E
[
∥∇J(θk)∥ − δgk − δHk

]
)

LH + αk
≤ E

[
∥θk − θk−1∥2

]
. (18)

By the inequality in Lemma 3, and the smoothness result in Lemma 2, we have

∇2J(θk) ⪯ ∇2J(θk−1) + LH ∥θk − θk−1∥ Id = ∇2J(θk−1)− H̄k + H̄k + LH ∥θk − θk−1∥ Id

⪯ ∇2J(θk−1)− H̄k +
(αk + 2LH) ∥θk − θk−1∥

2
Id,

which together with Lemma 5, implies

(αk + 2LH) ∥θk − θk−1∥
2

≥ λmax

(
∇2J(θk)

)
−
∥∥∇2J(θk−1)− H̄k

∥∥ .
Taking expectation on both side, and using the definition δHk in (17), we have

√
E
[
∥θk − θk−1∥2

]
≥ E [∥θk − θk−1∥]

≥ 2

αk + 2LH

[
E
[
λmax

(
∇2J(θk)

)]
−
√

2(αk + LH))δHk

]
.

combining the above inequality with (18), we obtain (16).

16

Lemma 7. Let {θk} be computed by Algorithm [1] for a given iteration limit N ≥ 1, we have

E
[
∥θR − θR−1∥3

]
(19)

≤ 36∑N
k=1 αk

J∗ − J(θ0) +

N∑
k=1

4 (δgk)
3
2

√
3αk

+

N∑
k=1

(
18 4

√
2

αk

)2 (
(LH + αk)δ

H
k

) 3
2

 ,

where R is a random variable whose probability distribution PR(·) is supported on {1, . . . , N} and

given by

PR(R = k) =
αk∑N
k=1 αk

k = 1, . . . , N, (20)

and δgk, δ
H
k > 0 are defined as before in (17).

Proof. We can see that by Lemma 2, (5) and the fact that αk ≥ LH, we have

J(θk) ≥ J(θk−1) + J̃k(θk)− ∥∇J(θk−1 − ḡk)∥ ∥θk − θk−1∥ −
1

2

∥∥∇2J(θk−1)− H̄k

∥∥ ∥θk − θk−1∥2 .

(21)

Moreover, by Lemma 3, we have

J̃k(θk) = −1

2

〈
H̄k(θk − θk−1), (θk − θk−1)

〉
+

αk

3
∥θk − θk−1∥3 ≥ αk

12
∥θk − θk−1∥3 . (22)

Combining (21) and (22), we obtain

αk

12
∥θk − θk−1∥3 ≤ J(θk)− J(θk−1) + ∥∇J(θk−1 − ḡk)∥ ∥θk − θk−1∥

+
1

2

∥∥∇2J(θk−1)− H̄k

∥∥ ∥θk − θk−1∥2

≤ J(θk)− J(θk−1) +
4√
3αk

∥∇J(θk−1 − ḡk)∥
3
2

+

(
9
√
2

αk

)2 ∥∥∇2J(θk−1 − H̄k)
∥∥3 + αk

18
∥θk − θk−1∥3 , (23)

where the last inequality follows from the fact ab ≤ ap

λpp − λqbq

q for p, q satisfying 1
p + 1

q = 1. We now take

expectation on both sides of (23) and use (17) to obtain

αk

36
E
[
∥θk − θk−1∥3

]
≤ J(θk)− J(θk−1) +

4 (δgk)
3
2

√
3αk

+

(
18 4

√
2

αk

)2 (
(LH + αk)δ

H
k

) 3
2 .

Summing over k = 1, . . . , N , dividing both sides by
∑N

k=1 αk and noting (20), we obtain the bound

17

in(19).

And now we finally state the proof of Theorem 2.

Proof. First, note that by (6), Lemma 14, we can ensure that (17) is satisfied by δgk = 2ϵ/5 and δHk = ϵ/144.

Moreover, by Lemma 7, we have

E
[
∥θR − θR−1∥3

]
≤ 1

L
3
2

H

[
12
√
LH(J∗ − J(θ0))

N
+ 6.88ϵ

3
2

]
≤ 8ϵ

3
2

L
3
2

H

,

where we choose N according to (6). Therefore, θR is an 4ϵ stationary point of the problem. Furthermore,

from Lemma 6, one can verify that

√
E [∥∇J(θk)∥] ≤

√(
16 +

2

5
+

1

144

)
ϵ ≤ 5

√
ϵ,

and

E
[
λmax

(
∇2J(θk)

)]
√
LH

≤

(
5 +

√
2

6

)
√
ϵ ≤ 6

√
ϵ,

from which we can obtain (7). Finally, note that the total number of required samples to obtain such a

solution is bounded by

N∑
k=1

mk = O

(
1

ϵ
7
2

)
,

N∑
k=1

bk = O

(
d

2
3

ϵ
5
2

)
.

18

6 Conclusions and future work

In this thesis, we have presented a novel algorithm 1. As far as we know, there has been no policy based

reinforcement algorithm that has shown convergence to an ϵ-SOSP. Related works like [Shen et al., 2019,

Huang et al., 2020] incorporate second order information via a Hessian-vector product but their algorithm

does not mention a convergence to an ϵ-SOSP.

Future work. However, our algorithm is not yet ready to be applied yet as we yet have to device an

optimization sub-algorithm to compute the maximum of the convex auxiliary function. Work in this regard

has been done by Tripuraneni et al. [2018] and the algorithm would be complete if we extend our analysis

and follow up with relevant simulation experiments.

19

References

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan. Optimality and approximation with policy gradient

methods in markov decision processes. In Conference on Learning Theory, volume 125 of Proceedings of

Machine Learning Research, pages 64–66. PMLR, 09–12 Jul 2020.

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order nonconvex stochastic optimization:

Handling constraints, high dimensionality, and saddle points. Foundations of Computational Mathematics,

22(1):35–76, Feb 2022. ISSN 1615-3383.

M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence of policy gradient methods for the linear

quadratic regulator. In International Conference on Machine Learning, volume 80 of Proceedings of

Machine Learning Research, pages 1467–1476. PMLR, 10–15 Jul 2018.

T. Furmston, G. Lever, and D. Barber. Approximate Newton Methods for Policy Search in Markov Decision

Processes. Journal of Machine Learning Research, 17(226):1–51, 2016.

Feihu Huang, Shangqian Gao, Jian Pei, and Heng Huang. Momentum-based policy gradient methods. In

Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine

Learning, volume 119 of Proceedings of Machine Learning Research, pages 4422–4433. PMLR, 13–18

Jul 2020.

H. Mohammadi, M. Soltanolkotabi, and M. R. Jovanović. On the linear convergence of random search for

discrete-time lqr. IEEE Control Systems Letters, 5(3):989–994, 2021.

Yurii Nesterov and Boris Polyak. Cubic regularization of Newton method and its global performance. Math.

Program., 108:177–205, 08 2006.

M. Papini, D. Binaghi, G. Canonaco, M. Pirotta, and M. Restelli. Stochastic variance-reduced policy gradient.

In International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning

Research, pages 4026–4035. PMLR, 10–15 Jul 2018.

Z. Shen, A. Ribeiro, H. Hassani, H. Qian, and C. Mi. Hessian aided policy gradient. In International

Conference on Machine Learning, pages 5729–5738. PMLR, 2019.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement

learning with function approximation. In Advances in Neural Information Processing Systems, volume 99,

pages 1057–1063, 1999.

Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic reg-

ularization for fast nonconvex optimization. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

20

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.

Curran Associates, Inc., 2018.

Joel A. Tropp. The Expected Norm of a Sum of Independent Random Matrices: An Elementary Approach.

Springer International Publishing, 2016.

N. Vijayan and L. A. Prashanth. Smoothed functional-based gradient algorithms for off-policy reinforcement

learning, 2021.

K. Zhang, A. Koppel, H. Zhu, and T. Basar. Global convergence of policy gradient methods to (almost)

locally optimal policies. SIAM J. Control. Optim., 58(6):3586–3612, 2020.

21

A Proof of Lemma 5

We state and prove a useful result that will imply bound in Lemma 5.

Lemma 8. For any square matrix A ∈ Rd×d and for all vectors v ∈ Rd, the following holds

v⊤Av ≤ λ ∥v∥2 , (24)

for some λ ∈ R, if and only if

λmax(A) ≤ λ. (25)

Proof. We shall first prove the forward argument which is quite trivial. We define the map

λv(A) :=
v⊤Av

∥v∥2

Now, given (24), we shall find a v∗ such that Av∗ = λmax(A)v∗, i.e. v∗ is the eigenvector associated with

the largest eigenvalue of A. As v∗ ∈ C(A) ⊆ Rd, the following should hold

λv∗(A) ≤ λ.

But,

λv∗(A) =
v⊤∗ Av∗

∥v∗∥2
= λmax(A)

v⊤∗ v∗

∥v∗∥2
= λmax(A) ≤ λ.

Now to check if the converse holds, we start by arguing that λv(A) ≤ λmax(A) for all v and A. We argue

that λv(A) ∈ [λmin(A), λmax(A)], as it has the form

λv(A) =

∑r
i=1 λia

2
i∑r

i=1 a
2
i

,

where r is the rank of A and ai are the coefficients of v. Hence, λv(A) can be thought of as a weighted

average of all eigenvalues of A. Therefore, given (25), we have for all v ∈ Rd,

λv ≤ λ,

which satisfies (24).

Proof. (Lemma 5) For all v ∈ Rd, we have

v⊤Av ≤ v⊤Bv + c ∥v∥2

22

≤ ∥B∥ · ∥v∥2 + c ∥v∥2

= (∥B∥+ c) ∥v∥2 ,

where in the second line, we used the Cauchy-Schwartz inequality. Now by using, Lemma 8 in the last line,

we obtain

λmax(A) ≤ ∥B∥+ c, implying c ≥ λmax(A)− ∥B∥ .

B A few probabilistic inequalities

We state and prove two probabilistic inequalites, which are used in the proof of Theorem 2. In particular, the

result below as well as Rosenthal’s inequality (stated in Lemma 10) are used in the proof of Lemma 4

Lemma 9. Let Z ∈ Rd×d be a random matrix. Then, we have

E
[
∥Z − E [Z]∥4

]
≤ 5E

[
∥Z∥4

]
.

Proof. We can re-write the expectation as

E
[
∥Z − E [Z]∥4

]
= Var

(
∥Z − E [Z]∥2

)
+
(
E
[
∥Z − E [Z]∥2

])2
.

Consider the first term

Var
(
∥Z − E [Z]∥2

)
= Var

(
∥Z∥2 + ∥E [Z]∥2 − 2 ⟨Z,E [Z]⟩

)
= Var

(
∥Z∥2 − 2 ⟨Z,E [Z]⟩

) (
∵ Var

(
∥E [Z]∥2

)
= 0
)

≤ Var
(
∥Z∥2

)
+ 4Var (⟨Z,E [Z]⟩) + 4

√
Var

(
∥Z∥2

)√
Var (⟨Z,E [Z]⟩).

Now for the second term

(
E
[
∥Z − E [Z]∥2

])2
=
(
E
[
∥Z∥2

]
− ∥E [Z]∥2

)2
=
(
E
[
∥Z∥2

])2
+ ∥E [Z]∥4 − 2E

[
∥Z∥2

]
∥E [Z]∥2 .

23

Simplifying the terms under the root

√
Var

(
∥Z∥2

)
=

√
E
[
∥Z∥4

]
−
(
E
[
∥Z∥2

])2

=

√
E
[
∥Z∥4

]√√√√√√1−

(
E
[
∥Z∥2

])2
E
[
∥Z∥4

]

≤
√

E
[
∥Z∥4

]1−

(
E
[
∥Z∥2

])2
2E
[
∥Z∥4

]


where in the last inequality we used the fact that
√
1− x ≤ 1− x

2 .

Var (⟨Z,E [Z]⟩) = E
[
⟨Z,E [Z]⟩2

]
− (E [⟨Z,E [Z]⟩])2

≤ E
[
∥Z∥2 ∥E [Z]∥2

]
− ∥E [Z]∥4

≤ E
[
∥Z∥2

]
∥E [Z]∥2 .

Putting these results together

E
[
∥Z − E [Z]∥4

]
≤ Var

(
∥Z∥2

)
+
(
E
[
∥Z∥2

])2
+ 4Var (⟨Z,E [Z]⟩) + ∥E [Z]∥4 − 2E

[
∥Z∥2

]
∥E [Z]∥2

+ 4

√
Var

(
∥Z∥2

)√
Var (⟨Z,E [Z]⟩)

≤ E
[
∥Z∥4

]
+ 2E

[
∥Z∥2

]
∥E [Z]∥2 − 3 ∥E [Z]∥4

+ 4

√
E
[
∥Z∥4

]1−

(
E
[
∥Z∥2

])2
2E
[
∥Z∥4

]
√E

[
∥Z∥2

]
∥E [Z]∥2.

Note that by Jensen’s inequality, we have E
[
∥Z∥2

]
∥E [Z]∥2 ≤

(
E
[
∥Z∥2

])2
≤ E

[
∥Z∥4

]
. Substituting

these results above and further simplification, we have

E
[
∥Z − E [Z]∥4

]
≤ 5E

[
∥Z∥4

]
− 3 ∥E [Z]∥4 ≤ 5E

[
∥Z∥4

]
.

24

Lemma 10 (Rosenthal’s inequality). Let {X1, . . . , Xn} be a sequence of random d×d square matrices

with E [Xi] = 0 for all i. Then the following inequality holds

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
4

F

 ≤ 3n2E
[
∥Xi∥4F

]
,

where ∥·∥F denotes the Frobenius norm of a matrix.

Proof. We start by using the definition of variance as follows

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
4

F

 = Var

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

+

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

2

. (26)

Consider the first term in (26)

Var

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

 = Var

Tr

∑
i

X⊤
i

∑
j

Xj


= Var

Tr

∑
i

X⊤
i Xi + 2

∑
i<j

X⊤
i Xj


= Var

∑
i

∥Xi∥2F + 2
∑
i<j

Tr
(
X⊤

i Xj

)
=
∑
i

Var
(
∥Xi∥2F

)
+ 4

∑
i<j

Var
(
Tr
(
X⊤

i Xj

))
.

Expanding the terms under summation

∑
i

Var
(
∥Xi∥2F

)
=
∑
i

E
[
∥Xi∥4F

]
−
∑
i

(
E
[
∥Xi∥2F

])2
,

∑
i<j

Var
(
Tr
(
X⊤

i Xj

))
=
∑
i<j

E
[(
Tr
(
X⊤

i Xj

))2]−∑
i<j

(
E
[
Tr
(
X⊤

i Xj

)])2
=
∑
i<j

E
[(
Tr
(
X⊤

i Xj

))2]
. (∵ E

[
Tr
(
X⊤

i Xj

)]
= 0 for i ̸= j)

Therefore,

Var

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

 =
∑
i

E
[
∥Xi∥4F

]
+ 4

∑
i<j

E
[(
Tr
(
X⊤

i Xj

))2]−∑
i

(
E
[
∥Xi∥2F

])2
=
∑
i

E
[
∥Xi∥4F

]
+ 2

∑
i ̸=j

E
[(
Tr
(
X⊤

i Xj

))2]−∑
i

(
E
[
∥Xi∥2F

])2

25

≤ 2
∑
i

∑
j

E
[(
Tr
(
X⊤

i Xj

))2] ≤ 2
∑
i

∑
j

E
[(
Tr
(
X⊤

i Xi

))2]
= 2n2E

[
∥Xi∥4F

]
.

In the second last line we used the property of inner products, i.e. ⟨Xi, Xj⟩ ≤ ⟨Xi, Xi⟩ = ∥Xi∥2 for all

(i, j) pairs. Now taking the second term in (26)

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
2

F

 = E

Tr
∑

i

X⊤
i

∑
j

Xj


= Tr

∑
i

∑
j

E
[
X⊤

i Xj

]
= Tr

(∑
i

E
[
X⊤

i Xi

])
=
∑
i

E
[
∥Xi∥2F

]
= nE

[
∥Xi∥2F

]
.

Plugging these results in (26)

E

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
4

F

 ≤ 2n2E
[
∥Xi∥4F

]
+ n2

(
E
[
∥Xi∥2F

])2
≤ 2n2E

[
∥Xi∥4F

]
+ n2E

[
∥Xi∥4F

]
(Jensen’s inequality.)

= 3n2E
[
∥Xi∥4F

]
.

26

	Introduction
	Problem formulation
	Cubic-regularized policy Newton algorithm
	Main results
	Convergence analysis
	Proof of Theorem 1
	Proof of Theorem 2

	Conclusions and future work
	Proof of Lemma 5
	A few probabilistic inequalities

