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Problem: Solve h(x) = 0 given noisy measurements of h,

i.e., given access to a black box that, on input x → Rd,

gives as output h(x)+ noise.

Robbins-Monro algorithm: Starting with x0 → Rd, do:

x(n+1) = x(n) + a(n)[h(x(n)) +M(n+1)], n ↑ 0.

Here the stepsize sequence (or ‘learning parameter’) {a(n)}

satisfies: a(n) ↑ 0 and

∑

n
a(n) = ↓,

∑

N
a(n)2 < ↓.

(=↔ slow decrease to zero, e.g., 1
n,

1
n logn,

1
n2/3

etc.).
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1. h : Rd ↗↘ Rd is Lipschitz: ≃h(x)⇐ h(y)≃ ⇒ L≃x⇐ y≃

for x, y → Rd.

2. {M(n)} a square-integrable martingale di!erence

sequence, i.e., for

Fn := ω(x0,Mm,m ⇒ n), n ↑ 0,

we have

E
[
≃M(n)≃2

]
< ↓

and in addition, it is ‘uncorrelated with past’,

Ho Saint a arnica

7
Yadideennorm

A

tffupto
tin n



i.e.,

E[Mi(n+1)|Fn] = 0 ⇑ i.

. (Equivalently,

E[Mi(n+1)|x0,Mm,m ⇒ n] = 0 ⇑ i.)

. Thus

E[Mi(n+1)f(x0,M1, · · · ,Mn)]

= E[E[Mi(n+1)f(x0,M1, · · · ,Mn)|x0,Mm,m ⇒ n]]

= E[E[Mi(n+1)|x0,Mm,m ⇒ n]f(x0,M1, · · · ,Mn)]

= 0.

Hence ‘uncorrelated with past’.
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Furthermore, we assume that for some K > 0,

E
[
≃M(n+1)≃2|Fn

]
⇒ K

(
1+ ≃x(n)≃2

)
⇑ n ↑ 0.

(equivalently,

E
[
≃M(n+1)≃2|x0,Mm,m ⇒ n

]
⇒ K

(
1+ ≃x(n)≃2

)
⇑ n ↑ 0.)

In particular, if

sup
m

≃x(n)≃ < ↓ a.s.,

we have

sup
n

E
[
≃M(n+1)≃2|Fn

]
< ↓ a.s.
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7 719mi klutt afu

heffner
arena at s.t.hr 7 0 7Eye

if il h is Lipschitz

Ii Sarnia Earnica

Iii E Man 77 0

E 11mn.IR 7n7sKCl 1xcal1P

iV7Snupl1xan7 1ce

Lecture 9

infer the limit of take the

conditional expectation of 171 wrt Fn

equate it to 2120

e g Klutil pin aful flats

x n aln Df ans Mn

Mu flak Dffful
Under Suitable assumptions Kful at a a so where

Fft 0



This is more general than it appears. Suppose the

algorithm is

x(n+1) = x(n) + a(n)f(x(n), ε(n+1)), n ↑ 0,

where {ε(n)} are IID. This is often how many recursive

algorithms are stated.

This can be put in the above form by letting

h(x) = E[f(x, ε(n)] = E [f(x(n), ε(n+1))|x(n) = x]

= E [f(x(n), ε(n+1)|Fn] ,

M(n+1) = f(x(n), ε(n+1))⇐ h(x(n)).
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Examples: Stochastic Gradient Descent (h = ⇐⇓f),

reinforcement learning algorithms (more later)



Highlights:

1. Typically small amount of computation and memory

requirements per iterate

2. Incremental: makes a small change in the current

iterate at each step

3. Slowly decreasing stepsize captures ‘exploration’

(⇔ large steps initially) vs ‘exploitation’ (⇔ small steps

later) trade-o!

Contrast batch mode algorith
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4. Averages out the noise (can be thought of as a

generalization of the Strong Law of Large Numbers)

1.-3. typical of adaptive behavior =↔ extremely well

suited for adaptive algorithms or models of adaptation

One of the two main workhorses of statistical computa-

tion, MCMC being the other.
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Applications:

statistics, signal processing, machine learning, adaptive

control and communications

Also for models of learning, bounded rationality, herding

behavior, etc.

Classical approach for analysis: uses ‘almost supermartin-

gales’ etc. (Robbins-Siegmund, · · ·)



Alternative approach: ODE (Ordinary Di!erential Equa-

tions) approach (Meerkov ’72, Derevetskii-Fradkov ‘74,

Ljung ‘77)



ODE approach: Treat the iterates as a noisy discretiza-

tion of the ODE

ẋ(t) = h(x(t)).

Recall the Euler scheme for this ODE:

x(n+1) = x(n) + ah(x(n)), n ↑ 0,

where a > 0 is a small discrete time step.

Then SA can be viewed as an Euler scheme to approxi-

mate the ODE with slowly decreasing time steps {a(n)}

and measurement noise.
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Robbins-Monro conditions:

∑
n a(n) = ↓ =↔ the entire time axis is covered. This

is essential because we want to track the asymptotic (as

t ↖ ↓) behavior of the ODE.

∑
n a(n)2 < ↓ =↔ the approximation of the ODE gets

better with time:

a(n) ↘ 0 ensures that errors due to discretization are

asymptotically zero
∑
n a(n)2 < ↓ ensures that errors due to the martingale

di!erence noise are asymptotically zero, a.s. (multiplica-

tion by a(n) reduces the (conditional) variance of noise)



Advantages:

1. Once you have mastered the approach, you can often

write the limiting ODE by inspection and analyze it.

2. Designing algorithms: any convergent ODE is a

template for an algorithm.

3. Finer dynamic phenomena lead to useful results, e.g.,

avoidance of unstable equilibria a.s. =↔ avoidance of

‘traps’ (undesirable equilibria)



Analogy with SLLN suggests related results for

fluctuations, e.g., central limit theorem, law of

iterated logarithms, concentration inequalities

Further issues and variations:

stability tests, multiple timescales, distributed and

asynchronous implementations, di!erential inclusion

limits, constant stepsizes, other noise models, etc.



Storhatic fixed point iteration

Covered on blackboard

An application Mean estimation

Consider a random variable v.v X with mean µ
finite variance say r

Suppose we are given iid samples X Xm



Let rm be the estimate of µ
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