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Preface

The area of stochastic approximation has its roots in a paper published by Robbins
and Monro in 1951, where the basic stochastic approximation algorithm was in-
troduced. Ever since, it has been applied in a variety of applications cutting across
several disciplines such as control and communication engineering, signal process-
ing, robotics and machine learning.

Kiefer and Wolfowitz, in a paper in 1952 (nearly six decades ago) published the
first stochastic approximation algorithm for optimization. The algorithm proposed
by them was a gradient search algorithm that aimed at finding the maximum of
a regression function and incorporated finite difference gradient estimates. It was
later found that whereas the Kiefer-Wolfowitz algorithm is efficient in scenarios
involving scalar parameters, this is not necessarily the case with vector parame-
ters, particularly those for which the parameter dimension is high. The problem that
arises is that the number of function measurements needed at each update epoch
grows linearly with the parameter dimension. Many times, it is also possible that
the objective function is not observable as such and one needs to resort to simula-
tion. In such scenarios, with vector parameters, one requires a corresponding (linear
in the parameter-dimension) number of system simulations. In the case of large or
complex systems, this can result in a significant computational overhead.

Subsequently, in a paper published in 1992, Spall proposed a stochastic approx-
imation scheme for optimization that does a random search in the parameter space
and only requires two system simulations regardless of the parameter dimension.
This algorithm that came to be known as simultaneous perturbation stochastic
approximation or SPSA for short, has become very popular because of its high
efficiency, computational simplicity and ease of implementation. Amongst other
impressive works, Katkovnik and Kulchitsky, in a paper published in 1972, also
proposed a random search scheme (the smoothed functional (SF) algorithm) that
only requires one system simulation regardless of the parameter dimension. Subse-
quent work showed that a two-simulation counterpart of this scheme performs well
in practice. Both the Katkovnik-Kulchitsky as well as the Spall approaches involve
perturbing the parameter randomly by generating certain i.i.d. random variables.
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The difference between these schemes lies in the distributions these perturbation
random variables can possess and the forms of the gradient estimators.

Stochastic approximation algorithms for optimization can be viewed as counter-
parts of deterministic search schemes with noise. Whereas, the SPSA and SF algo-
rithms are gradient-based algorithms, during the last decade or so, there have been
papers published on Newton-based search schemes for stochastic optimization. In a
paper in 2000, Spall proposed the first Newton-based algorithm that estimated both
the gradient and the Hessian using a simultaneous perturbation approach incorpo-
rating SPSA-type estimates. Subsequently, in papers published in 2005 and 2007,
Bhatnagar proposed more Newton-based algorithms that develop and incorporate
both SPSA and SF type estimates of the gradient and Hessian. In this text, we com-
monly refer to all approaches for stochastic optimization that are based on randomly
perturbing parameters in order to estimate the gradient/Hessian of a given objective
function as simultaneous perturbation methods. Bhatnagar and coauthors have also
developed and applied such approaches for constrained stochastic optimization, dis-
crete parameter stochastic optimization and reinforcement learning — an area that
deals with the adaptive control of stochastic systems under real or simulated out-
comes. The authors of this book have also studied engineering applications of the
simultaneous perturbation approaches for problems of performance optimization
in domains such as communication networks, vehicular traffic control and service
systems.

The main focus of this text is on simultaneous perturbation methods for stochas-
tic optimization. This book is divided into six parts and contains a total of fourteen
chapters and five appendices. Part I of the text essentially provides an introduc-
tion to optimization problems - both deterministic and stochastic, gives an overview
of search algorithms and a basic treatment of the Robbins-Monro stochastic ap-
proximation algorithm as well as a general multi-timescale stochastic approxima-
tion scheme. Part II of the text deals with gradient search stochastic algorithms for
optimization. In particular, the Kiefer-Wolfowitz, SPSA and SF algorithms are pre-
sented and discussed. Part IIT deals with Newton-based algorithms that are in partic-
ular presented for the long-run average cost objective. These algorithms are based on
SPSA and SF based estimators for both the gradient and the Hessian. Part IV of the
book deals with a few variations to the general scheme and applications of SPSA
and SF based approaches there. In particular, we consider adaptations of simulta-
neous perturbation approaches for problems of discrete optimization, constrained
optimization (under functional constraints) as well as reinforcement learning. The
long-run average cost criterion will be considered here for the objective functions.
Part V of the book deals with three important applications related to vehicular traf-
fic control, service systems as well as communication networks. Finally, five short
appendices at the end summarize some of the basic material as well as important
results used in the text.

This book in many ways summarizes the various strands of research on simul-
taneous perturbation approaches that SB has been involved with during the course
of the last fifteen years or so. Both HLP and LAP have also been working in this
area for over five years now and have been actively involved in the various aspects
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of the research reported here. A large portion of this text (in particular, Parts I1I-V
as well as portions of Part II) is based mainly on the authors’ own contributions to
this area. The text provides a compact coverage of the material in a way that both
researchers and practitioners should find useful. The choice of topics is intended to
cover a sufficient width while remaining tied to the common theme of simultaneous
perturbation methods. While we have made attempts at conveying the main ideas
behind the various schemes and algorithms as well as the convergence analyses, we
have also included sufficient material on the engineering applications of these al-
gorithms in order to highlight the usefulness of these methods in solving real-life
engineering problems. As mentioned before, an entire part of the text, namely Part
IV, comprising of three chapters is dedicated for this purpose. The text in a way
provides a balanced coverage of material related to both theory and applications.
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Lists of abbreviations used in the ensuing text, are as follows.

SPSA  Simultaneous Perturbation Stochastic Approximation
SF Smoothed Functional

SFA Smoothed Functional Approximation
MDP  Markov Decision Process

SDP Stationary Deterministic Policy

SRP Stationary Randomized Policy
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SDE Stochastic Differential Equation
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MCP Multiple Comparison Procedures

TLC Traffic Light Control

QoS Quality of Service

RED Random Early Detection

CSMA  Carrier Sense Multiple Access
CSMA/CD CSMA with Collision Detection
TP Tirupati Pricing

PMP Paris Metro Pricing





