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ABSTRACT
This book deals with methods for stochastic or data-driven
optimization. The overall goal in these methods is to mini-
mize a certain parameter-dependent objective function that
for any parameter value is an expectation of a noisy sample
performance objective whose measurement can be made
from a real system or a simulation device depending on the
setting used. We present a class of model-free approaches
based on stochastic approximation which involve random
search procedures to efficiently make use of the noisy ob-
servations. The idea here is to simply estimate the minima
of the expected objective via an incremental-update or re-
cursive procedure and not to estimate the whole objective
function itself. We provide both asymptotic as well as finite
sample analyses of the procedures used for convex as well
as non-convex objectives.
We present algorithms that either estimate the gradient in
gradient-based schemes or estimate both the gradient and
the Hessian in Newton-type procedures using random di-
rection approaches involving noisy function measurements.
Hence the class of approaches that we study fall under the
broad category of zeroth order optimization methods. We
provide both asymptotic convergence guarantees in the gen-
eral setup as well as asymptotic normality results for various
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algorithms. We also provide an introduction to stochastic
recursive inclusions as well as their asymptotic convergence
analysis. This is necessitated because many of these settings
involve set-valued maps for any given parameter. We also
present a couple of interesting applications of these methods
in the domain of reinforcement learning. Five appendices at
the end quickly summarize the basic material for this text. A
large portion of this work is driven by our own contributions
to this area.



Preface

This monograph is written with the idea of providing a self-contained
introduction to stochastic gradient algorithms for solving a zeroth-order
optimization problem. Towards this goal, we have included a detailed
introduction to stochastic approximation which provides the basic frame-
work for the analysis of incremental update algorithms with noise, that
indeed form the backbone of algorithms in areas such as reinforcement
learning, and stochastic optimization with unbiased as well as biased
gradient information. We provide a detailed coverage of zeroth-order
gradient estimation procedures, including classic approaches such as
simultaneous perturbation stochastic approximation (SPSA), smoothed
functional (SF), as well as more recent approaches dealt with in the
literature. The convergence analysis that we provide includes both
asymptotic guarantees via the ordinary differential equation (ODE) and
differential inclusion (DI) approaches, as well as non-asymptotic bounds.
The convergence analyses should be of interest to students as well as
researchers working in the broad area of stochastic optimization and
machine learning.

Figure 1 provides a visual depiction of the dependencies between
the individual chapters and appendices in the book.

We now provide a few guidelines on how to read this book.

• If you are an expert researcher well-versed in the field of stochastic
approximation, then we suggest reading Chapters 3 to 5. These

3
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Chapter 1

Appendix CAppendix BAppendix A Appendix D Appendix E

Chapter 2

Chapter 3

Chapter 4 Chapter 5 Chapter 8

Chapter 6

Chapter 7

Figure 1: A schematic representation of the dependencies between the chapters and
appendices in the book.

chapters cover (i) gradient estimation in a zeroth-order setting,
where only noisy function measurements are available; and (ii)
asymptotic as well as non-asymptotic analysis of stochastic gradi-
ent algorithms with zeroth-order gradient estimates. If you find the
material in these chapters interesting, then you could go further to
stochastic Newton algorithms with zeroth-order Hessian estimates.
These topics are covered in Chapter 6. You could also check out
Chapter 7, which describes variants of stochastic gradient/Newton
algorithms designed to escape saddle points and converge to local
optima.

• If you are student who has done a first course in probability,
and someone who would like to conduct research in the area of
zeroth-order optimization, then we suggest you pick up the back-
ground material covered in the appendices, in particular, ODEs
and differential inclusions (Appendix A), conditional expectations
and martingales (Appendix B) and smoothness/convexity (Ap-
pendix D). Thereafter, we recommend understanding stochastic
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approximation, gradient estimation and analysis of stochastic
gradient algorithms in that order from Chapters 2 to 4. Intro-
duction to stochastic Newton methods and their analyses, which
form the content of subsequent chapters, could be done after the
zeroth-order gradient algorithms/analyses are covered.

• If you are also a reinforcement learning (RL) researcher, then the
material covered in Chapter 8 could be of interest. In this chapter,
we present zeroth-order variations of the well-known REINFORCE
policy gradient method. In particular, we establish that such
zeroth-order variants are competent and in many RL applications,
REINFORCE style gradient estimation is not feasible, making
zeroth-order schemes more amenable. One such setting that we
cover is risk-sensitive RL, where the objective is not the usual
value function, which is an expected value. Instead, we consider
alternate functionals of the distribution and describe zeroth-order
policy gradient algorithms for optimizing such functionals.

From a teaching viewpoint, the material in this book can be utilized
for a semester-long course, with an optional followup course on the
shorter side, say one-quarter. In the former course, the background
material on ODEs and differential inclusions, conditional expectations
and martingales and smoothness and convexity could be introduced
first. These correspond to Appendices A, B and D. Next, the content
in Chapters 1 to 5 on stochastic gradient algorithms/analyses could
be covered. Sections 2.6 and 2.7 could be skipped in this course. The
followup course could cover Chapters 6 to 8 on the stochastic Newton
algorithms/analyses and RL applications as well as the skipped sections
mentioned above.

We would like to thank Praneeth Netrapalli for useful inputs about
perturbed gradient descent algorithm, and Aditya Mahajan for useful
discussions on two timescale stochastic approximation. We thank Prof.
James Spall for his detailed comments on an earlier draft and an
anonymous reviewer for pointers to references that had been missed
earlier. We would like to thank our students Soumen Pachal, Sumedh
Gupte, Anmol Panda, Shaun Mathew and Ayman Akhter for pointing
out typos and minor errors in the earlier versions of this manuscript.
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1
Introduction

1.1 Zeroth-order optimization

The underlying processes in many engineering systems can often be
quantified by defining suitable objective functions. However, quite often,
these functions are not analytically known but their noisy measure-
ments or samples are available. Further, one is often interested in finding
optima of such functions despite the challenge that the functions them-
selves are not known analytically. One may be tempted to try and
estimate the whole function through multiple observations from the
underlying process at different parameter values that would in turn
reveal the function optima. However, such a function estimation scheme
would in general be extremely computationally intensive, more so, since
we are interested in obtaining the optima of objective functions over
continuously valued sets.

Our primary objective here will be to find the minima of a perfor-
mance objective whose analytical form is not known, however, noise-
corrupted observations or samples from such a function are made avail-
able either through a simulation device or as ‘real’ data. The solution
approaches that we present shall not aim at estimating the objective
function itself but make use of the available ‘noisy’ data recursively

7
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Zeroth-order
oracle

Optimization
Algorithm

f(θn) + ξn

Sample performance

Query point

θn

Figure 1.1: Model-free optimization framework

and converge thereby to the optima. Thus, in the end, even though
we may still not know the precise nature of the performance objective,
the scheme would nonetheless converge to an optimum of the unknown
function.

To state it more formally, our goal here will be to find a parameter
θ∗ such that

θ∗ ∈ arg min
θ
f(θ), (1.1)

given noisy samples or observations of the performance objective f . As
illustrated in Figure 1.1, an iterative optimization algorithm queries
the zeroth-order oracle for the objective value at the parameter θn at
time instant n, and receives the observation f(θn) + ξn. Here ξn, n ≥ 1
is a sequence of ‘noise’ random variables. For instance, as we consider
in this book, this sequence could be a martingale difference sequence.
It is important to note here that the noisy observations f(θn) + ξn
above cannot be separated into the objective function value f(θn) and
the noise component ξn to infer the form of the objective function
directly from the given noise corrupted data. Thus, it is assumed that
the noisy data samples are obtained either from a simulation device
or a real system. The obtained data is then used by the optimization
algorithm. Since we do not estimate the objective function f and yet run
the optimization procedure using only noisy samples, we many times
refer to techniques that solve such problems as model-free optimization
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methods. On the contrary, approaches that are based on estimating
the function f are called model-based optimization techniques. The
performance value f(θ) and the sample performance g(θ, ξ) = f(θ) + ξ

are related as f(θ) = E[g(θ, ξ)], where E[·] denotes the expectation
w.r.t the distribution of ξ. It is assumed here that the noise random
variable ξ has a mean of zero.

Note also that (1.1) contains ‘∈’ instead of ‘=’. This is because the
minimizer need not be unique and so arg min

θ
f(θ) would constitute the

set of all parameters θ that attain the minimum. The set is a singleton
if the minimizing parameter is unique. In general, finding one of the
minimizers is sufficient in such problems. However, it is important to
observe that finding a global minimum, in this setting, is far more
computationally intensive than finding a local minimum. In this book,
we shall focus on solution methods that aim at finding a local minimum.
In most applications, the minima are also isolated in the sense that
around any minimum, one can draw a ball of a small enough radius
such that it contains only the given (and no other) minimum.

1.2 Applications

Several real-world systems in disciplines such as communication net-
works, healthcare, finance, are too complex to directly optimize among
a set of choices. A viable alternative is to build a simulator for various
components of the system, and then perform the optimization over
decisions or choices via simulator access. Simulation optimization refers
to this setting, where the goal is to find the optimum choice for a
certain design parameter. For a given parametric description of the
system, performance evaluations using the simulator are typically noisy
(i.e., have a spread or distribution), and each simulation to obtain an
evaluation is often computationally expensive. Thus, in addition to
searching for optima, a good simulation optimization algorithm should
ensure that the number of function evaluations is small.

Simulation optimization falls under the realm of zeroth-order opti-
mization, and gradient-based algorithms are efficient solution alterna-
tives for finding an optimum using observations from a simulator. The
reader is referred to (Fu, 2015) for a detailed introduction to simulation
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optimization. For a survey of simulation software catering to a variety
of applications, see (Swain, 2017).

An area of practical interest for zeroth-order optimization algorithms
is reinforcement learning (RL) (Sutton and Barto, 2018; Bertsekas and
Tsitsiklis, 1996; Bertsekas, 2019; Meyn, 2022). In a typical RL setting,
the goal is to maximize the cumulative reward over time by learning
an optimal policy to choose actions. The underlying formalism is of a
Markov decision process (MDP), where the algorithm interacts with
the environment through actions, and as a response the environment
changes its state and provides a reward. In an MDP, the next state
depends on the current state and the chosen action.

Policy gradient methods (Sutton et al., 1999; Konda and Tsitsiklis,
2003; Bhatnagar et al., 2009) are a popular solution approach for such
problems. The basis for such algorithms is the policy gradient theorem,
which motivates the use of likelihood ratio based gradient estimates.
While such an approach of obtaining unbiased gradient estimates works
in a risk-neutral RL setting, the same is not true if one incorporates
a risk measure in the problem framework. As an example, one could
modify the problem to find a policy with the highest mean cumulative
discounted reward, while imposing a constraint on the variance. In
such a setting, it is difficult to employ the likelihood ratio method for
estimating gradient, and simultaneous perturbation methods, which we
discuss in detail in this book, are a viable alternative. In (Prashanth and
Ghavamzadeh, 2016), the authors employ such an approach to find a risk-
optimal policy, which handles a mean-variance tradeoff. Moreover, in
(Vijayan and Prashanth, 2021), the authors show that a policy gradient
algorithm employing the simultaneous perturbation method for gradient
estimation performs on par with REINFORCE — an algorithm that
uses the likelihood ratio method for gradient estimation.

More generally, zeroth order optimization approaches have been
found useful in the context of simulation optimization under inequality
constraints (Bhatnagar et al., 2011a), actor-critic algorithms which are
RL algorithms based on the policy iteration procedure (Bhatnagar and
Kumar, 2004; Abdulla and Bhatnagar, 2007), simulation-based algo-
rithms for finding optimal policies in finite horizon MDPs (Bhatnagar
and Abdulla, 2008), RL algorithms for constrained MDPs (Bhatnagar,
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2010; Bhatnagar and Lakshmanan, 2012), as well as discrete parameter
simulation optimization (Gerencser et al., 1999; Bhatnagar et al., 2011b).
In (Bhatnagar et al., 2006), the problem of finding the optimal policy in
an MDP setting conditioned on a rare event is considered and a zeroth
order simulation optimization algorithm is presented and analysed. It is
shown that the resulting scheme has close connections with risk sensitive
MDPs with exponentiated costs. In most of the aforementioned settings,
it is not easy to obtain likelihood ratio based sample gradient estimates,
hence application of zeroth order methods becomes inevitable.

A more recent application of zeroth-order optimization algorithms, of
the type discussed in this book, is in the context of large language models
(LLMs), which are nearly ubiquitous, with widespread adoption across
various disciplines. Traditional methods for LLM tuning involve high
compute costs. To reduce the computational burden of LLM tuning,
zeroth-order optimization methods have been explored recently, cf.
(Malladi et al., 2023). This approach is less compute-intensive compared
to a traditional backpropagation scheme with the well-known ADAM
step-size schedule.

Adversarial machine learning is another recent application, where
zeroth-order optimization techniques have been applied successfully to
construct black-box adversarial examples, cf. (Ilyas et al., 2018; Chen
et al., 2017; Bhagoji et al., 2018; Ilyas et al., 2019; Alzantot et al., 2019;
Chen et al., 2020a; Mukhoty et al., 2023; Dong et al., 2020). The idea
here is to use zeroth-order gradient estimates, similar to SPSA discussed
earlier, to approximate the gradient of a target neural network, and use
this model to general adversarial images that lead to misclassification.
Such adversarial examples are concerning from a security viewpoint, in
a safety critical application such as autonomous driving. Zeroth-order
gradient estimates have also been employed to make machine learning
models robust during training, see (Zhang et al., 2022).

1.3 Stochastic approximation algorithms

The algorithms that we shall present here are all going to be of the
stochastic approximation type. The basic stochastic approximation
scheme, also referred to as the Robbins-Monro algorithm, named after
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its inventors, H.Robbins and S.Monro, see (Robbins and Monro, 1951),
was designed to find the zeros of an unknown function h : Rd → Rd. The
algorithm tunes up the parameter values incrementally based on noisy
observations of the function h obtained using the most recent parameter
values as they become available. The basic stochastic approximation
scheme has the following form:

θn+1 = θn + a(n)(h(θn) + ξn), (1.2)

starting from an initial parameter estimate θ0 ∈ Rd. Here, a(n), n ≥ 0
is the step-size sequence of positive real numbers. Given the parameter
update θn at the nth epoch, a noise-corrupted measurement h(θn) + ξn
of the objective is obtained and used to update the parameter θn to
obtain a new parameter θn+1 according to (1.2). As can be seen, smaller
step sizes while reducing the noise effects result in more graceful albeit
slower convergence. On the other hand, larger step sizes result in faster
tracking of the function’s zeros though at the cost of higher variance in
the iterates. A crucial aspect is one of ensuring convergence that would
result in the desired outcome. This and other related aspects will be
made more precise in later chapters.

Typical applications of stochastic approximation algorithms include
finding the fixed points of a function whose noisy estimates alone are
available, as well as finding a minimum of a function again under
noisy observations. In the former case, h(θ) in (1.2) can have the form
h(θ) = g(θ)− θ for some function g : Rd → Rd, while in the latter, h(θ)
can be of the form h(θ) = −∇f(θ) for some function f : Rd → R. The
gradient form of the objective will be of interest to us here except that
we will assume that just like the objective function, even the gradient is
also not known analytically to us. Noisy function measurements will be
used to estimate the gradient. We shall also present some recent Hessian
estimation approaches in addition to gradient estimation procedures
that will be used in noisy Newton-based schemes. We shall see that
one may write the noisy gradient scheme involving gradient estimates
as
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θn+1 = θn + a(n)(−∇f(θn) + ξn + ηn). (1.3)

Here h(θn) in (1.2) is replaced with −∇f(θn). However, the important
difference is that there is an extra error term ηn in (1.3) that is however
not present in (1.2). This error arises because of the gradient estimates
obtained from noisy function measurements.

The original Robbins-Monro algorithm was aimed at solving the root
finding problem under noisy observations of the function objective with
the noise random variables assumed to be forming an independent and
identically distributed (i.i.d) sequence. Under certain conditions, conver-
gence was shown in (Robbins and Monro, 1951) to the root of the desired
system of equations in the mean-squared sense. Kiefer and Wolfowitz
developed a stochastic approximation algorithm to find the maximizer
of a given objective function, see (Kiefer and Wolfowitz, 1952). We
shall discuss this algorithm in more detail in the next section as indeed
this was the first zeroth-order stochastic optimization algorithm and
used a finite-difference gradient estimates derived from noisy function
measurements. As with (Robbins and Monro, 1951), the objective func-
tion in (Kiefer and Wolfowitz, 1952) was considered to be a regression
function. The iterate-sequence was shown to converge in probability to
the optimum. In (J.R.Blum, 1954), weaker conditions were developed
to ensure that both Robbins-Monro and Kiefer-Wolfowitz algorithms
converge with probability one to the desired equilibria. In (A.Dvoretzky,
1956), a more general objective function was considered and under
weaker conditions both mean-squared convergence and convergence
with probability one were shown.

In another major development, the ordinary differential equation
(ODE)-based analysis of stochastic approximation algorithms was in-
troduced by Ljung, 1977 and Kushner and Clark, 1978. It was shown
that under certain conditions, one may study the asymptotic behavior
of a stochastic approximation algorithm by analyzing the same for
an associated ODE. The ODE associated with (1.2) can be seen to
correspond to
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θ̇(t) = h(θ(t)). (1.4)

The main result of Ljung, 1977 and Kushner and Clark, 1978 would say
the following:

Let θ∗ denote a stable equilibrium of (1.4). Then, under certain
conditions on the driving vector field h(·), noise sequence ξn, n ≥ 0,
learning rates a(n), n ≥ 0, if the sequence θn governed by (1.2)
enters infinitely often a compact subset of the domain of attraction
of θ∗, then θn → θ∗ almost surely.

The above corresponds to a strong notion of recurrence for the
ODE, and may not be applicable in many situations. In (Benaïm, 1996),
(Benaïm, 1999) and (Benaïm and Hirsch, 1996), the ODE based analysis
of (Ljung, 1977) and (Kushner and Clark, 1978) has been extended to
the setting where the asymptotic behavior of the algorithm is analyzed
via a weaker notion of recurrence, namely chain recurrence, of the
underlying ODE. Most of the modern ODE based analyses follow the
latter approaches.

1.4 Zeroth-order stochastic gradient (SG) algorithm

Consider the following stochastic approximation scheme:

θn+1 = θn + a(n)(−∇̂f(θn)), (1.5)

where ∇̂f(θn) is a noisy estimate of the gradient of f(θn), with f : Rd →
R being the objective function to be minimized. The Kiefer-Wolfowitz
scheme, see (Kiefer and Wolfowitz, 1952), estimates the gradient ∇f(θ)
using the following estimator: For i = 1, . . . , d,

∇̂if(θn) = 1
2δ
(
f(θn + δei) + ξ+

i (n)− f(θn − δei)− ξ−i (n)
)
,

(1.6)
= 1

2δ
(
(f(θn + δei)− f(θn − δei)) +

(
ξ+
i (n)− ξ−i (n)

))
,
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where, ∇̂if(θn) denotes the estimate of the ith partial derivative of
f(θn). Further, ei = (0, . . . , 0, 1, 0, . . . , 0)T is the unit d-dimensional
vector with 1 as the ith place and all other entries as 0. Further, ξ+

i (n)
(resp. ξ−i (n)) is the noise associated with the estimate of the function f
measured at the parameter value (θn + δei) (resp. (θn − δei)).

Notice that in (1.6), assuming the function f to be sufficiently
smooth, a first order Taylor’s expansion would lead to

f(θn + δei)− f(θn − δei)
2δ = ∇if(θn) +O(δ2).

This happens because the first and the third terms in the Taylor’s
expansion get canceled as a consequence of the balanced nature of
the estimate. The term comprising O(δ2) contributes to the bias in
the gradient estimate. In relation to (1.3), if δ → 0 as n → ∞ above,
the analysis turns out to be a simple extension of the corresponding
analysis for (1.2), see Chapter 2 of (Borkar, 2022). However, letting
the δ-parameter approach zero results in constraining the choice of the
step-size sequence {a(n)}. Nonetheless, the recursion in such a case can
be shown to track the ODE

θ̇(t) = −∇f(θ(t)). (1.7)

For a fixed δ > 0, on the other hand, it can be shown that for an
algorithm as in (1.5) with say the Kiefer-Wolfowitz gradient estimator
(1.6), given ε > 0, ∃δ0 > 0, such that when the ‘perturbation parameter’
δ ∈ (0, δ0], the term ηn is O(ε). Analyses with a fixed δ can be carried
out by viewing the resulting algorithm as one involving a set-valued
map H(θ) = ∇f(θ) + B̄(0, ε), where B̄(0, ε) is a closed ball of radius
ε around the origin. The resulting scheme can then be analysed by
viewing the limiting system as the Differential Inclusion (DI)

θ̇(t) ∈ −H(θ(t)), (1.8)

see, for instance, Ramaswamy and Bhatnagar, 2018.
A disadvantage with the gradient estimator defined above is that it

requires 2d function measurements or simulations to run one update
of the parameter according to (1.5). The amount of computation thus
can be very high for a large value of d. In (Spall, 1992), the following
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estimator of the gradient has been proposed that uses only two function
measurements regardless of the value of d.

∇̂if(θn) = f(θn + δ∆(n)) + ξ+(n)− f(θn − δ∆(n))− ξ−(n)
2δ∆i(n) .

(1.9)

Here, ∆(n) = (∆1(n), . . . ,∆d(n))T is a vector of i.i.d random vari-
ables ∆j(n), j = 1, . . . , d, n ≥ 0 that are typically zero-mean with a
finite inverse moment bound. Independent symmetric Bernoulli random
variables such as ∆j(n) = ±1 w.p. 1/2 are commonly used here. A
Taylor’s expansion as with the Kiefer-Wolfowitz estimator would give
the following in this case:

f(θn + δ∆(n))− f(θn − δ∆(n))
2δ∆i(n) = ∆(n)T∇f(θn)

∆i(n) +O(δ2)

= ∇if(θn) +
∑
j 6=i

∆j(n)∇jf(θn)
∆i(n) +O(δ2). (1.10)

Note the presence of an extra (the second) term on the RHS that
contributes to the bias. It may however be observed that

E

∑
j 6=i

∆j(n)∇jf(θn)
∆i(n) | θn

 = 0.

It can therefore be seen that∥∥∥E [∇̂f(θn) | θn
]
−∇f(θn)

∥∥∥ ≤ Cδ2, (1.11)

for some positive scalar C.
Since this estimate of ∇f is used in the recursion (1.5), a stochastic

approximation scheme, one recovers the expectation in the asymptotic
limit of the iterate sequence as the noise effects die down. A one-
simulation estimator was proposed in (Spall, 1997) where the form of
the estimator was simply

∇̂if(θn) = f(θn + δ∆(n)) + ξ+(n)
δ∆i(n) , i = 1, . . . , d. (1.12)
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A Taylor’s expansion on the function value without the noise term in
(1.12) gives

f(θn + δ∆(n))
δ∆i(n) = f(θn)

δ∆i(n) +∇if(θn) +
∑
j 6=i

∆j(n)∇jf(θn)
∆i(n) +O(δ).

The third term on the RHS above is the same as a corresponding term
that contributes to the bias in (1.10). However, there is an additional first
term on the RHS that also has zero mean given the parameter update
θn. The latter term, however, is primarily responsible for below par
performance of this estimate because of the presence of δ, a typically
small quantity, in the denominator. The aforementioned estimators
are popularly referred to as two-measurement and one-measurement
simultaneous perturbation stochastic approximation (SPSA) estimators.

Deterministic perturbation versions of the above algorithms have
been proposed in (Bhatnagar et al., 2003) and are seen to yield better
performance particularly for the one-simulation estimators when com-
pared with their random perturbation counterparts. This is because of
a regular (cyclic) cancellation of the previously mentioned bias terms
when deterministic perturbation schedules are used. In other work along
similar lines, the smoothed functional estimators have been studied in
(Rubinstein, 1981), (Katkovnik and Kulchitsky, 1972), (Bhatnagar and
Borkar, 2003), (Bhatnagar, 2007), (Bhatnagar et al., 2013), where the
underlying perturbation distributions are primarily Gaussian, uniform
and Cauchy. In (Ghoshdastidar et al., 2014b; Ghoshdastidar et al.,
2014a), smoothed functional algorithms with q-Gaussian perturbations
have been presented that are seen to significantly extend the class of
perturbations and allowing for a continuum of distributions depending
on the value of the q-parameter.

Random directions stochastic approximation (RDSA) algorithm
has been presented in (Kushner and Clark, 1978) where the underlying
distribution has been considered to be uniform on the surface of a sphere
that is akin to the multivariate Gaussian distribution. In (Prashanth
et al., 2017), algorithms with i.i.d., uniformly distributed perturbations
have been proposed. These perturbations lie within a d-dimensional
cube. Further, in (Prashanth et al., 2020), deterministic perturbation
versions of these algorithms have been studied and analyzed. We shall
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be discussing some of these algorithms in more detail in a later chapter.

1.5 Zeroth-order stochastic Newton (SN) algorithm

Recall that a SG algorithm involves the following recursion:

θn+1 = θn − a(n)∇̂f(θn), (1.13)

where ∇̂f(θn) is an estimate of the gradient ∇f(θn).
There are three main shortcomings in employing a SG algorithm.

First, from an asymptotic convergence rate analysis (cf. (Fabian, 1968)),
it is apparent that the SG algorithm would achieve an order O

( 1√
n

)
convergence when the stepsize is set using the curvature of f , i.e.,
an = a0/n with a0 > δ/2λmin(∇2f(θ∗)). In practice, such curvature
information is seldom available, and hence, it is problematic to assume
such knowledge in setting the step-size for optimal convergence speed.
Second, it is widely observed empirically that a SG algorithm declines
fast initially, but slows down towards the end, i.e., when the SG iterate is
near an optimum θ∗. Third, the update rule (1.13) is not scale-invariant,
i.e., changing θ to Bθ for some matrix B, would imply a change in
the update (1.13). Finally, a SG algorithm may get stuck in traps or
unstable equilibria such as local maxima and saddle points, while the
goal is for it to converge to local minima (esp. since convexity is not
assumed).

A second-order SN algorithm overcomes the shortcomings of a
first-order SG algorithm mentioned above. A general gradient-search
algorithm involves an update rule of the form:

θn+1 = θn − a(n)B(θn)−1∇f(θn), (1.14)

where B(θ) for any θ ∈ Rd is a d× d matrix. The following choices of
the B(θ) matrix are widely popular (see (Bertsekas, 1999)):

(i) B(θ) = I (the identity matrix) for all θ: In this case, the algorithm
(1.14) reduces to the first-order SG algorithm (1.13).
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(ii) B(θ) is a diagonal matrix with diagonal entries being ∇2
i,if(θ).

This corresponds to the (second-order) Jacobi algorithm.

(iii) B(θ) = ∇2f(θ): This corresponds to the second-order SN algo-
rithm.

In the following, we focus on the SN algorithm (corresponding to the full
Hessian case). As illustrated in Figure 1.2, the update rule above then
requires computation of the Hessian as well as the gradient estimate at
any parameter update θn.

We elaborate on the advantages of such an algorithm over the
first-order scheme in (1.13) (or alternatively the case of B(θ) = I in
(1.14)). First, such algorithms achieve the optimum speed of convergence
without the knowledge of λmin(∇2f(θ∗)). Setting a0 = 1 would suffice.
Second, it is generally observed that second-order methods exhibit faster
convergence in the final phase, i.e., when the iterates are close to the
optima. This can be attributed to the fact that second-order methods
minimize a quadratic model of f , while SG algorithm (1.13) uses a
first-order Taylor’s approximation. Third, second-order algorithms are
scale-invariant, i.e., they auto-adjust to the scale of θ. Finally, second-
order algorithms avoid traps naturally, since they factor in curvature
information through the Hessian. On the flip side, second-order methods
have a higher per-iteration cost than their first-order counterparts, as
the Hessian matrix has to be inverted during each iteration.

In the zeroth-order optimization setting that we consider, we do
not have direct access to the gradient and the Hessian of the objective
function. Instead, as illustrated in Figure 1.2, both gradient and Hessian
have to estimated from noisy function observations before performing a
parameter update. In other words, letting ∇̂f(θn) and Hn denote the
gradient and Hessian estimates, we update the parameter as follows:

θn+1 = θn − a(n)
(
Hn

)−1
∇̂f(θn). (1.15)

The topic of gradient estimation is handled in Chapter 3, while Chapter
6 focuses on Hessian estimation, and the convergence analysis of (1.15),
where we use zeroth-order estimates of both the gradient and the
Hessian.
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Simulation

Estimate ∇f(θn)
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Hessian estimation

Update θn

Gradient descent

θn+1

Figure 1.2: Overall flow of a second-order stochastic gradient algorithm

To understand the problem of Hessian estimation, we now discuss a
finite difference approximation, which requires O(d2) function measure-
ments. The simultaneous perturbation trick brings this number down
to a small constant, regardless of the parameter dimension d. We shall
discuss these schemes in detail in Chapter 6.

Consider a scalar variable θ. A finite difference approximation of
the first derivative for this simple case of a scalar parameter θ is:

df(θ)
dθ

≈
(
f(θ + δ)− f(θ − δ)

2δ

)
. (1.16)

Assuming the objective is smooth, and employing Taylor series expan-
sions of f(θ + δ) and f(θ − δ) around θ, we obtain:

f(θ ± δ) = f(θ)± δ df(θ)
dθ

+ δ2

2
d2f(θ)
dθ2 +O(δ3),

Thus, f(θ + δ)− f(θ − δ)
2δ = df(θ)

dθ
+O(δ2).

From the above, it is easy to see that the estimate (1.16) converges to

the true gradient df(θ)
dθ

in the limit as δ → 0.
This idea can be extended to estimate the second derivative by

applying a finite difference approximation to the derivative in (1.16) as
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follows:
d2f(θ)
dθ2 ≈(
f(θ + δ + δ)− f(θ + δ − δ)

2δ

)
−
(
f(θ − δ + δ)− f(θ − δ − δ)

2δ

)
2δ

(1.17)

As before, using Taylor series expansions, it can be shown that the RHS
above is a good approximation to the second derivative.

For the case of a vector parameter, one needs to perturb each co-
ordinate separately, leading to the following scheme for estimating the
Hessian ∇2f(θ): For any i, j ∈ {1, . . . , d},

∇2
ijf(θ) ≈ 1

4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)

− (f(θ − δei + δej)− f(θ − δei − δej))
)
. (1.18)

Such an approach requires 4d2 number of function measurements to form
the Hessian estimate. In the next section, we overcome this limitation by
employing the simultaneous perturbation trick. Before that, we extend
the estimate in (1.18) to the noisy case as follows: Suppose we have the
following function measurements: For any i, j ∈ {1, . . . , d},

y1 = f(θ + δei + δej) + ξ1ij , y2 = f(θ + δei − δej) + ξ2ij , (1.19)
y3 = f(θ − δei + δej) + ξ3ij and y4 = f(θ − δei − δej) + ξ4ij . (1.20)

Using these function measurements, we form the Hessian estimate Ĥ
as follows:

Ĥij =
(
y1 − y2 − y3 + y4

4δ2

)
, ∀i, j (1.21)

Assuming the function is sufficiently smooth, as in the gradient case
and the noise elements in the function measurements are zero mean, it
can be shown through Taylor series expansions that

E[Ĥij | θ] = 1
4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)
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− (f(θ − δei + δej)− f(θ − δei − δej))
)

= ∇2
ijf(θ) +O(δ2).

While the bias of the estimator is on the lower side, with explicit control
via the δ parameter, the problem is in the number of function mea-
surements. The latter number is 4d2, limiting the practical viability on
high-dimensional problems. In Chapter 6, we discuss several alterna-
tive schemes using the simultaneous perturbation method for Hessian
method. These schemes use a small (constant) number of function mea-
surements (regardless of the parameter dimension d), while ensuring a
bias of O(δ2).

1.6 Organization of the book

We now describe the organization of the rest of the book.
In Chapter 2, we provide an introduction to stochastic approxima-

tion algorithms, and outline a few popular applications such as mean
estimation, gradient-type algorithms, fixed-point iterations, and quan-
tile estimation. These algorithms are incremental update procedures
that work with stochastic or noisy data as it becomes available and
are model-free procedures. In Chapter 2, we provide a detailed intro-
duction to stochastic approximation algorithms, provide motivating
applications, and subsequently provide the main results on convergence
of these schemes. It turns out that many of the stochastic optimization
schemes require a treatment of algorithms with set-valued maps. We
also present such algorithms in settings where data samples become
available one at a time in real time, and so are Markovian. We there-
fore discuss the main convergence results in connection with these as
well. In addition, Newton-based stochastic optimization schemes involve
estimating the inverse of the Hessian of the objective. This cannot be
done using the standard stochastic approximation template and we need
such algorithms to perform updates using two-timescale procedures. We
therefore also discuss two-timescale stochastic approximation algorithms
(including those with set-valued maps) in this chapter.

In Chapter 3, we provide a variety of gradient estimators using the
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simultaneous perturbation method. These include unified two-point as
well as one-point gradient estimation schemes. The unified estimates
feature abstract random perturbations that are required to satisfy
certain conditions to ensure that the bias and variance of the estimates is
manageable. Specializing these estimates with specific choice of random
perturbations leads to several well-known simultaneous perturbation-
based schemes such as the smoothed functional scheme (Katkovnik
and Kulchitsky, 1972) with later refinements in (Polyak and Tsybakov,
1990; Dippon, 2003; Nesterov and Spokoiny, 2017), random direction
stochastic approximation (RDSA) scheme proposed by (Kushner and
Clark, 1978), and recently enhanced in (Prashanth et al., 2017), and the
popular simultaneous perturbation stochastic approximation (SPSA)
scheme proposed by (Spall, 1992). While most estimators that we
present require one or two function measurements in order to estimate
the gradient, we also touch upon a recently developed class of generalized
simultaneous perturbation gradient estimators that provide estimators
requiring a number of function measurements that depends on the
bias in the gradient estimator. We analyze the bias and variance of
the aforementioned estimators in the convex as well as the non-convex
regimes. In either case, the analysis requires the objective to be smooth.

In Chapter 4, we present a detailed mathematical treatment of a
stochastic gradient algorithm that employs simultaneous perturbation-
based gradient estimates. In particular, we cover asymptotic convergence
of the stochastic gradient scheme using the popular ordinary differential
equation (or ODE) method. It turns out that in many of these algo-
rithms, it makes sense to hold the sensitivity parameter in the gradient
estimation procedure fixed and not push it to zero in order that the
estimator variance does not blow up. In such a case, we observe that
the resulting scheme can be viewed as a stochastic recursive inclusion,
i.e., one involving set-valued maps. Thus, we use here the theory of
differential inclusions to establish that the stochastic gradient algorithm
converges to a chain-recurrent set of an underlying differential inclusion.

In Chapter 5, we present the non-asymptotic analysis for the zeroth-
order SG (ZSG) algorithm. In the case of a non-convex objective, we
bound the expected decrease in the objective function in each iteration
using the bias and variance properties of the gradient estimators together
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with a standard Taylor series argument. The expected decrease is used
to provide an overall bound, which shows that the stochastic gradient
algorithm converges to an approximate stationary point of the objective,
with a rate O( 1√

N
), where N is the number of iterations. In this chapter,

we also analyze the rate of convergence of ZSG algorithm when the
underlying objective is either convex or else strongly-convex. In the
former case, we bound the optimization error (difference in function
value between that of the iterate and the optimum), while in the latter
case, we bound the parameter error, which is the norm of the distance
between ZSG iterate and the optimum. Strong convexity allows a bound
on the parameter error, while in the case of a non-strongly convex
function, only a bound on the difference in function value is feasible.
This is true even in the deterministic optimization setting, though the
rates are slower in the stochastic zeroth-order setting that we study in
this book. In this chapter, we also present a minimax lower bound using
information-theoretic arguments, and this bound shows that the upper
bounds for the ZSG algorithm are optimal up to a constant factor for
the convex/strongly-convex cases.

In Chapter 6, we cover Hessian estimation using simultaneous per-
turbation methods. In particular, we provide a theoretical introduction
to second-order SPSA proposed in (Spall, 2000) as well as its later
enhancements in (Bhatnagar, 2005; Bhatnagar and Prashanth, 2015).
We also describe second-order smoothed functional (Bhatnagar, 2007)
and second-order RDSA (Prashanth et al., 2017) schemes. We ana-
lyze the bias in these Hessian estimates, and establish that each of
these aforementioned schemes results in an asymptotically unbiased
Hessian estimate. In this chapter, we also analyze a stochastic Newton
algorithm using gradient/Hessian estimates based on the simultaneous
perturbation method. As mentioned previously, these algorithms in-
volve two-timescale stochastic approximation schemes. The theoretical
guarantees that we provide include the asymptotic almost sure conver-
gence of the stochastic Newton scheme, and an asymptotic normality
result that can be used to bound the asymptotic covariance, which in
turn helps one understand the mean-square error of the algorithm after
a sufficiently large number of iterations. The latter analysis provides
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a convergence rate for the stochastic Newton algorithm, albeit in an
asymptotic sense.

In Chapter 7, we focus on the points of convergence of the stochastic
approximation schemes. An important consideration such algorithms is
to ensure that the stochastic algorithm converges to local minima and
not to saddle points that while being stationary points of the system,
are in fact, unstable equilibria of the underlying ODE. Two schemes
to escape saddle points are presented. In the first scheme, additional
assumptions on the richness of noise are provided in the case of a general
zeroth order gradient estimation scheme that would ensure avoidance of
saddle points. We review these conditions on the noise from (Pemantle,
1990) and provide the basic results. The second scheme deals with
a cubic regularized Newton-based formulation from (Maniyar et al.,
2024) with gradient and Hessian estimates obtained using zeroth-order
estimation procedures. Convergence to an ε-second order stationary
point is then shown.

In Chapter 8, we provide applications of simultaneous perturbation
methods in the reinforcement learning (RL) context. The first applica-
tion involves a constrained discounted Markov decision process (MDP).
In an RL setting, direct gradient measurements of the objective or value
function are not available. Instead, one can estimate the value function
using a Monte Carlo scheme, or the popular temporal difference (TD)
learning algorithm. We consider the stochastic shortest path setting
here. Assuming a smooth class of parameterized policies, we describe a
policy gradient scheme that employs SPSA-based gradient estimates in
conjunction with value function estimation using Monte Carlo samples
as with the REINFORCE algorithm. We present a convergence analysis
of our algorithm, which shows that the algorithm converges almost
surely to local optima in the asymptotic limit. The second application
considers a risk-sensitive RL problem, where the goal is to find a policy
that maximizes the value function while satisfying a constraint that is
formed using a risk measure. As in the first application, we describe a
policy gradient algorithm for solving the risk-constrained MDP, and
provide an asymptotic convergence analysis of this algorithm.

We also provide five appendices of useful background material. We
outline the content of the appendices below.
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Appendix A covers significant material on ODEs and differential
inclusions, specifically from the viewpoint of stability, equilibria, at-
tractors, as well as weaker notions of recurrence. These concepts are
required for the asymptotic analysis of stochastic gradient and Newton
algorithms in Chapters 2, 4 and 6, respectively.

Appendix B provides an introduction to selected topics in proba-
bility that are relevant to this book. In particular, we discuss various
notions of convergence of random variables in this appendix. Next, we
cover conditional expectation and provide a detailed introduction to
martingales, including examples from stochastic approximation and
asymptotic convergence results. The latter results on martingale conver-
gence are useful in the analysis of stochastic approximation algorithms
in general (see Chapter 2), and zeroth-order gradient-based algorithms
in particular (see Chapters 4 and 6). To elaborate, stochastic gradient
and Newton algorithms involve increments with a martingale difference
noise sequence and it is important to understand when this sequence
converges, so that an ODE or differential inclusions-based analysis of
the aforementioned algorithms is feasible.

Appendix C provides an introduction to Markov chains in discrete
time. This background is useful in understanding stochastic approx-
imation algorithms with a Markovian noise component (see Section
2.6.

Appendix D provides foundational material on smooth optimization.
In particular, first/second-order optimality conditions, smoothness and
convexity are discussed in detail in this appendix.

Appendix E provides an introduction to information theoretic con-
cepts such as entropy, and KL-divergence, followed by a statement
with proof of a simpler version of the well-known Pinsker’s inequality.
This background is useful for understanding the minimax lower bounds
derived for a gradient-based algorithm with zeroth-order information in
Section 5.6.

1.7 Bibliographic remarks

Kiefer and Wolfowitz in (Kiefer and Wolfowitz, 1952) presented the
first paper on stochastic gradient descent with zeroth order estimators
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and analysed their algorithm using the approach in (Robbins and
Monro, 1951). A comprehensive and detailed treatment of stochastic
optimization including direct methods and evolutionary algorithms, in
addition to zeroth order methods such as SPSA is available in (Spall,
2005). A detailed treatment of stochastic simulation of random variables
and processes including those driven by stochastic differential equations
that also contains stochastic optimization is given in (Asmussen and
Glynn, 2007b). Another textbook primarily on stochastic simulation
that also deals with Markov chain Monte Carlo and discrete event
system simulation, in addition to stochastic optimization (specifically,
smoothed functional approaches) is (Rubinstein, 1981).

A text that deals primarily with the theory of stochastic approxi-
mation is (Borkar, 2022) that however also has a chapter on stochastic
zeroth order methods for gradient estimation where methods such as
SPSA and SF are briefly surveyed. Discrete event system simulation
and optimization has been well-studied and analysed using perturba-
tion analysis based methods in (Cassandras and Lafortune, 2008). A
text mainly dedicated to optimal control and reinforcement learning
but which also delves a bit on zeroth order stochastic optimization
is (Meyn, 2022). A recent text on stochastic optimization and rein-
forcement learning covering a wide range of topics in these domains is
(Powell, 2021).

A textbook treatment of zeroth-order stochastic optimization ap-
proaches is available in (Bhatnagar et al., 2013). The focus of the
approaches presented in that text was to find the optimum parameter
of an objective which in itself is a certain long-run average cost over
noisy cost samples. A variety of methods for both unconstrained and
constrained optimization including reinforcement learning are presented
there. The resulting algorithms largely have a multi-timescale struc-
ture and the asymptotic convergence analysis of these algorithms is
presented. In our current text, we primarily consider single-timescale
stochastic optimization algorithms that estimate the gradient and (in
some cases) the Hessian using zeroth order estimators though we also
consider two-timescale algorithms for the latter case. We present newer
and more general analyses of these algorithms and provide in detail
both asymptotic as well as non-asymptotic convergence analyses of the
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presented algorithms. The asymptotic analyses are shown using limiting
arguments involving underlying ordinary differential equations (ODE)
or differential inclusions (with set-valued maps) as the case may be.
Our current text also covers many recent algorithms not contained in
(Bhatnagar et al., 2013).



2
Stochastic approximation

In this chapter, we provide an introduction to stochastic approximation
algorithms, and outline a few popular applications such as mean esti-
mation, gradient-type algorithms, fixed-point iterations, and quantile
estimation. We provide the main asymptotic convergence results under
two approaches, namely ODE and differential inclusions. The former
approach is applicable to Lipschitz continuous objective functions, which
allows viewing a linearly-interpolated stochastic approximation algo-
rithm’s sample path as approximating the trajectory of an ODE. Using
this ‘dynamical systems’ viewpoint, we list the assumptions that ensure
almost sure convergence of stochastic approximation iterates to the
equilibria of the underlying ODE. The approach of recursive inclusions
is useful for handling objective functions with discontinuities. As in
the ODE case, the stochastic approximation algorithm’s interpolated
trajectory is seen as an approximation to that of the recursive inclusion,
leading to an almost sure convergence result. In the context of this
book, when the perturbation constant δ, which features in the simulta-
neous perturbation-based gradient estimator presented above, is taken
to zero, the stochastic gradient algorithm’s behavior can be analyzed
using ODEs, while treatment of a constant δ requires one to consider a

29
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differential inclusions-based analysis.

2.1 Introduction

The basic stochastic approximation recursion is of the following form:

θn+1 = θn + a(n)(h(θn) +Mn+1), (2.1)

where θn ∈ Rd, n ≥ 0, is the stochastic sequence of iterates that are
updated according to (2.1), h : Rd → Rd is a point-to-point map,
Mn+1, n ≥ 0 is the associated noise sequence, and the multipliers
a(n), n ≥ 0 form a sequence of positive step sizes or learning rates.

Under certain conditions on the aforementioned quantities that we
shall discuss in this chapter, one can show that the recursion (2.1)
almost surely tracks asymptotically the limit sets of the ODE (2.2) in a
manner that will be made precise later.

θ̇(t) = h(θ(t)). (2.2)

We shall also consider here generalizations of the scheme (2.1) via
stochastic recursive inclusions as well as recursions with an additional
Markov noise component. Stochastic recursive inclusions are algorithms
as in (2.1) except that the function h(θ) is in general a set instead of a
point for any given θ. Such a scheme in general will have the following
form:

θn+1 = θn + a(n)(yn +Mn+1), (2.3)

where Mn, n ≥ 0 is the noise sequence as before and yn ∈ h(θn), where
it will be now assumed that h : Rd → Rd is a set-valued map. Under
some assumptions, such recursions will also be seen to almost surely
track asymptotically the underlying differential inclusion

θ̇(t) ∈ h(θ(t)). (2.4)

The reader is referred to Appendix A for an introduction to ODEs and
differential inclusions.
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2.2 Applications

We begin with a few well-known applications of stochastic approximation.
These include minimizing a function given noisy function measurements,
which forms the core content of this book, as well as estimation of various
quantities, e.g., mean, fixed-point, quantile, from noisy observations.

2.2.1 Mean estimation

Consider a random variable (r.v.) X with mean µ and variance σ2.
Suppose we are given independent and identically distributed (i.i.d.)

samples X1, . . . , Xn from the distribution of X . Let θn = 1
n

n∑
k=1

Xk be

the sample mean computed using these n samples. We now derive an
iterative scheme for updating the sample mean.

θn+1 = 1
n+ 1

n+1∑
k=1

Xk = n

n+ 1

(
1
n

n∑
k=1

Xk

)
+ 1
n+ 1Xn+1

= n

n+ 1θn + 1
n+ 1Xn+1

θn+1 = θn + 1
n+ 1 (Xn+1 − θn) . (2.5)

The update rule above is a stochastic approximation scheme with step
size a(n) = 1

n+ 1, n ≥ 0.
By the strong law of large numbers, one obtains

θn → µ a.s. as n→∞.

One may instead use a more general step size sequence a(n), n ≥ 0 and
write the update rule (2.5) as

θn+1 = θn + a(n) (Xn+1 − θn)
= θn + a(n) [(µ− θn) + (Xn+1 − µ)]

LettingMn+1 = Xn+1−µ, it is easy to see thatMn, n ≥ 0 is a martingale
difference sequence1 satisfying EM2

n <∞.

1The reader is referred to Appendix B for an introduction to martingales.
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From an application of the Kushner-Clark lemma, to be presented
later, it can again be shown that θn → µ almost surely as n→∞ and
this happens for general step sizes that satisfy the following conditions
(see Theorem 2.4(i)):∑

n

a(n) =∞ and
∑
n

a(n)2 <∞. (2.6)

Clearly a(n) = 1/(n + 1) is a special case of the above. This means
that the above result using the strong law of large numbers continues
to hold with more general step sizes. The Kushner-Clark lemma is the
main tool to infer asymptotic convergence of stochastic approximation
algorithms. We shall present a precise statement and a proof of this
result in Section 2.3.

2.2.2 Stochastic gradient algorithm using unbiased gradient infor-
mation

Consider the following problem: Find

θ∗ ∈ arg min
θ
f(θ), (2.7)

where f is a smooth function (see Appendix D for background material
on smoothness).

A stochastic gradient algorithm for solving (2.7) would update as
follows:

θn+1 = θn − a(n)∇̂f(θn). (2.8)

In the above, ∇̂f(θn) is an estimate of the gradient ∇f(θn), and {a(n)}
are (pre-determined) step sizes satisfying standard stochastic approxi-
mation conditions (see (2.6) above).

Here we shall assume unbiased gradient information is available, i.e.,
E
[
∇̂f(θn) | θn

]
= ∇f(θn). In this case, the algorithm in (2.8) becomes

an instance of the seminal stochastic approximation scheme proposed
by Robbins and Monro in 1951. The latter algorithm was proposed to
find the zeroes of a function, and in the case of (2.8), the function of
interest is ∇f . If the gradient estimates ∇̂f(θn) have bounded variance,
then the algorithm in (2.8) can be shown to converge to the stationary
points of f . We make this claim precise later in Section 4.1.
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We now describe a popular optimization setting, where unbiased
gradient information is available. Consider the following problem that
is ubiquitous in machine learning applications involving training over a
given dataset of m samples, say {(xi, yi), i = 1, . . . ,m}:

min
θ
f(θ) = 1

m

m∑
i=1

fi(θ). (2.9)

In the above, fi denotes the loss associated with sample i. A simple
example is the square-loss in a linear regression problem, where fi(θ) =
(yi − θTxi)2. It is common to assume that the loss functions fi, ∀i are
smooth, and f is convex or strongly convex.

A batch gradient descent algorithm would solve the problem above
using the following update iteration:

θn+1 = θn − a(n)
(

1
m

m∑
i=1
∇fi(θn)

)
. (2.10)

The above algorithm is a noise-less algorithm, and for large m, it is
computationally expensive. In ML parlance, m is the number of training
examples.

A computationally efficient alternative is stochastic gradient descent,
popularly known as SGD. This algorithm involves picking a training
sample uniformly at random, i.e., a r.v. in with the following distribution:

in =



1 w.p. 1
m

.

.

m w.p. 1
m
.

SGD would then update the iterate as follows:

θn+1 = θn − a(n)∇fin(θn). (2.11)

Rewriting the above update rule, we obtain

θn+1 = θn − αn

(
1
m

m∑
i=1
∇fi(θn)

)
− αn

(
∇fin(θn)− 1

m

m∑
i=1
∇fi(θn)

)
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= θn − αn

(
1
m

m∑
i=1
∇fi(θn) + wn+1

)
,

where {wn+1 = ∇fin(θn) − 1
m

m∑
i=1
∇fi(θn)} is a martingale difference

sequence because E[wn+1|θ1, . . . θn] = 0.
Several applications involving learning and optimization involve

martingale difference noise terms, and the convergence of the stochastic
approximation algorithm is tied to whether the effect of underlying
noise (martingale difference) can be ignored in the long run. For an
introduction to martingales, the reader is referred to Appendix B.

2.2.3 Stochastic gradient algorithm using a zeroth-order oracle

In a zeroth-order setting, the gradient information is not directly avail-
able, and instead, the optimization algorithm has oracle access to
noise-corrupted function measurements, as illustrated in the figure
below.

θn
Function measurement

oracle f(θn) + ξn

Zero mean

Figure 2.1: Simulation optimization

The stochastic gradient algorithm updates as follows:

θn+1 = θn − a(n)∇̂f(θn), (2.12)

where ∇̂f(θn) is formed from the function measurements. Two such
gradient estimators, using two function measurements, were presented
earlier in (1.6) and (1.9), respectively. Such estimates are not unbiased,
but feature a parameter that can reduce the bias at the cost of variance.
In the next chapter, we present the simultaneous perturbation trick
that generalizes the example in (1.9).

Under suitable assumptions, θn, n ≥ 0, governed by (2.12) can be
shown to converge almost surely to the set H̄ = {x | ∇f(θ) = 0}. We
provide this result later in Section 4.1.
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2.2.4 Stochastic fixed point iterations

Consider a function f : Rd → Rd that satisfies

‖f(x)− f(y)‖ ≤ α ‖x− y‖ , (2.13)

for any x, y ∈ Rd. Here α ∈ (0, 1), and ‖·‖ is the `2-norm associated
with Rd. Such an f is called a contraction map. Since the underlying
space is complete, by the Banach fixed point theorem, there exists a
unique fixed point θ∗ of the function f .

A first attempt at finding such a fixed point is via the following
iterative scheme: start with some θ0 ∈ Rd and update as

θn+1 = f(θn).

A smoothened variation to this update rule is given by

θn+1 = (1− a(n))θn + a(n)f(θn),

where a(n) is the step size. Note that if θn → θ∗ and f is continuous at
θ∗, then f(θ∗) = θ∗.

So far we have assumed that f is perfectly observable for any given
input parameter. However, in many learning scenarios, e.g., reinforce-
ment learning, this isn’t the case. In particular, consider the setting
where f is not precisely known, but we have black box access to f , as
illustrated in Figure 2.1. The simplest noise model would correspond to
i.i.d., e.g., N (0, 1), while a martingale difference noise structure is more
general.

For this setting, a stochastic fixed point iteration would update as
follows:

θn+1 = (1− a(n))θn + a(n)(f(θn) + ξn+1), (2.14)

where as described above, a simple setting is where {ξn} is an i.i.d.
sequence with E [ξn] = 0, and E ‖ξn‖2 <∞, for all n. Now, it is desirable
to have θn → θ∗ almost surely as n→∞. From the convergence analysis
of stochastic approximation algorithms, to be presented later, we shall
see that θn → θ∗ if (i) f is a contraction, see (2.13); (ii) step sizes satisfy
standard stochastic approximation conditions, see (2.6); and (iii) noise
ξn is a martingale difference sequence that has bounded variance, or
satisfies a linear growth condition (see Assumption A2.8 below).
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Remark 2.1. The stochastic fixed point iteration algorithm discussed
above would not necessarily converge if the modulus of contraction
α = 1 in (2.13). In this case, a fixed point is not even guaranteed to
exist, e.g., consider f(θ) = θ + 1. Alternatively, more than one fixed
point may exist (e.g., f(θ) = θ), or only one fixed point exists (e.g.
f(θ) = −θ). Under an additional assumption that at least one fixed
point exists, the stochastic fixed point iteration (2.14) is guaranteed to
converge almost surely to a sample path dependent fixed point solution.

Stochastic fixed point iterations are ubiquitous in the context of
reinforcement learning. In particular, the well-known TD-learning and
Q-learning algorithms are stochastic fixed-point iterations. The reader
is referred to (Bertsekas, 2012; Sutton and Barto, 2018; Bertsekas and
Tsitsiklis, 1996) for a detailed introduction to these algorithms.

2.2.5 Linear stochastic approximation

Consider the following stochastic approximation algorithm:

θn+1 = θn + a(n) (An+1θn + bn+1) ,

where the step size a(n) satisfies
∑
n

a(n) = ∞, and
∑
n

a(n)2 < ∞.

Further, An and bn are matrices and vectors that satisfy

E [An+1 | θ1, . . . , θn] = A,E [bn+1 | θ1, . . . , θn] = b,

where A is a negative-definite matrix. Moreover, E
[
‖(An −A)‖2

]
≤ C1

and E
[
‖bn − b‖2

]
≤ C2. In this setting, applying the Kushner-Clark

lemma (to be presented later), it can be shown that

θn → θ∗ a.s. as n→∞,

where the limit θ∗ satisfies Aθ∗ + b = 0.
A prominent LSA algorithm is TD-learning with linear function ap-

proximation, see (Tsitsiklis and Van Roy, 1997). Other examples include
solving a linear regression problem using a stochastic gradient algorithm
(Prashanth et al., 2021; Mou et al., 2020), and linear approximations to
non-learning SA recursions (Chen et al., 2020b).
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2.2.6 Quantile estimation

Consider the following problem, which is a variant of mean estimation.
For a continuous random variable (r.v.) X with cumulative distribution
function F and for a given α ∈ (0, 1), define

qα(X) = F−1(α).

Notice that qα(X) is the median of the distribution of X when α = 0.5.
Let {Xn}n≥1 be a independent sequence of r.v.s with common

distribution F . Notice that F (qα(X)) = E[I {X ≤ qα(X)}] = α. A
stochastic approximation algorithm for estimating qα(X) for a pre-
specified α can be arrived at as follows: Let qn denote an estimate of
qα(X) after observing samples X1, . . . , Xn. On observing Xn+1, qn is
updated as follows:

qn+1 = qn + a(n) (I {Xn+1 ≤ qn} − α) , (2.15)

where I {·} denotes the indicator function, i.e., I {A} = 1 if A happens
and 0 otherwise.

Notice that the update is iterative, i.e., given an estimate qn at time
instant n and a new sample Xn+1, the algorithm should perform an
incremental update using qn, Xn+1 to arrive at qn+1.

Consider the following alternative observation model: At time instant
n, the stochastic approximation algorithm picks a threshold, say T , and
the environment returns a Boolean that indicates whether Xn+1 < T

or not. Quantile estimation in this threshold-based model would follow
the same iterative scheme as (2.15). To see this, let

Yn+1 =

1 if Xn+1 ≤ qn
0 else.

.

Then, the update rule in (2.15) is equivalent to

qn+1 = qn + a(n) (Yn+1 − α) . (2.16)

Using a variant of Kushner Clark lemma, to be presented later, it is
possible to establish almost sure convergence of qn to qα(X).
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In finance literature, a risk measure closely related to quantiles is
‘Value at Risk (VaR)’. For any random variable X, we define the VaR
at level α ∈ (0, 1) as

VaRα(X) = inf {ξ | P (X ≤ ξ) ≥ α} .

If the distribution of X is continuous, then VaR is the lowest solution to
P (X ≤ ξ) = α. VaR as a risk measure has several drawbacks, which pre-
cludes using standard stochastic optimization methods. This motivated
the definition of coherent risk measures in (Artzner et al., 1999). A risk
measure is coherent if it is convex, monotone, positive homogeneous
and translation equi-variant. Conditional Value at Risk (CVaR) is a
popular risk measure defined by

CVaRα(X) = inf
ξ

{
ξ + 1

(1− α)E (X − ξ)+

}
, (2.17)

where (a)+ = max(a, 0) denotes the positive part of a real number a.
For a continuous random variable X, it can be shown that

CVaRα(X) := E [X|X ≥ VaRα(X)] .

Unlike VaR, the above is a coherent risk measure.
A well-known result from (Rockafellar and Uryasev, 2000) is that

both VaR and CVaR can be obtained from the solution of a certain
convex optimization problem and we recall this result next.

Theorem 2.1. For any random variable X and a α ∈ (0, 1), let

v(ξ,X) := ξ + 1
1− α(X − ξ)+ and V (ξ) = E [v(ξ,X)] . (2.18)

Then, VaRα(X) =
(
arg minV :=

{
ξ ∈ R | V ′(ξ) = 0

})
, where V ′ is the

derivative of V w.r.t. ξ. Further, CVaRα(X) = V (VaRα(X)).

From the above, it is clear that in order to estimate VaR/CVaR, one
needs to find a ξ that satisfies V ′(ξ) = 0. Stochastic approximation (SA)
is a natural tool to use in this situation. Recall that SA is used to solve
the equation h(θ) = 0 when analytical form of h is not known. However,
noisy measurements h(θn) + ξn can be obtained, where θn, n ≥ 0 are
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the input parameters and ξn, n ≥ 0 are zero-mean random variables,
that are not necessarily i.i.d.

Using the stochastic approximation principle and the result in The-
orem 2.1, we have the following scheme to estimate the VaR/CVaR
simultaneously from the samples {X1, . . . , Xn}:

VaR: qn+1 = qn − a(n)(1− 1
1− αI {Xn+1 ≥ qn}), (2.19)

CVaR: ψn+1 = ψn −
1

n+ 1 (ψn − v(qn, Xn+1)) . (2.20)

In the above, (2.19) can be seen as a gradient descent rule, while (2.20)
can be seen as a plain averaging update. Since CVaR estimate depends
on the VaR estimate, whereas the converse is not true, the update
recursions (2.19)–(2.20) exhibit a one-way coupling, which implies the
1/(n + 1) step size in (2.20) can be replaced by a(n) for the sake of
analysis.

An interesting question is whether the stochastic gradient-based
estimation scheme in (2.19) converges faster than the root-finding esti-
mation scheme in (2.15).

2.3 Convergence analysis using the ODE approach

So far, we have provided an introduction to stochastic approximation,
and outlined a few popular applications. We now cover preliminary
results on the convergence of stochastic approximation algorithms using
the limit sets of the associated ordinary differential equation (ODE).
In the next section, we provide convergence results with stochastic
recursive inclusions, i.e., those algorithms that involve set-valued maps.

Consider now the following recursion:

θn+1 = θn + a(n)(h(θn) + βn + ηn). (2.21)

Definition 2.1. We denote by L({θn, n ≥ 0}) the limit set of the
sequence θn, n ≥ 0 obtained from (2.21). In other words, it is the
set of all limit points of the sequence {θn} obtained from (2.21).
Thus, consider all such subsequences {nm} of {n} with nm →∞ for
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which θnm → θ̌ for some θ̌ ∈ Rd. The collection of all these points
θ̌ obtained as limits of such subsequences {θnm} of {θn} is defined
as L({θn, n ≥ 0}). Note also that L({θn, n ≥ 0}) is a sample-path
dependent set that can vary in general from one sample path to
another.

Consider the following ODE associated with (2.21):

θ̇(t) = h(θ(t)). (2.22)

This is the same ODE as (2.2). Define a sequence {t(n), n ≥ 0} of
time points as follows:

t(0) = 0, t(n) =
n−1∑
k=0

a(k), n ≥ 1. (2.23)

We now state the main result for the convergence of (2.21), see
Theorem 1.2 of (Benaïm, 1996)), under the assumptions below.

A2.1. h : Rd → Rd is a Lipschitz continuous function with Lipschitz
constant L > 0.

A2.2. lim
n→∞

βn = 0 w.p.1.

A2.3. The step sizes satisfy a(n) > 0, ∀n, a(n)→ 0 as n→∞ and∑
n

a(n) =∞.

A2.4. For each T > 0, ε > 0,

lim
n→∞

P

sup
j≥n

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi ‖≥ ε

 = 0 w.p.1,

where
m(t) =

{
max{n|t(n) ≤ t}, t ≥ 0,

0 t < 0.

A2.5. sup
n
‖θn‖ <∞ w.p.1.
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A2.6. There exists a locally asymptotically stable attractor θ∗ ∈ Rd

of the ODE (2.22) with domain of attraction Ω̌ ⊂ Rd.

We now discuss these assumptions. Assumption A2.1 ensures that
the ODE (2.22) is well-posed. Assumption A2.2 ensures that the bias
βn vanishes asymptotically. We shall discuss Assumption A2.3 and
Assumption A2.4 in detail below. Assumption A2.6 is satisfied for most
gradient systems. This assumption can however be easily relaxed to the
case where the attractor is a compact connected set of points instead of
being ‘isolated’. Theorem 2.2 however takes the form of Theorem 2.3
(a more general result) when one does not have an attractor in the
underlying system.

The stability requirement in A2.5, while hard to ensure directly,
is common to the analysis of stochastic approximation algorithms. A
commonly used procedure to ensure stability is to employ a projection
operator onto a large enough compact and convex constraint set that
keeps the iterate sequence {θn} bounded. One then uses the following
update rule in place of (4.7):

θn+1 = Π (θn + a(n)(h(θn) + βn + ηn)) , (2.24)

where Π is a projection operator that keeps the iterates bounded within
a compact and convex set, say Θ ⊂ Rd. For instance, a computationally

inexpensive projection onto Θ 4=
d∏
i=1

[θimin, θ
i
max] can be realized by setting

Πi(θ) = min(max(θimin, θ
i), θimax), i ∈ {1 . . . d}. If the projected region

Θ contains all the attractors of the gradient ODE, then θn updated
according to (2.24) would likely converge to such an attractor, except
that the projection set boundary also introduces spurious attractors,
see (Kushner and Yin, 2003). In the case when some of the attractors
lie outside the constraint set, the iterate-sequence θn, n ≥ 0, may get
stuck at the boundary of Θ, trying to push forward in the direction of
the aforementioned attractors. To avoid the latter situation, one could
gradually grow the region of projection as suggested in (Chen et al.,
1987), or perform projection infrequently as in (Dalal et al., 2018). In
(Yaji and Bhatnagar, 2019), the iterate sequence is reset to a compact
set at increasingly sparse instants (in case it goes out of that set) if
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the mean field has a globally attracting set. Such a scheme is shown to
remain both stable and convergent in (Yaji and Bhatnagar, 2019) with
the number of resets remaining finite.

The focus of this book is gradient estimation in a zeroth-order
setting, and for the analysis, we assume that the iterates are stable. As
discussed above, one could employ a projection operator, to workaround
the stability issue, see Section 2.4 for further details. Also, independent
of projection, certain verifiable sufficient conditions for stability of
stochastic approximations in the literature, cf. (Borkar and Meyn, 2000)
and (Abounadi et al., 2002) for two such conditions, and (Ramaswamy
and Bhatnagar, 2016a) and (Ramaswamy and Bhatnagar, 2021) for
similar conditions in the context of set-valued stochastic approximation.

Motivation for step size assumptions: One can reason about the
need for the step size conditions using a simpler noise setting as follows:
Suppose βn = 0, ∀n and {ηn} is an i.i.d. sequence with mean zero and
variance σ2. Then, variance of θn+1 is

Var(θn+1) = Var [θn + a(n)h(θn)] + a(n)2V ar(ηn+1)
= Var [θn + a(n)h(θn)] + a(n)2σ2

≥ a(n)2σ2.

If we choose a constant stepsize, i.e., a(n) = a ∀n, then, V ar(θn+1) ≥
a2σ2. Thus, with a constant step size, θn 6−→ θ∗ almost surely, mo-
tivating the need for having a diminishing step size that vanishes
asymptotically. However, such a step size cannot go down too fast, since

θm+1 = θm + a(m)(h(θm) + ηm+1),

‖θm − θ0‖ ≤
m−1∑
τ=0

a(τ)|h(θτ ) + ητ+1|

If |h(θτ ) + ητ+1| ≤ C1 and
∞∑
τ=0

a(τ) ≤ C2 < ∞, then ‖θm − θ0‖ is

bounded above. This implies that θm is forced to be within a ball of
radius C1C2 around the initial point θ0, for all m. This then puts an
artificial constraint on {θm} as θ∗ can always lie outside this ball. Thus,
we need

∑
τ

a(τ) =∞.
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Remark 2.2 (Only Diminishing vs. Square Summable Step-Sizes). As-
sumption A2.3 is a condition on the step-size sequence {a(n)} and is
weaker than standard Robbins-Monro step-size requirements such as
Assumption A2.7 that requires square summability of the step-sizes.
However, as Theorems 2.2 and 2.3 suggest, if one makes Assumption A2.3
on the step-size sequence, then one needs to additionally make Assump-
tion A2.4 on the noise sequence {ηn}. Verifying the latter independently
may not be straightforward.

On the other hand, assuming the noise sequence ηn, n ≥ 0 is a
martingale difference satisfying Assumption A2.8, one can prove that
Assumption A2.4 holds under Assumption A2.7 and Assumption A2.5.
This is indeed shown in Remark 2.4. As mentioned, this will require
the step-size sequence to be square summable, not just asymptotically
diminishing. Theorem 2.4 is a variant of Theorem 2.3 that is based on
Assumptions A2.7–A2.8 in place of Assumptions A2.3–A2.4, respectively,
while continuing with the other assumptions.

The original convergence result of Kushner and Clark, see Theorem
2.3.1 of (Kushner and Clark, 1978), that establishes convergence of
(2.21) is the following:

Theorem 2.2 (Kushner and Clark Theorem). Under A2.1–A2.6,
outside a set of zero probability, if there is a compact set A ⊂ Ω̌
such that {θn} given by (2.21) satisfies θn ∈ A infinitely often, then
θn → θ∗ as n→∞.

We briefly present a proof of this result which follows along the lines
of Theorem 2.3.1 of (Kushner and Clark, 1978). A more generalized
result is then provided as Theorem 2.3 which is from (Benaïm, 1996)
[Theorem 1.2].

Proof. Recall the stochastic recursion (2.21):

θn+1 = θn + a(n)(h(θn) + βn + ηn).

Let θ0(t), t ≥ 0, denote a continuous linear interpolation of the θn
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iterates obtained as follows: For t ∈ [t(n), t(n+ 1)], n ≥ 0,

θ0(t) = t(n+ 1)− t
t(n+ 1)− t(n)θn + t− t(n)

t(n+ 1)− t(n)θn+1.

Similarly, for t as above, let

β0(t) = t(n+ 1)− t
t(n+ 1)− t(n)

(
n−1∑
i=0

a(i)βi

)
+ t− t(n)
t(n+ 1)− t(n)

(
n∑
i=0

a(i)βi

)
,

η0(t) = t(n+ 1)− t
t(n+ 1)− t(n)

(
n−1∑
i=0

a(i)ηi

)
+ t− t(n)
t(n+ 1)− t(n)

(
n∑
i=0

a(i)ηi

)
,

respectively. We also define a piecewise constant interpolated process
θ̄0(·) according to

θ̄0(t) = θn, θ ∈ [t(n), t(n+ 1)).

Then the recursion (2.21) can be written in continuous time as

θ0(t) = θ0(0) +
∫ t

0
h(θ̄0(τ))dτ + β0(t) + η0(t), t ≥ 0. (2.25)

From these continuous-time functions, we define a sequence of left-
shifted functions θn(·), βn(·), ηn(·) as follows: For n ≥ 0,

θn(t) =
{
θ0(t+ t(n)), t ≥ −t(n)

θ0, t ≤ −t(n)

ηn(t) =
{
η0(t+ t(n))− η0(t(n)), t ≥ −t(n)

−η0(t(n)), t ≤ −t(n)

βn(t) =
{
β0(t+ t(n))− β0(t(n)), t ≥ −t(n)

−β0(t(n)), t ≤ −t(n)

respectively.
Before proceeding further, we show that under Assumption A2.3

and Assumption A2.4, η0(·) is uniformly continuous on [0,∞) almost
surely. Further, for any 0 < T <∞,

lim
t→∞

sup
|s|≤T

‖η0(t+ s)− η0(t)‖ = 0 w.p.1.
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By Assumption A2.4, given ε > 0, there exists nk > 0 such that

P

 sup
j≥nk

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi‖ ≥ ε

 ≤ 1
2k .

Thus, ∑
k

P

 sup
j≥nk

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi‖ ≥ ε

 <∞.

Thus, corresponding to {nk}, we get a sequence of events {Ek} where

Ek = { sup
j≥nk

max
t≤T
‖
m(jT+t)−1∑
i=m(jT )

a(i)ηi‖ ≥ ε}.

By the Borel-Cantelli lemma, P (Ek infinitely often) = 0. Thus,

sup
{|s|≤T,t≥nk}

‖η0(t+ s)− η0(t)‖ < ε,

for all but finite number of nk (integers) w.p.1. Since η0(·) is continuous
w.p.1 on [0,∞), the above implies that η0(·) is also uniformly continuous
w.p.1. Thus, {ηn(·) is uniformly continuous on R, bounded on compacts
and ηn(·) → 0 w.p.1 uniformly on compacts in R. Likewise, from
Assumption A2.2, {βn(·)} is uniformly continuous on R, bounded on
compacts and βn(·)→ 0 w.p.1 uniformly on compacts in R.

Now, (2.25) can be equivalently written as follows: For t ≥ 0,

θn(t) = θn(0) +
∫ t

0
h(θ̄0(t(n) + τ))dτ + βn(t) + ηn(t)

= θn(0) +
∫ t

0
h(θn(τ))dτ + εn(t) + βn(t) + ηn(t), (2.26)

where
εn(t) =

∫ t

0
h(θ̄0(t(n) + τ))dτ −

∫ t

0
h(θn(τ))dτ.

Note that by Lipschitz continuity of h(·) (cf. Assumption A2.1),

‖εn(t)‖ ≤ L
∫ t

0
‖θ̄0(t(n) + τ))− θn(τ))‖dτ, (2.27)
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where L > 0 is the Lipschitz constant of the function h(·). Now, observe
that

θn(t) = θ0(t+t(n)) = θ̄0(t+t(n))+
∫ t

0
h(θ̄0(t(n)+τ))dτ+βn(t)+ηn(t).

Thus,

‖θn(t)− θ0(t+ t(n))‖ ≤
∫ t

0
‖h(θ̄0(t(n) + τ))‖dτ + ‖βn(t)‖+ ‖ηn(t)‖.

(2.28)
Now, by Lipschitz continuity of h(·),

‖h(θ̄0(t(n) + τ))‖ − ‖h(0)‖ ≤ ‖h(θ̄0(t(n) + τ))− h(0)‖

≤ L‖θ̄0(t(n) + τ)‖.
Thus, with Ľ = max(L, ‖h(0)‖), we get that

‖h(θ̄0(t(n) + τ))‖ ≤ Ľ(1 + ‖θ̄0(t(n) + τ)‖).

Since, outside a set of zero probability, ∃M̌ > 0 such that ‖θ̄0(t(n) +
τ)‖ ≤ M̌ . Thus,

‖h(θ̄0(t(n) + τ))‖ ≤ Ǩ,

where Ǩ 4= Ľ(1 + M̌) > 0. Thus, from (2.28), it follows that

‖θn(t)− θ0(t+ t(n))‖ ≤ a(n)Ǩ + ‖βn(t)‖+ ‖ηn(t)‖.

The RHS above → 0 as n→∞ uniformly on compact intervals. Substi-
tuting the above inequality in (2.27), one obtains

‖εn(t)‖ ≤ La(n)(a(n)Ǩ + ‖βn(t)‖+ ‖ηn(t)‖)→ 0,

as n → ∞ uniformly on compact intervals. Thus, (εn(t) + βn(t) +
ηn(t))→ 0 as n→∞ uniformly on compact intervals. From Assump-
tion A2.5, {Xn(·)} is bounded and further it is easy to observe that
this sequence is equicontinuous. From the Arzela-Ascoli theorem, it
then follows that {Θn(·)} is relatively compact. Thus, there exists a
convergent subsequence that we continue to call {θn(·)} itself without
loss of generality. Let θ(·) be the limiting function of this sequence.
Then θ(·) can be seen to satisfy the limiting ODE (2.22) as

θ(t) = θ(0) +
∫ t

0
h(θ(τ))dτ,
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which is the integral form of the ODE (2.22).
Now note that under Assumption A2.6, θ∗ ∈ Rd is an attractor

for the ODE (2.22). Let ε1, ε2 > 0 be two scalars with ε1 < ε2 with
ε1 being small in particular. Then the ε1 and ε2 neighborhoods of θ∗

satisfy Nε1(θ∗) ⊂ Nε2(θ∗) and let Nε2(θ∗) ⊂ A. Since θn ∈ A infinitely
often, it follows that there exists a subsequence {nm} of {n} such that
θnm ∈ A,∀nm. Consider then the process θnm(·) which will have a
subsequence (also indexed by {nm} for simplicity) that will converge
to a limit θ̂(·) that in turn will satisfy the ODE (2.22). Since θ̂(0) ∈ A
and θ∗ is asymptotically stable, θ̂(t)→ θ∗ as t→∞.

Consider again the process θnm(·) formed from the stochastic iterates.
Since θnm(·) → θ̂(·) uniformly on compacts and θ̂(t) → θ∗, it follows
that there is a subsequence {θnmj} of {θnm} that will be contained
in Nε1(θ∗). However, we know that {θnm} is entirely contained in A.
Suppose then that there is a subsequence {θnmk of {θnm} that is entirely
contained in A\Nε2(θ∗), i.e., A ∩N c

ε2(θ∗). Then {θnm} will move from
Nε1(θ∗) to A\Nε2(θ∗) and back infinitely often since there are an infinite
number of points in each of these sets. Then there is a sequence of
time points τ1 < τ̄1 < τ2 < τ̄2 · · · such that θ0(τj) ∈ ∂Nε1(θ∗) and
θ0(τ̄j) ∈ ∂Nε2(θ∗), ∀j. Further, θ0(t) ∈ N̄ε2(θ∗)\Nε1(θ∗), for t ∈ (τj , τ̄j)
for all j. Consider the [τj , τ̄j ] portions of the trajectory θ0(·). This
sequence will have a convergent subsequence whose limit is say θ̃(·)
which again satisfies (2.22). Consider two cases: (i) There is a T > 0
such that along a subsequence τ̄j − τj → T . Then, θ̃(0) ∈ ∂Nε1(θ∗)
and θ̃(T ) ∈ ∂Nε2(θ∗). This is not possible by asymptotic stability
of θ∗ since ε1 > 0 is small. (ii) Let rj − lj → ∞. Then the set of
{[lj ,∞)} segments of θ0(·) are bounded and equicontinuous. Again by
the Arzela-Ascoli theorem, one can obtain a convergent subsequence
with limit say θ̌(·) that again satisfies (2.22). Then θ̌(0) ∈ ∂Nε1(θ∗)
and θ̌(t) ∈ N̄ε2(θ∗)\Nε1(θ∗). This contradicts that θ∗ is asymptotically
stable. The claim follows.

Remark 2.3. A more formal argument on the tracking of the iterate
sequence to the underlying ODE (2.22) is provided in Chapter 2 of
Borkar, 2022. We briefly sketch that argument here for completeness.

Consider {t(n)} as in (2.23) and let T > 0 be a given time element
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and define a sequence of time points {Tn} as follows: Let T0 = t(0) = 0.
Further, for n ≥ 1, let

Tn = min{t(m)|t(m) ≥ Tn−1 + T},

denote a sequence of time points. Let θTn(t), t ≥ Tn denote the solution
to the ODE (2.22) with θTn(Tn) = θ0(Tn) as the initial condition of the
ODE. It is argued in Lemma 1, Chapter 2, of Borkar, 2022, using an
application of the Gronwall’s inequality (see Lemma A.1), that

lim
n→∞

max
t∈[Tn,Tn+1]

‖θ0(t)− θTn(t)‖ = 0,

almost surely. In fact, the above holds for any time point s ∈ R (in
positive and negative time), not just the time instants Tn above. Now
if the ODE has a globally asymptotically stable attractor A, any trajec-
tory of the ODE (2.22) will eventually converge to it, and so will the
interpolated iterates θ0(t), and thereby the iterate sequence θn, n ≥ 0.
Figure 2.2 illustrates this iterate-tracking process.

a(1) a (2) (n)a
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Figure 2.2: The continuously interpolated algorithm’s trajectory θ0(t) represented
by the solid line asymptotically tracks the ODE’s trajectory (the dashed-dotted
line) θTn(t) suitably reset to the algorithm’s trajectory after every (regular) time
interval approximately T instants long. On the X-axis are the instants t(0), t(1), · · · ,
with t(n) − t(n − 1) = a(n), ∀n with t(0) = 0. From the step size conditions, it
follows that t(n)→∞ as n→∞. This ensures that the algorithm does not converge
prematurely.
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Theorem 2.3 (A More General Kushner and Clark Theorem). Under
A2.1–A2.5, {θn} governed according to (2.21) converges almost
surely to L({θn, n ≥ 0}) (see Definition 2.1). Further,L({θn, n ≥ 0})
is a connected internally chain recurrent set2 for the ODE (2.22).

This result is a generalization of the Kushner and Clark lemma
(cf. (Kushner and Clark, 1978)) and is stated under the same assump-
tions as used in the aforementioned result.

We now state some alternative assumptions that in fact we shall
use for our analysis.

A2.7. a(n) > 0, ∀n,
∑
n

a(n) =∞ and
∑
n

a(n)2 <∞.

A2.8. {ηn} is a square integrable martingale difference sequence
with respect to the filtration {Fn}, with Fn = σ(θm, βm,m ≤
n, ηm,m < n), n ≥ 0. Further,

E[‖ηn+1‖2 | Fn] ≤ C0(1 + ‖θn‖2), n ≥ 0.

Remark 2.4. As discussed in Remark 2.2, Assumption A2.7 is stronger
than Assumption A2.3. However, Assumptions A2.7 and A2.8, in addi-
tion to A2.5 turn out to be sufficient conditions for the verification of
Assumption A2.4. This can be seen as follows: Let

χn =
n−1∑
m=0

a(m)ηm, n ≥ 1.

Then, from Assumption A2.8, it will follow that (χn,Fn), n ≥ 0 is a
martingale sequence. Moreover,

E

[∑
n

‖χn+1 − χn‖2 | Fn

]

= E

[∑
n

a(n)2‖ηn‖2 | Fn

]
2See Appendix A for the definition of internally chain recurrent set of an ODE

and other related concepts.
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≤
∑
n

a(n)2C0
(
1 + ‖θn‖2

)
(by Assumption A2.8)

<∞ a.s. (by Assumption A2.5.)

Thus the quadratic variation process associated with the martingale
{χn} is almost surely convergent. Hence, by the martingale conver-
gence theorem for square integrable martingales, see Theorem B.7 in
Appendix B, {χn} itself is almost surely convergent. Assumption A2.4
will thus follow.

We now present the generalized form of the Kushner-Clark theorem
for convergence of algorithms of the form (2.21), where we also consider
the case when h(θ) = −∇f(θ), for a continuously differentiable function
f : Rd → R. This result is stated under Assumptions A2.1, A2.2, A2.7,
A2.5 and A2.8 and will be used for the analysis of our gradient search
algorithms. In this case, the recursion (2.21) takes the form

θn+1 = θn + a(n)(−∇f(θn) + βn + ηn), n ≥ 0. (2.29)

The ODE associated with (2.29) is the following:

θ̇(t) = −∇f(θ(t)). (2.30)

Theorem 2.4. (i) The recursion (2.21), under Assumptions A2.1,
A2.2, A2.5, A2.7, A2.8, converges almost surely to L({θn, n ≥
0}), see Definition 2.1. Further, L({θn, n ≥ 0}) is a connected
internally chain recurrent set for the ODE (2.22).

(ii) Part (i) continues to hold for the case of (2.29) where h(θ) =
−∇f(θ) for a continuously differentiable function f : Rd →
R and with the ODE (2.30) in place of (2.22). Further,
L({θn, n ≥ 0}) ⊂ H 4= {θ | ∇f(θ) = 0}.

Remark 2.5. (i) As mentioned previously, Theorem 2.4(i) is similar
to Theorem 2.3 except that it is obtained under more directly
verifiable noise condition in Assumption A2.8 as opposed to As-
sumptionA2.4 and under step-size Assumption A2.7 in place of
Assumption A2.3.



2.4. Projected Stochastic Approximation 51

(ii) In the case of stochastic gradient recursions as in (2.29), one
can claim a stronger result, see Theorem 2.4(ii). In this case,
H = {θ|∇f(θ) = 0} denotes the set of all equilibria of the ODE
(2.30), for which V (θ) = f(θ) serves as a Lyapunov function since

dV (θ)
dt

= 〈∇V (θ), θ̇〉

= 〈∇V (θ),−∇V (θ)〉
≤ 0, ∀θ ∈ Rd.

In particular, dV (θ)
dt

< 0, ∀θ 6∈ H and dV (θ)
dt

= 0 otherwise. Fi-
nally, Theorem 2.4(ii) is similar to Corollary 2.1 of (Borkar, 2022)
even though the latter is stated for the case of a general recur-
sion (not necessarily of the gradient type) but where a Lyapunov
function exists for an ODE such as (2.22).

(iii) Note also that in the case of (2.29), if L({θn, n ≥ 0}) comprises
of only isolated limit points, then by Theorem 2.4(ii), these limit
points of the algorithm constitute isolated equilibria of the ODE
(2.30), and θn, n ≥ 0 will converge almost surely to a possibly
sample path dependent equilibrium, see Corollary 2.2 of (Borkar,
2022).

Remark 2.6. Stability of stochastic approximation, i.e., Assumption A2.5,
is one of the strongest requirements to ensure convergence of the stochas-
tic iterates. Various sets of sufficient conditions to ensure stability of
the stochastic iterates can be found in (Kushner and Yin, 2003; Borkar
and Meyn, 2000; Abounadi et al., 2002; Tsitsiklis, 1994) and other
references.

2.4 Projected Stochastic Approximation

There are many practical situations where it is difficult to verify sufficient
conditions for stability (as in Remark 2.6) of the stochastic recursions.
In such scenarios, a popular approach is to enforce stability on the
stochastic iterates by selecting a convex and compact set in which the
parameter iterates can take values and thereafter projecting the iterates
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to the aforementioned set whenever the iterates escape from the same.
This approach also helps in situations where the parameter takes values
only in a pre-specified compact set. Stability of the iterates is then
enforced due to the projection.

We review here an important result originally due to Kushner and
Clark (cf. Theorem 5.3.1 on pp. 191-196 of (Kushner and Clark, 1978))
that shows the convergence of projected stochastic approximations.
While the result, as stated in (Kushner and Clark, 1978), is more
generally applicable, we present its adaptation here that is relevant to
the setting that we consider.

Let C ⊂ Rd be a compact and convex set and Γ : Rd → C denote
a projection operator that projects any θ = (θ1, . . . , θd)T ∈ Rd to its
nearest point in C. Thus, if θ ∈ C, then Γ(θ) ∈ C as well. For instance,

if C is a d-dimensional rectangle having the form C =
d∏
i=1

[ai,min, ai,max],

where −∞ < ai,min < ai,max <∞, ∀i = 1, . . . , d, then a convenient way
to identify Γ(θ) is according to Γ(θ) = (Γ1(θ1), . . . ,ΓN (θd))T , where the
individual operators Γi : R → R are defined by

Γi(θi) = min(ai,max,max(ai,min, θi)), i = 1, . . . , d.

Let C(C) denote the space of all continuous functions from C to Rd.
Consider the following d-dimensional stochastic recursion:

θn+1 = Γ(θn + a(n)(h(θn) + ξn + βn)), (2.31)

under the assumptions listed below.
Consider now the following ODE associated with (2.31):

θ̇(t) = Γ̄(h(θ(t))). (2.32)

Here, Γ̄ : C(C)→ C(Rd) is defined according to

Γ̄(v(θ)) = lim
η→0

(Γ(θ + ηv(θ))− θ
η

)
, (2.33)

for any continuous v : C → Rd. The limit in (2.33) exists and is unique
since C is a convex set. In case C is not convex, the limit Γ̄(v(θ)) in
(2.33) will not be unique in general for all θ and so Γ̄(h(θ(t))) will be
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a set of points for any θ(t), that is not necessarily a singleton, and so
instead of the ODE (2.32), one may consider the following differential
inclusion:

θ̇(t) ∈ Γ̄(h(θ(t))). (2.34)

A similar result as below can then be seen to hold in this case. For
simplicity, we shall restrict our attention to the case where C is a
compact and convex set.

From the definition of Γ̄ in (2.33), note that Γ̄(v(θ)) = v(θ) if
θ ∈ Co (the interior of C). This is because for such a θ, one can find
η > 0 sufficiently small so that θ + ηv(θ) ∈ Co as well and hence
Γ(θ + ηv(θ)) = θ + ηv(θ). On the other hand, if θ ∈ ∂C (the boundary
of C) is such that θ + ηv(θ) 6∈ C, for any small η > 0, then Γ̄(v(θ)) is
the projection of v(θ) to the tangent space of ∂C at θ.

Consider now the assumptions listed below.

A2.9. The function h : Rd → Rd is continuous.

A2.10. The step sizes a(n), n ≥ 0 satisfy

a(n) > 0 ∀n,
∑
n

a(n) =∞,
∑
n

a(n)2 <∞.

A2.11. The sequence βn, n ≥ 0 is a bounded random sequence
with βn → 0 almost surely as n→∞.

A2.12. {ηn} is a square integrable martingale difference sequence
with respect to the filtration {Fn}, with Fn = σ(θm, βm,m ≤
n, ηm,m < n), n ≥ 0. Further,

E[‖ηn+1‖2 | Fn] ≤ C0(1 + ‖θn‖2), n ≥ 0.

Let K ⊂ Rd denote the set of asymptotically stable attractors of
(2.32). Then, (Kushner and Clark, 1978, Theorem 5.3.1 (pp. 191-196))
essentially says the following:

Theorem 2.5 (Kushner and Clark Theorem - Projected case). Under
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Assumptions A2.9–A2.12, almost surely, Xn → K as n→∞.

Remark 2.7. We wish to point out that the original theorem of Kushner
and Clark (cited above) for the case of projected stochastic approxi-
mations is stated for the case of an analogous assumption as Assump-
tion A2.4 in place of A2.12 and Assumption A2.3 in place of A2.10. As
discussed in Remark 2.4, the noise assumption A2.12 in conjunction
with A2.10 (and the fact that now the iterates are uniformly bounded
throughout because of the projection), imply A2.4. Moreover, these
assumptions are more easily verifiable in most applications.

2.5 Stochastic Recursive Inclusions

In many applications, one encounters set-valued maps h(θ), θ ∈ Rd in
place of point-to-point maps h(θ), for instance, resulting from dealing
with partial observation settings. Let h : Rd → {set of subsets of Rd}.
A stochastic recursive inclusion has the following structure:

θn+1 − θn − a(n)Mn+1 ∈ a(n)h(θn), (2.35)
where (Mn,Fn), n ≥ 0, is a martingale difference sequence. Consider
now the associated differential inclusion (DI):

θ̇(t) ∈ h(θ(t)). (2.36)

Let t(n), n ≥ 0 be a sequence of time points defined as follows:

t(0) = 0 and for n ≥ 1, t(n) =
n−1∑
k=0

a(k). Thus, t(n+ 1) = t(n) + a(n).

For any t ≥ 0, let m(t) 4= sup{k ≥ 0 | t ≥ t(k)}. Define a continuous
time affine interpolated process W : [0,∞)→ Rd as follows:

W (t(n) + s) = θn + s

(
θn+1 − θn
a(n)

)
, s ∈ [0, a(n)].

From the above, W (t(n)) = θn,∀n. Recall Definition A.12 for definition
of a perturbed solution to a DI. The following result is from (Benaïm
et al., 2005, Proposition 1.3).

Proposition 2.1. Assume the following hold:
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(i) For all T > 0,

lim
n→∞

sup{‖
l−1∑
k=n

a(k)Mk+1‖ | k = n+ 1, . . . ,m(t(n) + T )} = 0.

(ii) sup
n
‖θn‖ <∞ almost surely.

Then the process W (·) is a perturbed solution of the DI (2.36).

Consider now the assumptions A2.7-A2.8 with ηn = Mn+1, n ≥ 0 as
the martingale difference sequence. Assume also the stability require-
ment on the iterates (2.35).

A2.13. The iterates (2.35) satisfy sup
n
‖θn‖ <∞ almost surely.

Let ζ(n) =
n−1∑
m=0

a(m)Mm+1, n ≥ 1. Then (ζ(n),Fn), n ≥ 1 can be

seen to be a martingale sequence. From Assumptions A2.8 and A2.13,
it can be seen that the quadratic variation process of the martingale
{ζ(n)} converges almost surely, and by the martingale convergence
theorem, the martingale itself converges almost surely. It is then clear
that the requirement (i) in Proposition 2.1 is satisfied. Together with
Assumption A2.13, it implies from Proposition 2.1 that the processW (·)
is a bounded perturbed solution to the DI (2.36). Recall the definition
of internally chain transitive sets of a DI (cf. Definition A.11). We have
the following main result from (Benaïm et al., 2005, Theorem 3.6).

Theorem 2.6. The limit set of W (·), the continuous time affine
interpolated process obtained from the stochastic recursion (2.35)
withW (0) = z, given by L(z) =

⋂
t≥0
{W [t,+∞)}, is internally chain

transitive for the DI (2.36).

2.6 Stochastic Approximation with Markov Noise

An important setting not previously considered thus far in this text is
of Markov noise in addition to the martingale difference noise sequence
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when considering the stochastic iterates. Such a setting arises in the case
of problems of optimization and control when data becomes available
online one at a time in real time as well as in reinforcement learning
with online updates. The results here are based on (Borkar, 2022;
Ramaswamy and Bhatnagar, 2019). Consider the following update of
the θ-parameter:

θn+1 = θn + a(n) (h(θn, X(n)) +Mn+1) , (2.37)

where X(n), n ≥ 0 is the sequence of random variables characterizing
Markov noise. Let Š denote the set of states for {X(n)}. Also, let
Fn = σ(θ(m), X(m),Mm,m ≤ n), n ≥ 0. We let

P (X(n+ 1) = j | Fn) = pθn(X(n), j) a.s.,

where pθn(·, ·) are the transition probabilities that depend on the pa-
rameter iterates θn, n ≥ 0.

Consider now a sequence {t(n)} of time points defined as before, i.e.,

t(0) = 0, t(n) =
n−1∑
k=0

a(k), n ≥ 1. Now define the algorithm’s trajectory

θ̄(t) according to: θ̄(t(n)) = θn, ∀n, and with θ̄(t) defined as a continuous
linear interpolation on each of the intervals [t(n), t(n+ 1)].

Consider now the following assumptions:

A2.14. h : Rd × Š → Rd is Lipschitz continuous in the first argument,
uniformly with respect to the second.

A2.15. For any given θ ∈ Rd, the set D(θ) of ergodic occupation
measures of {X(n)} is compact and convex.

A2.16. {Mn}n≥0 is a square-integrable martingale difference sequence.
Further, E

[
||Mn+1||2|Fn

]
≤ K(1 + ||θn||2).

A2.17. The step size sequence {a(n)} satisfies a(n) > 0, ∀n. Further,
∞∑
n=0

a(n) =∞ and
∞∑
n=0

a2(n) <∞.

A2.18. Let h̃(θ, ν) =
∫
h(θ, x)ν(dx), where ν ∈ D(θ). Also, define a

sequence of scaled functions h̃c(θ, ν) = h̃(cθ, ν(cθ))
c

, c ≥ 1.
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(i) The limit h̃∞(θ, ν) 4= lim
c→∞

h̃c(θ, ν) exists uniformly on compacts.

(ii) There exists an attracting set A associated with the DI
θ̇(t) ∈ H(θ(t)) where H(θ) = c̄o({h̃∞(θ, ν) : ν ∈ D(θ)}) such
that sup

u∈A
||u|| < 1 and B̄1(0) 4= {x | ||x|| ≤ 1} is a fundamental

neighborhood of A.

Theorem 2.7. Under A2.14–A2.18, {θ̄(s+ ·), s ≥ 0} remains uni-
formly bounded with probablity one and converges to an internally
chain transitive invariant set of the DI

θ̇(t) ∈ ĥ(θ(t)),

where ĥ(θ) = {h̃(θ, ν) | ν ∈ D(θ)}. In particular, {θt} converges
almost surely to such a set.

Example 2.1. We present here a simple example as an application
to Theorem 2.7. The temporal difference (TD) learning algorithm in
reinforcement learning (Sutton and Barto, 2018; Bertsekas and Tsitsiklis,
1996) has a similar structure as considered in this example. Consider a
Markov chain {X(n)} taking values in a set S (the state space) assumed
finite for simplicity. Assume {X(n)} is a given ergodic Markov process
that does not depend on the parameter θ. Let ν denote the unique
stationary distribution of {X(n)}. Consider now the following update
of the parameter θ:

θn+1 = θn + a(n)(A(X(n))θn + b(X(n))), (2.38)

where A(X(n)) for any n ≥ 0 is a d× d matrix and b(X(n)) ∈ Rd is an
d-dimensional vector. Further, suppose the step-size sequence {a(n)}
satisfies Assumption A2.17. Let

Ā =
∑
i∈S

A(i)ν(i) and b̄ =
∑
i∈S

b(i)ν(i).

Assume now that Ā is negative definite. In the setting of Theorem 2.7,

h(θ,X) = A(X)θ + b(X),
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that is easily seen to satisfy Assumption A2.14. Since {X(n)} is ergodic
Markov, D(θ) = {ν}, a singleton set with ν independent of θ. Thus,
Assumption A2.15 is trivially satisfied. Now note that in recursion
(2.38), we do not have an explicit martingale difference noise term.
Thus, one may let Mn+1 ≡ 0 here for all n. Thus, Assumption A2.16
is trivially satisfied as well. We assume here that the step-sizes {a(n)}
above satisfy the standard Robbins-Monro conditions given in (A2.17).
Now, as before, let

h̃(θ, ν) =
∑
i

h(θ, i)ν(i) =
∑
i

(A(i)θ + b(i))ν(i) = Āθ + b̄.

Again, let

h̃c(θ, ν) = h̃(cθ, ν)
c

= Āθ + b̄

c
.

Now,
h̃∞(θ, ν) 4= lim

c→∞
h̃c(θ, ν) = Āθ.

Note now that the set-valued map H(θ) in Theorem 2.7 takes the form
H(θ) = {Āθ}, a singleton. Then the DI θ̇(t) ∈ H(θ(t)) is actually the
ODE θ̇(t) = Āθ(t). Let V (θ) = 1

2θ
T ĀT Āθ. It can be seen that V (θ) is

a Lyapunov function for the above ODE since

dV (θ)
dt

= ∇V (θ)T θ̇ = θT ĀT ĀĀθ = (Āθ)T Ā(Āθ)

Thus,

dV (θ)
dt

=

< 0 if θ 6= 0,
0 otherwise.

The strict inequality above follows because Ā is negative definite and
whereby Ā is also a full rank matrix. Thus, θ̇(t) = Āθ(t) has the origin
as its unique globally asymptotically stable attractor with the unit ball
B̄1(0) = {θ|‖θ‖ ≤ 1} as the fundamental neighborhood of this attractor
(i.e., the origin). Thus Assumption A2.18 holds as well.

Consider now the ODE

θ̇(t) = Āθ + b̄.
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This ODE can be easily seen to have θ∗ = −Ā−1b̄ as its unique globally
asymptotically stable attractor where it is easy to verify (as before)
that

W (θ) = 1
2(Āθ + b̄)T (Āθ + b̄),

serves as an associated Lyapunov function. The singleton set {θ∗}
trivially serves as an internally chain transitive invariant set of the
above ODE. Now from Theorem 2.7, {θn} remains uniformly bounded
w.p.1. Moreover, it follows that θn → θ∗ almost surely.

2.7 Two-timescale Stochastic Approximation

Many times, one is faced with the problem of optimizing parameters
under a nested loop structure. The objective function to be optimized
in such cases is obtained as a long-run average over other sample
cost functions many times in non-i.i.d noise settings. The outer loop
procedure in such a case would perform the optimization but the inner
loop would perform the averaging corresponding to any given parameter
value as determined by the outer-loop procedure and that in turn would
have performed a parameter update using the averaged value provided
by the inner-loop step in the previous round. Policy iteration in Markov
decision processes to determine the optimal policy is an example of
a numerical procedure where the policy evaluation step proceeds in
the inner loop while policy improvement is conducted in the outer
loop, cf. (Bertsekas and Tsitsiklis, 1996). In general, running a nested
loop procedure, however, comes with the challenge of dealing with a
potentially large computation time for the procedure.

To simplify such dual-loop computations, particularly in the model-
free setting, one often resorts to stochastic approximation with two
timescales. In these algorithms, the aforementioned nested loop structure
is replaced with two recursions that perform updates simultaneously
but using different step size schedules, both of which satisfy the usual
Robbins-Monro step size conditions though one of these tends to zero
at a rate faster than the other. The actor-critic algorithm, (Sutton and
Barto, 2018; Konda and Tsitsiklis, 2003; Bhatnagar et al., 2009), in
reinforcement learning (that mimics policy iteration) or the simulation
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optimization algorithm for optimizing long-run average cost objectives
under Markov noise, see for instance (Bhatnagar and Borkar, 1998;
Bhatnagar et al., 2013).

Suppose θn, γn, n ≥ 0 be two parameter sequences that are governed
according to

θn+1 = θn + α(n)(f(θn, γn) +N1
n+1), (2.39)

γn+1 = γn + β(n)(g(θn, γn) +N2
n+1), (2.40)

where θn ∈ Rd and γn ∈ Rl, ∀n ≥ 0 under the following assumptions:

A2.19. The functions f : Rd ×Rl → Rd and g : Rd ×Rl → Rl are both
Lipschitz continuous.

A2.20. The step size sequences {α(n)} and {β(n)} satisfy α(n), β(n) >
0, ∀n. In addition,∑

n

α(n) =
∑
n

β(n) =∞,
∑
n

(
α(n)2 + β(n)2

)
<∞, (2.41)

lim
n→∞

β(n)
α(n) = 0. (2.42)

A2.21. The noise sequences {N1
n} ⊂ Rd and {N2

n} ⊂ Rl are both
martingale difference sequences w.r.t. the sequence of σ-fields F̄n =
σ(θm, γm, N1

m, N
2
m, m ≤ n), n ≥ 0, and further satisfy

E[‖ N i
n+1 ‖2| F̄n] ≤ D(1+ ‖ θn ‖2 + ‖ γn ‖2), i = 1, 2, n ≥ 0,

for i = 1, 2 and some constant D <∞.

A2.22. sup
n
‖ θn ‖, sup

n
‖ γn ‖<∞ almost surely.

In Assumption A2.20, (2.42) is an important requirement which
results in the separation of timescales. As a consequence of (2.42),
β(n)→ 0 faster than {α(n)}. Consider now the system of ODEs:

θ̇(t) = f(θ(t), γ(t)), (2.43)
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γ̇(t) = 0. (2.44)

As a consequence of (2.44), one can alternatively consider the ODE

θ̇(t) = f(θ(t), γ) (2.45)

in place of (2.43), where because of (2.44), γ(t) ≡ γ, a constant.

A2.23. The ODE (2.45) has a unique globally asymptotically stable
equilibrium µ(γ) where µ : Rl → Rd is a Lipschitz continuous function.

Consider also the ODE

γ̇(t) = g(µ(γ(t)), γ(t)). (2.46)

A2.24. The ODE (2.46) has a unique globally asymptotically stable
attractor γ?.

Define two real-valued sequences {rn} and {sn} as rn =
n−1∑
m=0

α(m)

and sn =
n−1∑
m=0

β(m), respectively, n ≥ 1 and with r0 = s0 = 0. Define

continuous time processes θ̄(r), γ̄(r), r ≥ 0 as follows:

θ̄(r) = rn+1 − r
rn+1 − rn

θn + r − rn
rn+1 − rn

θn+1, r ∈ [rn, rn+1],

γ̄(r) = rn+1 − r
rn+1 − rn

γn + r − rn
rn+1 − rn

γn+1, r ∈ [rn, rn+1].

For s ≥ 0, let θs(r), γs(r), r ≥ s denote the trajectories of (2.43)-
(2.44) with θs(s) = θ̄(s) and γs(s) = γ̄(s). Note that because of (2.44),
γs(r) = γ̄(s) ∀r ≥ s. Now (2.39)-(2.40) can be viewed as ‘noisy’ Euler
discretizations of the ODEs (2.43)-(2.44) when the time discretization
corresponds to {rn}. This is because (2.40) can be written as

γn+1 = γn + α(n)
(
β(n)
α(n)

(
g(θn, γn) +N2

n+1

))
,

and (2.42) implies that the term multiplying α(n) on the RHS above
vanishes in the limit. One can now show, see (Borkar, 2022), using a
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sequence of approximations involving the Gronwall inequality that for
any given T > 0, with probability one, sup

r∈[s,s+T ]
‖ θ̄(r) −θs(r) ‖ → 0

as s → ∞. The same is also true for sup
r∈[s,s+T ]

‖ γ̄(r) −γs(r) ‖ as well.

Further, using the time discretization {st} for the ODE (2.46), a similar
conclusion with regards to iteration (2.40) (and ODE (2.46)) can be
drawn following a continuous time trajectory that is obtained with the
iterates in (2.40) interpolated along the time line {sn} according to

γ̌(s) = sn+1 − s
sn+1 − sn

γn + s− sn
sn+1 − sn

γn+1, s ∈ [sn, sn+1].

The following is the main two-timescale convergence result (cf. (Borkar,
2022)).

Theorem 2.8. Under Assumptions A2.19–A2.24, with probability
one, (θn, γn)→ (µ(γ?), γ?) as n→∞.

Consider now the case that the (A2.24) is replaced by the more
general assumption:

A2.25. The ODE (2.46) has a set A of isolated local attractors that
are individually asymptotically stable.

Assumption A2.25 relaxes the requirement that the ODE (2.46) have
a unique globally asymptotically stable attractor by allowing instead
for a set A of isolated attractors. Theorem 2.8 in this case takes the
form:

Theorem 2.9. Under Assumptions A2.19–A2.23 and A2.25, with prob-
ability one, (θn, γn)→ {(µ(γ?), γ?)|γ∗ ∈ A} as n→∞.

The proof of this result follows in the same manner as Theorem 2.8.
The only difference is that since now one allows for multiple isolated
attractors for the ODE (A2.25), {γn} will converge to a possibly sample
path dependent local attractor γ∗ ∈ A, see (Borkar, 2022, Corollary
2.4). The claim in Theorem 2.9 will then follow. The above result will
be generalized further in the next section.
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2.8 Two-timescale Stochastic Recursive Inclusions

In this section, we present a generalization of the results in Section 2.7.
Specifically, we consider two-timescale recursions with both recursions
having set-valued maps. More importantly, we weaken the require-
ment of existence of unique globally asymptotically stable attractors
in Assumptions A2.23–A2.24 corresponding to the ODEs (2.45)–(2.46),
respectively. The results we present below are from (Ramaswamy and
Bhatnagar, 2016b).

Consider the following two-timescale recursion:

θn+1 = θn + α(n)(κn +N1
n+1), (2.47)

γn+1 = γn + β(n)(ζn +N2
n+1), (2.48)

where κn ∈ f(θn, γn) and ζn ∈ g(θn, γn), respectively, where f(θn, γn)
and g(θn, γn) are set-valued maps with f(θn, γn) ⊂ Rd and g(θn, γn) ⊂
Rl respectively. Further, the parameters that are getting updated, viz.,
θn ∈ Rd and γn ∈ Rl, ∀n ≥ 0 under the following assumptions:

A2.26. The set-valued maps f and g are Marchaud or Peano maps.

A2.27. The step-size sequences {α(n)} and {β(n)} satisfy

α(n), β(n) > 0, ∀n;∑
n

α(n) =
∑
n

β(n) =∞;∑
n

(α(n)2 + β(n)2) <∞;

lim
n→∞

β(n)
α(n) = 0.

A2.28. The sequences {N1
n} and {N2

n} are square integrable martingle
differences w.r.t. the common filtration Fn = σ(θm, γm, N1

m, N
2
m,m ≤

n), n ≥ 0. Further, for a given constant M > 0 and ∀n, we have

E[‖N i
n+1‖2 | Fn] ≤M(1 + ‖θn‖2 + ‖γn‖2, i = 1, 2.

A2.29. We have that sup
n
‖θn‖ <∞ and sup

n
‖γn‖ <∞ almost surely.
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A2.30. For each θ ∈ Rd, the DI

θ̇(t) ∈ f(θ(t), γ)

has a globally attracting set Bγ that is also Lyapunov stable. Moreover,
sup
θ∈Aγ

‖θ‖ ≤ K(1 + ‖γ‖). The set-valued map µ : Rl → {subsets of Rd}

defined by µ(γ) = Bγ is upper semi-continuous.

For each γ ∈ Rl, let

G(γ) 4= c̄o

 ⋃
θ∈µ(γ)

g(θ, γ)

 ,
denote the closed convex hull of the set

 ⋃
θ∈µ(γ)

g(θ, γ)

.
A2.31. The DI γ̇(t) ∈ G(γ(t)) has a globally attracting set B̌ that is
also Lyapunov stable.

The main result is then the following, see (Ramaswamy and Bhat-
nagar, 2016b)(Theorem 3.10):

Theorem 2.10. Under Assumptions A2.26–A2.31, the set of accu-
mulation points of the algorithm (2.47)-(2.48) is given by

{(θ, γ)| lim inf
n→∞

d((θn, γn), (θ, γ)) = 0} ⊂
⋃
γ∈B̌

{(θ, γ)|θ ∈ µ(γ)}.

(2.49)

Remark 2.8. In relation to Theorem 2.10, we note the following with
regards the role played by Assumption A2.31:

(i) In the absence of Assumption A2.31 (assuming the other assump-
tions continue to hold), the RHS of (2.49) will get replaced by the
much larger set

⋃
γ∈Rl
{(θ, γ)|θ ∈ µ(γ)}.

(ii) If Assumption A2.31 holds but B̌ is only a singleton, say {γ0},
then the RHS of (2.49) is simply {(θ, γ0)|θ ∈ µ(γ0)}.
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(iii) In addition to (ii) above, if µ(γ0) is the only point in the set, i.e.,
is a singleton, then the RHS of (2.49) is (µ(γ0), γ0).

2.9 Exercises

Exercise 1. Let h(θ(1), θ(2)) =
[
2θ(1) + 2θ(2) + 5
2θ(1) + 3θ(2) + 7

]
.

Answer the following:

(a) Find θ∗ such that h(θ∗) = 0.

(b) Consider a root-finding algorithm with the following update itera-
tion:

θn+1 = θn − a(n)h(θn). (2.50)

Specify a value for a(n) that ensures θn → θ∗ as n→∞. Justify
your answer.

(c) Suppose h is not directly observable. Instead, for any θ, we have
a noisy observation ĥ(θ) that satisfies

E
[
ĥ(θ) | x

]
= h(θ) and E

[∥∥∥ĥ(θ)
∥∥∥2
]
≤ σ2.

Specify a stochastic approximation variant of (2.50) and establish
asymptotic convergence of the stochastic approximation iterate
to θ∗.

Exercise 2. Recall the linear stochastic approximation algorithm from
Section 2.2.5:

θn+1 = θn + a(n) (An+1θn + bn+1) ,

where the step size a(n) satisfies
∑
n

a(n) = ∞, and
∑
n

a(n)2 < ∞.

Further, An and bn are matrices and vectors that satisfy

E [An+1 | θ1, . . . , θn] = A,E [bn+1 | θ1, . . . , θn] = b,

where A is a negative-definite matrix. Moreover, E
[
‖(An −A)‖2

]
≤ C1

and E
[
‖bn − b‖2

]
≤ C2. Use the Kushner-Clark lemma to establish

asymptotic convergence of θn?



66 Stochastic approximation

Exercise 3. Consider the following update iteration:

θ(n+1)L = θnL +
L−1∑
i=0

a(nL+ i) (h(θnL) +MnL+i) , (2.51)

where a(n) is a random step size, L > 1 is a given integer, {MnL+i, n ≥
0} is a martingale difference sequence. Suppose the step sizes satisfy∑
n

a(n) =∞ a.s. and
∑
n

a(n)2 <∞ a.s.

Assume h is Lipschitz. Prove convergence of the stochastic approxi-
mation scheme given above, while making any additional assumptions
as required.

2.10 Bibliographic remarks

Stochastic approximation has a long history, starting with the seminal
work of Robbins and Monro (Robbins and Monro, 1951), who provided
a stochastic root finding scheme. Subsequently, (Kiefer and Wolfowitz,
1952) analyzed a zeroth-order stochastic gradient scheme. For a textbook
introduction, the reader is referred to (Borkar, 2022; Kushner and Yin,
2003). The main convergence result in Section 2.3 is the well-known
Kushner Clark lemma, see (Kushner and Clark, 1978), while the Markov
noise case is handled in (Borkar, 2022; Ramaswamy and Bhatnagar,
2019). The convergence result for two timescale stochastic approximation
is based on Theorem 8.1 of (Borkar, 2022) and its generalization is
based on (Ramaswamy and Bhatnagar, 2016b). The reader may refer
to (Karmakar and Bhatnagar, 2018) for an analysis of two-timescale
stochastic approximation with Markov noise. Finally, the reader is
referred to (Benaïm et al., 2005) for a detailed introduction to one-
timescale stochastic recursive inclusions and their convergence analysis
using differential inclusions. Finally, a detailed convergence analysis of
two-timescale stochastic recursive inclusions with non-ergodic Markov
noise appears in (Yaji and Bhatnagar, 2020).

On the applications side, reinforcement learning is popular and
(Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 2018; Bertsekas, 2019;
Powell, 2021; Meyn, 2022) provide textbook introductions, see also
(Bertsekas, 2012) for an extensive treatment on approximate dynamic
programming, the backbone of modern RL.
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Simultaneous perturbation based approaches in conjunction with
reinforcement learning have been found to perform exceedingly well
on several applications. For instance, (Bhatnagar and Kumar, 2004)
presents and analyses an actor-critic algorithm with a temporal differ-
ence critic and an actor based on simultaneous perturbation gradient
estimates. Further, an application on the available bit rate (ABR) ser-
vice in asynchronous transfer mode (ATM) networks is studied. In
(Bhatnagar and Babu, 2008) and (Bhatnagar and Lakshmanan, 2016),
actor-critic style RL algorithms are developed to mimic q-learning but
where the critic is updated on a slower timescale as compared to the
actor. The algorithm in (Bhatnagar and Babu, 2008) is for the look-up
table case while the algorithm in (Bhatnagar and Lakshmanan, 2016)
caters to the case with function approximation. The actor recursion in
each case involves SPSA based gradient estimates. These algorithms
are also studied on problems of routing in communication networks.
The algorithm in (Bhatnagar and Lakshmanan, 2016) has further been
explored in (Prashanth et al., 2014) for a problem of intrusion detec-
tion in adhoc wireless sensor networks. Further, in an application on
vehicular traffic control, (Prashanth and Bhatnagar, 2012) incorporates
Q-learning with a graded feedback control where the threshold levels
are tuned using an SPSA based algorithm on a slower timescale.

For quantile estimation and CVaR estimation using stochastic ap-
proximation, see (Bardou et al., 2009). Stochastic approximation is
popular for estimating other risk measures, e.g., utility-based shortfall
risk (Hegde et al., 2021; Dunkel and Weber, 2010).



3
Gradient estimation

In this chapter, we introduce the simultaneous perturbation trick for
gradient estimation, given noisy measurements from a zeroth-order
oracle. These estimates are not unbiased, but feature a parameter that
controls the bias, usually at the cost of variance. We discuss several
popular gradient estimates in the literature, through a unified estimator.
These estimates form the basis for a stochastic gradient algorithm,
which is presented in Algorithm 1.

Algorithm 1: Zeroth-order stochastic gradient (ZSG) algo-
rithm

Input: Initial point θ0 ∈ Rd, iteration limit m, step sizes
{ak}k≥1.

for k = 1, . . . ,m do
Form the gradient estimate ∇̂f(θk) using one or more
function measurements;

Perform the following stochastic gradient descent update:
θk+1 = θk − ak∇̂f(θk).

end for
Output: θm

68
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In the following section, we present schemes for devising ∇̂f(·) with
an estimation error (bias) that can be made to vanish asymptotically. For
the sake of analyzing the bias and variance properties of the gradient
estimators in this chapter, we shall consider two classes of smooth
functions, as given below. For a detailed introduction to smoothness,
the reader is referred to Appendix D.

Definition 3.1. Consider a function f : Rd → R.

(i) f is L-smooth if for some constant L > 0,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd.

(ii) f ∈ C3 if f is three times continuously differentiable with∣∣∣∇3
i1i2i3f(θ)

∣∣∣ < α0 <∞, for i1, i2, i3 = 1, . . . , d and for all θ ∈ Rd.

Here ∇3f(θ) = ∂3f(θ)
∂θT∂θT∂θT

denotes the third derivative of f at
θ, and ∇3

i1i2i3f(θ) denotes the (i1i2i3)th entry of ∇3f(θ), for
i1, i2, i3 = 1, . . . , d.

3.1 Finite differences

As a gentle start, consider a noise-free zeroth-order oracle, as illustrated
below.

θ Noise-free oracle f(θ)

In this setting, one could form an estimate ∇̂f(θ) using d+ 1 queries
to the oracle above as follows:

∇̂if(θ) = 1
δ

(f(θ + δei)− f(θ)) , i = 1, . . . , d . (3.1)

How good an estimate is (3.1)? Assuming f ∈ C3, i.e., f is three-times
continuously differentiable, we can employ Taylor series expansion of f
as follows1:

f(θ + δei) = f(θ) + δ∇f(θ)>ei + δ2

2 e>i ∇2f(θ)ei +O(δ3),

1For the sake of simplicity, we have chosen to hide the constants through a O(δ3)
term. The latter constants can be made precise, as in Proposition 3.1 below.
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leading to the estimation error:∥∥∥∇̂f(θ)−∇f(θ)
∥∥∥ = O(δ).

Using 2d queries to the oracle mentioned above, we define a two-sided
variant of the estimate in (3.2) below.

∇̂if(θ) = 1
2δ (f(θ + δei)− f(θ − δei)) , i = 1, . . . , d. (3.2)

Employing Taylor-series expansions as before, leads to the following
bound on the estimation error:∥∥∥∇̂f(θ)−∇f(θ)

∥∥∥ = O(δ2).

Thus, using a two-sided estimate reduced the error to O(δ2), while the
number of sample measurements went up to 2d from d+ 1.

The two estimates presented in (3.1) and (3.2) fall under the realm
of finite difference stochastic approximation (FDSA), and such schemes
can be extended to handle noise-corrupted function observations, as we
show next. As an aside, a major disadvantage with FDSA estimates is
the high measurement cost, since O(d) calls to the oracle are needed to
form an estimate.

FDSA with noisy measurements

We consider a zeroth-order oracle, which outputs noisy observations of
the objective at any query point, as illustrated below.

θ Noisy oracle f(θ) + ξ

Zero mean

Consider the following two-sided estimate, formed using noisy function
measurements2:

∇̂if(θ) = 1
2δ
{
f(θ + δei) + ξ+

i − (f(θ − δei) + ξ−i )
}
, i = 1, . . . , d.

2Here and in what follows, ξ+ and ξ− are real valued r.v.s and this notation is
not be confused with positive and negative parts of a measurable function (Royden
and Fitzpatrick, 2010).
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Suppose that E
[
ξ+ − ξ−

]
= 0 and also that E

[
ξ±

2] ≤ σ2 <∞. Then,
assuming f ∈ C2, one can establish the near-unbiasedness of the estimate
above using Taylor-series expansions as follows:

f(θ ± δei) = f(θ)± δ∇f(θ)>ei + δ2

2 e>i ∇2f(θ)ei +O(δ3).

⇒ E(∇̂if(θ)) = 1
2δ (f(θ + δei)− f(θ − δei))

⇒
∥∥∥E∇̂f(θ)−∇f(θ)

∥∥∥ = O(δ2).

With 2d queries, an FDSA estimate would be O(δ2) from the true
gradient, even in the case when function measurements are noisy.

Next, we will present a series of estimates that achieve the same level
of accuracy as FDSA, but with only two measurements, irrespective of
the dimension d.

3.2 Simultaneous perturbation method

FDSA perturbs co-ordinates one-at-a-time, leading to 2d queries to the
oracle. The number of queries get reduced by randomly perturbing all
co-ordinate directions simultaneously. This is the idea behind the SPSA
scheme proposed by (Spall, 1992), which we describe below.

Let y+ = f(θ + δ∆) + ξ+ and y− = f(θ − δ∆) + ξ−, where
∆ = (∆1, . . . ,∆d)T is a d-vector of independent, symmetric, ±1-valued
Bernoulli r.v.s, i.e., ∆i = +1 w.p. 1/2 and −1 w.p. 1/2, for i = 1, . . . , d.
It is important to mention that (Spall, 1992) provides general conditions
on the perturbation distribution and symmetric Bernoulli is a popular
special case that we also consider here for simplicity. The gradient
estimate here is given as follows:

∇̂if(θ) =
[
y+ − y−

2δ∆i

]
, i = 1, . . . , d. (3.3)

In expectation, the estimate defined above is nearly unbiased, and this
can be argued as follows: Assuming E

[
ξ+ − ξ−

]
= 0,

E
[
∇̂if(θ)

]
= E

[
f(θ + δ∆)− f(θ − δ∆)

2δ∆i

]
. (3.4)
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Here and in what follows, we assume that θ is given, and the expectation
is over other random terms.

Next, assuming f ∈ C3, and employing Taylor series expansions, we
obtain

f(θ ± δ∆) = f(θ)± δ∆T∇f(θ) + δ2

2 ∆T∇2f(θ)∆ +O(δ3). (3.5)

From the above, it is easy to see that

f(θ + δ∆)− f(θ − δ∆)
2δ∆i

−∇if(θ) =
d∑

j=1,j 6=i

∆j

∆i
∇jf(θ)

︸ ︷︷ ︸
(I)

+O(δ2).

In expectation given θ, term (I) above is zero, since ∆l, l = 1, . . . , d are
independent, symmetric, Bernoulli ±1-valued r.v.s. Hence,

E
[
∇̂if(θ)

]
= ∇if(θ) +O(δ2).

From the above, it is easy to see that the expected value of the estimate
(3.3) converges to the true gradient ∇f(θ) in the limit as δ → 0. Thus,
if one uses a gradient estimate as in (3.3) in a stochastic approximation
algorithm, and lets δ → 0 slowly enough, the overall scheme will converge
to local minima of the function f . This will be made precise in the next
chapter.

We demonstrated the simultaneous perturbation trick through the
SPSA scheme, which employed independent symmetric Bernoulli r.vs for
random perturbations. As mentioned before, the trick is more generally
valid and is not restricted to this choice of random perturbations alone.
Furthermore, this trick can be used to estimate the Hessian, and not
just the gradient, as we illustrate later.

In the next section, we present a unified gradient estimate that
covers several schemes in the literature.

3.2.1 A unified estimate

Let y+ = f(θ+δU)+ξ+, and y− = f(θ−δU)+ξ−. Using these function
values, we form the gradient estimate as follows:
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∇̂f(θ) =
(
y+ − y−

2δ

)
V. (3.6)

The estimate defined above can be specialized to cover several popular
simultaneous perturbation-based gradient estimates, and we list some
of these below.

• Setting U ∼ N (0, Id), where N (0, Id) denotes the d-dimensional
standard Gaussian vector, and V = U , we obtain the smoothed
functional scheme proposed by (Styblinski and Tang, 1990) (see
also (Katkovnik and Kulchitsky, 1972) for a one-sided variant).
The latter scheme has been refined by (Polyak and Tsybakov,
1990), and also studied by (Dippon, 2003; Bhatnagar and Borkar,
2003; Bhatnagar, 2007; Nesterov and Spokoiny, 2017).

• Setting Ui to be symmetric ±1-valued Bernoulli r.v.s and V = U ,
we obtain the SPSA gradient estimate, which was defined earlier
in (3.3).

• U ∼ Unif(SN ), i.e., U is chosen uniformly at random on the
surface of a d-dimensional unit sphere, and with V = dU , we
obtain the random direction stochastic approximation (RDSA)
scheme proposed by (Kushner and Clark, 1978). A variant of the
RDSA scheme with other choices for random perturbations is
discussed next.

• Setting Ui to be a uniformly distributed r.v. in [−η, η], and V =
3
η2Ui, leads to the 1RDSA-Unif variant of (Prashanth et al., 2017).
On the other hand, setting Ui to be an asymmetric Bernoulli r.v.,
i.e., taking values −1 and 1+ε with probabilities 1 + ε

2 + ε
and 1

2 + ε
,

respectively, and Vi = 1
1 + ε

Ui leads to the 1RDSA-Asymber
variant of (Prashanth et al., 2017). Here ε > 0 is a constant,
usually set to a small value.

We make the following assumptions for analyzing the unified esti-
mator presented above:
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A3.1. Let U, V be random d-vectors satisfying E
[
V U>

]
= I and

E
[
‖V ‖2

]
<∞.

A3.2. The noise factors ξ± in (3.6) satisfy

E[ξ+ − ξ−|U, V ] = 0, and E[(ξ+ − ξ−)2|U, V ] ≤ σ2 <∞ . (3.7)

A3.3. The objective f satisfies

sup
θ∈Rd

E[f(θ ± δU)2] ≤ B <∞ . (3.8)

The result below provide bias and variance bounds for the unified
estimate presented above.

Proposition 3.1. Assume A3.1–A3.3, E
[
‖V ‖ ‖U‖3

]
<∞, and also

that f ∈ C3, with
∣∣∣∇3

i1i2i3f(θ)
∣∣∣ < B̃ < ∞, for i1, i2, i3 = 1, . . . , d

and for all θ ∈ Rd. Then, the gradient estimate defined in (3.6)
satisfies the following bounds for any given θ:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ
2, and

E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 ,

where C1 =
B̃E

[
‖V ‖ ‖U‖3

]
6 , and C2 = E

[
‖V ‖2

] (
σ2 +B2

)
.

From the result above, it is apparent that the sensitivity parameter δ
controls the bias-variance tradeoff, i.e., small values of δ imply a low
bias and high variance, while large values of δ implies high bias and low
variance in the gradient estimate.

Proof. Notice that

E[∇̂f(θ)] = E
[
V
f(θ + δU)− f(θ − δU)

2δ

]
,

since E
[
V

(
ξ+ − ξ−

2δ

)]
= 0 from A3.2.
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Since f ∈ C3, we have the following Taylor series expansion of f
around θ:

f(θ ± δU) = f(θ)± δ UT∇f(θ) + δ2

2 UT∇2f(θ)U

± δ3

6 ∇
3f(θ̃±)(U ⊗ U ⊗ U), (3.9)

where ⊗ denotes the Kronecker product and θ̃+ (resp. θ̃−) is on the line
segment between θ and (θ + δU) (resp. (θ − δU)).

Now,

V
f(θ + δU)− f(θ − δU)

2δ

= V U
T ∇f(θ) + δ2

12V
(
∇3f(θ̃+) +∇3f(θ̃−)

)
(U ⊗ U ⊗ U).

(3.10)

Taking expectations of both sides above, using E [V UT] = I, |∇3f(θ̃±)| <
B̃, and |∇3f(θ̄)(U ⊗ U ⊗ U)| ≤ B̃ ‖U‖3 for any θ̄, we obtain∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1 δ
2 , where C1 =

B̃E
[
‖V ‖ ‖U‖3

]
6 .

Next, we prove the second claim concerning the variance of ∇̂f(θ).
Notice that
E
∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
≤ E

∥∥∥∇̂f(θ)
∥∥∥2

= E

‖V ‖2
(ξ+ − ξ−

2δ

)2

+ 2
(
ξ+ − ξ−

2δ

)(
f(θ + δU)− f(θ − δU)

2δ

)

+
(
f(θ + δU)− f(θ − δU)

2δ

)2))

= E

‖V ‖2(ξ+ − ξ−

2δ

)2
+ 4E

(
‖V ‖2

(
f(θ + δU)− f(θ − δU)

2δ

)2)
(3.11)

≤ C2
δ2 ,

where C2 = E
[
‖V ‖2

] (
σ2 +B2

)
. The equality in (3.11) follows from

E
[
ξ+ − ξ− |U, V

]
= 0.
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3.2.2 The convex case

We now analyze the bias and variance properties of the estimator
in (3.6) under a convex objective f . In this case, we do not require
higher-order smoothness, and instead it is enough to assume first-order
smoothness.

Proposition 3.2. Assume A3.1–A3.3, E[‖V ‖ ‖U‖2] <∞, and also
that the function f is convex and L-smooth, as specified in Defini-
tion 3.1. Then the gradient estimate defined in (3.6) satisfies the
following bounds for any given θ:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ, and E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 ,

where C1 ,
L

2 E[‖V ‖ ‖U‖2] and C2 is as specified in Proposition 3.1.

Proof. For any convex function f with an L-Lipschitz gradient, for any
δ > 0, it holds that

〈∇f(θ), δu〉
2δ ≤ f(θ + δu)− f(θ)

2δ ≤〈∇f(θ), δu〉+ (L/2) ‖δu‖2

2δ .

Using similar inequalities for f(θ − δu), we obtain

〈∇f(θ), u〉 − Lδ ‖u‖2

2 ≤ f(θ + δu)− f(θ − δu)
2δ ≤〈∇f(θ), u〉+ Lδ ‖u‖2

2 .

Letting φ(θ, δ, u) := 1
δ

(
f(θ + δu)− f(θ − δu)

2δ − 〈∇f(θ), u〉
)
, we get

|φ(θ, δ, u)| ≤L2 ‖u‖
2 .

Using E
[
V U>

]
= I and A3.2, we obtain

E[∇̂f(θ)] = E
[
V

(
f(θ + δU)− f(θ − δU)

2δ

)]
= E

[
V U>∇f(θ) + δφ(θ, δ, U)V

]
= ∇f(θ) + δφ̂(θ, δ),
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where φ̂(θ, δ) satisfies
∥∥∥φ̂(θ, δ)

∥∥∥ ≤ C1 = L

2 E[‖V ‖ ‖U‖2]. The first claim
concerning the bias of the gradient estimate follows.

The bound on the variance of the gradient estimate in (3.6) follows
in a similar manner to the proof of Proposition 3.1.

3.3 Variants

3.3.1 One-point gradient estimate

The gradient estimate presented earlier required two function evalu-
ations. In this section, we describe a variant that requires only one
function evaluation. Let y = f(θ + δU) + ξ. Using this function value,
we form a gradient estimate as follows:

∇̂f(θ) = y

δ
V, (3.12)

where U, V are random perturbations as in the case of two-point estimate
(3.6), and ξ is a zero-mean noise r.v., i.e., satisfying E[ξ|V ] = 0.

Proposition 3.3. Assume A3.1, A3.3, E [V ] = 0, and E[ξ|V ] = 0.
Further, assume that U is symmetrically distributed, and V is an
odd function of U . Then, for f ∈ C3, the gradient estimate defined
in (3.12) satisfies∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ
2, and E

[∥∥∥∇̂f(θ)− E
[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 .

The O(δ2) bound on the bias above is comparable to the one obtained
for the two-point estimate (3.6) in Proposition 3.1. However, a closer
inspection of the proof reveals that the first and second term in the
Taylor expansion (see (3.9)) cancel out in the case of the two-point
estimate, while no such cancellation occurs in the one-point case. Instead,
in the latter case, the corresponding Taylor terms turn out to be mean
zero (see (3.13) in the proof below). Hence, the two-point estimate
is preferable. Moreover, empirically the two-point estimate usually
outperforms its one-point counterpart, as noted in (Spall, 1997).
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Proof. Using E [ξ|V ] = 0, we have

E[∇̂f(θ)] = E
[
V

(
f(θ + δU)

δ

)]
.

By Taylor’s expansion in (3.9), we obtain

E
[
V
f(θ + δU)

δ

]
= E

[
V
f(θ)
δ

]
+ E

[
V U

T ∇f(θ)
]

+ E
[
δ

2 V U
T∇2f(θ)U

]
+ E

[
δ2

6 V∇
3f(θ̃+)(U ⊗ U ⊗ U)

]

= ∇f(θ) + E
[
δ2

6 V∇
3f(θ̃+)(U ⊗ U ⊗ U)

]
. (3.13)

The final equality above follows from the facts that E [V ] = 0, E [V UT] =
I and for any i, j = 1, . . . , d, E[ViU2

j ] = 0 since V is a deterministic odd
function of U , with U having a symmetric distribution. Using the fact
that |∇3f(θ̃+)(U ⊗ U ⊗ U)| ≤ B̃ ‖U‖3, we obtain

∥∥∥E [∇̂f(θ)
]
−∇f(θ)

∥∥∥ ≤ C1 δ
2 , where C1 =

B3E
[
‖V ‖ ‖U‖3

]
6 .

The proof of the second claim concerning the variance of the estimate
∇̂f(θ) follows using arguments similar to those used in the proof of
Proposition 3.1.

3.3.2 Deterministic perturbations

So far, we have shown that one can use random perturbations to
construct a gradient estimate with controllable bias. In this section, we
show that one can achieve similar bias control through a deterministic
perturbation sequence. To illustrate, we demonstrate (i) a permutation
matrix-based perturbation sequence in the context of an RDSA scheme;
and (ii) a Hadamard matrix-based perturbation sequence in an SPSA-
type gradient estimate.
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Permutation matrices for RDSA

The analysis of the biasedness of the unified estimator in (3.6) relied
on suitable Taylor’s expansions to arrive at the following:

V

[
f(θ + δU)− f(θ − δU)

2δ

]
= V UT∇f(θ) +O(δ2).

The random perturbations U, V satisfying EV UT = Id resulted in a
nearly unbiased estimator (see Proposition 3.1). Now, if U, V are chosen
in a deterministic fashion, such that V UT sums to identity over a loop,

i.e.,
τ∑

m=0
VmU

T
m = Id for some τ , then ∇̂f(θ) would be nearly unbiased,

in the spirit of the guarantees in Proposition 3.1. We present below a
deterministic perturbation scheme, where we loop through the rows of
a permutation matrix.

A permutation matrix is a matrix whose rows are the rows of an
identity matrix in some order. For instance, the permutation matrices
in two dimension are [

1 0
0 1

]
and

[
0 1
1 0

]
.

In three dimensions, there are 6 permutation matrices. In general, there
are d! permutation matrices in dimension d.

We now present an RDSA-style gradient estimate using permutation
matrix-based deterministic perturbations below.

∇̂f(θ) =
d−1∑
m=0

∆m

[
y+
m − y−m
2δm

]
. (3.14)

In the above, y+
m = f(θ + δm∆m) + ξ+

m and y−m = f(θ − δm∆m) + ξ−m,
where ξ±m is the measurement noise. Further, ∆m is the mth row of the d-
dimensional permutation matrix. Table 3.1 illustrates the perturbations
dm used in (3.14), for d = 2 and d = 3. In a nutshell, the sequence
shown in Table 3.1 loops through the rows of the identity matrix in
some order.
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Table 3.1: Illustration of the permutation matrix-based deterministic perturbation
sequence construction for two-dimensional and three-dimensional settings.

(a) Case d = 2

Inner loop D1
2 D2

2
counter m

0 1 0
1 0 1

(b) Case d = 3

Inner loop D1
3 D2

3 D3
3

counter m

0 0 1 0
1 0 0 1
2 1 0 0

Hadamard matrices for SPSA

A Hadamard matrix is a square matrix with entries ±1 that satisfies
HTH = mIm, where Im denotes the m×m identity matrix. Further, a
Hadamard matrix is said to be normalized if all the elements of its first
row and column are 1. A simple and systematic way of constructing
normalized Hadamard matrices of order m = 2k is as follows:

For k = 1,

H2 =
[

1 1
1 −1

]
,

and for general k > 1,

H2k =
[
H2k−1 H2k−1

H2k−1 −H2k−1

]
.

Let P = 2dlog2(d+1)e, where, as mentioned before, d is the param-
eter dimension. This implies P ≥ d + 1. Now construct a normal-
ized Hadamard matrix HP of order P using the above procedure. Let
h(1), . . . , h(d) be any d columns other than the first column of HP . The
first column is not considered because all elements in the first column
are 1, while all the other columns have an equal number of +1 and −1
elements. The latter property aids in cancellation of some of the bias
terms. Now form a new matrix H̃P of order P × d with h(1), . . . , h(d)
as its columns. Let 4̃(k), k = 1, . . . , P denote the rows of H̃P . The
perturbation sequence {4(m)} is now generated by cycling through the
rows of H̃P , i.e.,

4(n) = 4̃(n mod P + 1),∀n ≥ 0.
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Remark 3.1. Under assumptions similar to those used in Proposition
3.1, it can be shown that the gradient estimate formed using either per-
mutation matrices for RDSA or Hadamard matrices for SPSA satisfies
the following inequality:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ
2, and E

[∥∥∥∇̂f(θ)− E
[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 .

3.3.3 Gaussian smoothing

In this section, we analyze the estimation error of a special case of the
unified estimate with Gaussian perturbations, using the technique from
(Nesterov and Spokoiny, 2017).

Let y+ = f (θ + δ∆) + ξ+ and y = f (θ) + ξ−, where ∆ is a d-
dimensional Gaussian vector composed of standard normal r.v.s., i.e.,
∆ ∼ N (0, Id), and ξ+, ξ− are noise factors. Then, the “Gaussian smooth-
ing” gradient estimate is formed as follows:

∇̂f(θ) = ∆
[
y+ − y
δ

]
, (3.15)

where ∆ is a d-dimensional Gaussian vector composed of standard
normal r.v.s., i.e., ∆ ∼ N (0, Id).

Proposition 3.4. Assume A3.2, A3.3 and that f is L-smooth (see
3.1). The estimate defined in (3.15) satisfies∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ, and (3.16)

E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 , (3.17)

for some constants C1, C2 > 0.

Proof. For any θ ∈ Rd, define

fδ(θ) = 1
(2π)

d
2

∫ ∞
−∞

f(θ + δu) exp
(
−‖u‖

2

2

)
du

= 1
(2π)

d
2 δd

∫ ∞
−∞

f(y) exp
(
−‖y − θ‖

2

2δ2

)
dy.
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The function fδ denotes the smoothed version of the objective f , and is
obtained by a convolution of f with Gaussian density. Notice that

∇fδ(θ) = 1
(2π)

d
2 δd+2

∫ ∞
−∞

f(y) exp
(
−‖y − θ‖

2

2δ2

)
(y − θ)dy

= 1
(2π)

d
2 δ

∫ ∞
−∞

f(θ + δu) exp
(
−‖u‖

2

2

)
u du

(Letting δu = y − θ)

= 1
(2π)

d
2

∫ ∞
−∞

(
f(θ + δu)− f(θ)

δ

)
exp

(
−‖u‖

2

2

)
u du, (3.18)

where the final equality follows by using
∫ ∞
−∞

exp
(
−‖u‖

2

2

)
u du = 0.

Also,

∇fδ(θ) = 1
(2π)

d
2

∫ ∞
−∞

f(θ)− f(θ − δu)
δ

exp
(
−‖u‖

2

2

)
u du. (3.19)

Using (3.18) and (3.19), we obtain

∇fδ(θ) = 1
(2π)

d
2

∫ ∞
−∞

f(θ + δu)− f(θ − δu)
2δ exp

(
−‖u‖

2

2

)
u du.

Notice that
1

(2π)
d
2

∫ ∞
−∞
〈∇f(θ), u〉 exp

(
−‖u‖

2

2

)
u du

=
d∑
i=1
∇if(θ) 1

(2π)
d
2

∫ ∞
−∞

ui exp
(
−‖u‖

2

2

)
u du

=
d∑
i=1
∇if(θ) 1

(2π)
d
2

∫ ∞
−∞

(
u1ui, . . . , ui−1ui, u

2
i , ui+1ui, . . . , uiud

)
× exp

(
−‖u‖

2

2

)
du

=
d∑
i=1
∇if(θ) 1

(2π)
d
2

∫ ∞
−∞

u2
i exp

(
−‖u‖

2

2

)
du

=
d∑
i=1
∇if(θ) 1

(2π)
d
2

∏
j 6=i

∫ ∞
−∞

exp
(
−
u2
j

2

)
duj

∫ ∞
−∞

u2
i exp

(
−
u2
j

2

)
dui
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= ∇f(θ), (3.20)

where the penultimate equality uses
∫ ∞
−∞

ui uj exp
(
−‖u‖

2

2

)
du = 0 for

i 6= j, which holds owing to the symmetry of the Gaussian distribution.
Using (3.20), we obtain

‖∇fδ(θ)−∇f(θ)‖

≤ 1
(2π)

d
2 δ

∫ ∞
−∞
|f(θ + δu)− f(θ)− δ〈∇f(θ)), u〉| ‖u‖ exp

(
−‖u‖

2

2

)
du

≤ 1
(2π)

d
2

δL

2

∫ ∞
−∞
‖u‖3 exp

(
−‖u‖

2

2

)
du

≤ δL(d+ 3)
3
2

2 , (3.21)

where the penultimate inequality follows by using the following inequal-
ity

|f(y)− f(θ)− 〈∇f(θ)), y − θ〉| ≤ 1
2L ‖θ − y‖

2 ,

whereas the last inequality is a straightforward moment calculation for
a multivariate Gaussian, cf. (Nesterov and Spokoiny, 2017, Lemma 1).

The claim in (3.16) concerning the bias of the Gaussian smoothing
estimator now follows by combining (3.21) with A3.2.

The claim in (3.17) follows in a similar manner as in the proof of
Proposition 3.1.

We collect a few useful facts about Gaussian smoothing in the follow-
ing lemma. These facts are extracted from the proof of Proposition 3.4
above.

Lemma 3.1. Suppose f is L-smooth. Let fδ(θ) denote the smoothed
functional of f , which is defined as follows: For any θ ∈ Rd,

fδ(θ) = 1
(2π)

d
2

∫ ∞
−∞

f(θ + δ∆) exp
(
−‖∆‖

2

2

)
d∆,

where ∆ denotes a standard Gaussian vector.
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The gradient of the fδ(·) is given by

∇fδ(θ) = 1
(2π)

d
2

∫ ∞
−∞

f(θ + δ∆)− f(θ − δ∆)
2δ exp

(
−‖∆‖

2

2

)
∆ d∆.

Further, the smoothed functional fδ is L-smooth and satisfies

‖∇fδ(θ)−∇f(θ)‖ ≤ δL(d+ 3)
3
2

2 .

3.3.4 Common random numbers

Consider the classic simulation optimization setting, where the objective
is f(θ) = E(F (θ, ψ)), with ψ denoting the noise element, and F (·, ·)
the sample performance. Notice that the observation noise is ξ =
F (θ, ψ)− f(θ), and one usually assumes that ξ is zero-mean, and i.i.d.
when one obtains multiple function measurements.

In this section, we consider a special case where ψ can be kept fixed
across function measurements. For instance, one could obtain function
measurements F (θ1, ψ) and F (θ2, ψ). More precisely,

f(θ) =
∫
F (θ, ψ)Pψ(dψ) , (3.22)

where ψ ∈ R is chosen by the algorithm. To reiterate, the algorithm
can call the zeroth-order oracle by selecting both the input parameter
θ and noise element ψ. In simulation optimization problems, where the
function measurements are obtained from a computer simulation, and
the source of randomness is common random numbers, one has the
luxury of controlling the noise by initializing the seed. Thus, setting the
same seed for two different input parameters would amount to having
the same set of random numbers across simulations.

In this specialized setting, we now construct a two-point gradient
estimate with the same noise element in both function measurements.
Let y+ = F (θ + δU, ψ), and y− = F (θ − δU, ψ). Using these function
values, we form the gradient estimate as follows:
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∇̂f(θ) =
(
y+ − y−

2δ

)
V. (3.23)

We shall establish now that the additional ‘common random noise’
structure allows the algorithm to reduce the variance of the gradient
estimates, under the following additional smoothness assumption:

A3.4. The function F has a L-Lipschitz continuous gradient a.s. for
any ψ, i.e.,

‖∇F (x, ψ)−∇F (y, ψ)‖ ≤ L ‖x− y‖ a.s.

Proposition 3.5. Assume A3.1, A3.3, A3.4, and also that the func-
tion f is convex. Then the gradient estimate defined in (3.23)
satisfies the following bounds for any given θ:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ, and (3.24)

E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C2 + C3δ

2. (3.25)

Proof. As in the proof of Proposition 3.2, for any convex function h

with an L-Lipschitz gradient, for any δ > 0, we have

〈∇h(θ), δu〉
2δ ≤ h(θ + δu)− h(θ)

2δ ≤〈∇h(θ), δu〉+ (L/2) ‖δu‖2

2δ .

Using similar inequalities for h(θ − δu), we obtain

〈∇h(θ), u〉 − Lδ ‖u‖2

2 ≤ h(θ + δu)− h(θ − δu)
2δ ≤〈∇h(θ), u〉+ Lδ ‖u‖2

2 .

Letting φ(θ, δ, u) := 1
δ

(
h(θ + δu)− h(θ − δu)

2δ − 〈∇h(θ), u〉
)
, we get

|φ(θ, δ, u)| ≤L2 ‖u‖
2 .

Using E
[
V U>

]
= I, we obtain

E
[
V

(
h(θ + δU)− h(θ − δU)

2δ

)]
=E

[
V U>∇h(θ) + δφ(θ, δ, U)V

]
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=∇h(θ) + δφ̂(θ, δ),

where φ̂(θ, δ) satisfies
∥∥∥φ̂(θ, δ)

∥∥∥ ≤ L

2 E[‖V ‖ ‖U‖2].
Applying the above expression to F (·, ψ) and using (3.23), we have

E
[
∇̂f(θ)

]
= ∇F (θ, ψ) + δφ̂(θ, δ) a.s.,

where φ̂(θ, δ) satisfies
∥∥∥φ̂(θ, δ)

∥∥∥ ≤ L

2 E[‖V ‖ ‖U‖2].
A3.4 together with dominated convergence theorem leads to

E[∇F (θ, ψ)] = ∇f(θ). Using this fact, we obtain∥∥∥E [∇̂f(θ)
]
−∇f(θ)

∥∥∥
=
∥∥∥∥E [V (

f(θ + δU)− f(θ − δU)
2δ

)
− V U>∇f(θ)

]∥∥∥∥
≤ δ ‖E[V φ(θ, δ, U)]‖

≤ δL

2 E[‖V ‖ ‖U‖2],

and the claim for the bias follows by setting C1 = L

2 E[‖V ‖ ‖U‖2].

We now bound E
[∥∥∥∇̂f(θ)

∥∥∥2
]
as follows:

E
∥∥∥∇̂f(θ)

∥∥∥2
= E

∥∥∥V (δφ(θ, δ, U) + U>∇f(θ)
)∥∥∥2

≤ E
[(
‖V UT∇f(θ)‖+ δL

2 ‖V ‖ ‖U‖
2
)2]

≤ 2E
[
‖V UT∇f(θ)‖2

]
+ δ2L2

2 E
[
‖V ‖2 ‖U‖4

]
,

and the claim for the variance follows by setting

C2 = 2B2
1 + L2

2 E
[
‖V ‖2 ‖U‖4

]
with B1 = sup

θ
‖∇f(θ)‖.

3.3.5 Gradient estimation with truncated Cauchy distribution

One can also use the truncated Cauchy distribution as the smoothing
density in smoothed functional algorithms as shown and analyzed
recently in (Mondal et al., 2024). We first describe the truncated Cauchy
distribution below.
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Definition 3.2. A random variable u is said to follow the truncated (to
the δ-sphere) Cauchy distribution with mean vector zero and covariance
matrix Σ = δ2Id×d if u has the following PDF:

hδ(u) =
Γ(d+1

2 )
π
d+1

2 c1δd(1 + ‖u‖2
δ2 )

d+1
2

for ‖u‖ ≤ δ, (3.26)

with hδ(u) = 0 for ‖u‖ > δ. In the above, c1 > 0 is a normalizing
constant.

We define the smoothed version gδ : Rd → R of the given objective
function f : Rd → R as follows:

gδ(θ) , Ehδ(u)[f(θ + u)], (3.27)

where hδ(θ) is the aforementioned smoothing kernel. One may also
define another smoothed function fδ : Rd → R based on difference of
objectives as follows:

fδ(θ) = Ehδ(u)(f(θ + u)− f(ϑ))
= Ehδ(θ−u)[f(u)− f(θ − u)].

(3.28)

The following result provides expressions for the gradient of the
smoothed functions gδ and fδ, respectively. These expressions can be
seen to help derive the one-measurement and two-measurement forms
for the gradient estimators. We however mention that only the two-
measurement form of the gradient estimator in (3.30) below has been
studied in (Mondal et al., 2024) as it provides lower bias than the
one-measurement form. The reader is referred to (Mondal et al., 2024)
for a proof of Proposition 3.6.

Proposition 3.6. We have

∇gδ(θ) = 1
δ
Eu
[
f(θ + δu) (d+ 1)u

(1 + ‖u‖2)

]
, (3.29)

∇fδ(θ) = 1
δ
Eu
[
(f(θ + δu)− f(θ)) (d+ 1)u

(1 + ‖u‖2)

]
. (3.30)

A two-sample gradient estimate G(θ, ξ+, ξ, u, δ) of ∇f(θ) is formed
as follows:

G(θ, ξ+, ξ, u, δ)



88 Gradient estimation

=
(
F (θ + δu, ξ+)− F (θ, ξ)

δ

) (d+ 1)u
(1 + ‖u‖2) , (3.31)

where ξ+ and ξ are independent, zero-mean noise random vectors
constituting measurement noise in the two function measurements. The
function measurements themselves are represented using the function
F (·). Further, the perturbation random variable u ∼ hδ, the truncated
Cauchy PDF.

A3.5. The function f is three-times continuously differentiable with
‖∇f(θ)‖ ≤ B < ∞ and ‖∇3

i1,i2,i3f(θ)‖ ≤ B1 for all θ ∈ Rd and for all
i1, i2, i3 = 1, . . . , d.

Lemma 3.2 (Bias Lemma). Under Assumption A3.5, we have a.s.

E[G(θ, ξ+, ξ, u, δ)|θ, u] = c2∇f(θ) + δw, (3.32)

where c2 = Eu

[
(d+ 1)(u1)2

1 + ‖u‖2

]
> 0, with u1 denoting the first component

of the random vector u, and w = E
[(
uT∇2f(θ̄+)u

2

) (d+ 1)u
1 + ‖u‖2 |θ, u

]
with

θ̄+ being a suitable point on the line segment joining θ and
θ + δu.

Proof. See (Mondal et al., 2024, Lemma 1).

Remark 3.2. Note here that the bias lemma in this case has a different
form than corresponding results in other cases such as the one-sided
Gaussian SF, cf. Proposition 3.4. In particular the conditional expecta-
tion of G(θ, ξ+, ξ, u, δ) given θ, u has O(δ) bias though in comparison
with c2∇f(θ) instead of ∇f(θ) with c2 > 0 as the multiplying factor.
We explain in Remark 4.1 about the impact on convergence of the
resulting scheme due to this additional factor.

3.3.6 Generalized simultaneous perturbation method

A recently proposed approach in the class of random difference methods
is Generalized SPSA (Bhatnagar and Prashanth, 2023; Pachal et al.,
2023). The idea is to use a multi-variate Taylor’s expansion of the
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objective function at a perturbed parameter and thereafter terminate
the expansion after a certain number of terms. The larger the number
of terms used in the expansion, smaller is the bias. Thus, the approach
allows one to construct finite difference estimators of ∇f(θ) for any
given order of the bias. Chapter VII.1a of (Asmussen and Glynn, 2007a)
explores this idea in the context of scalar functions f : R→ R. For the
case of vector-valued parameters and for functions f : Rd → R, this
idea has been presented in (Bhatnagar and Prashanth, 2023; Pachal
et al., 2023).

Let Dβf(θ) = ∂|β|f(θ)
∂θβ1

1 · · · ∂θ
βd
d

with |β| = β1 + · · · + βd and θβ =

θβ1
1 · · · θ

βd
d . Further, β! = β1!β2! · · ·βd!. The multi-variate Taylor’s ex-

pansion has the following form:

f(θ+δ∆) =
∞∑
|β|=0

Dβf(θ)
β! (δ∆)β =

∞∑
|β|=0

(
(δ∆D)β

β!

)
f(θ) = exp(δ∆D)f(θ),

(3.33)
assuming f is infinitely many times continuously differentiable. Let
τδ∆f(θ) ≡ f(θ + δ∆), with τδ∆ = exp(δ∆D) as the associated shift
operator. Thus,

D = 1
δ∆ log(τδ∆),

where, 1
δ∆

4=
( 1
δ∆1

, . . . ,
1
δ∆d

)T
. An expansion of the log function gives

D = 1
δ∆

∞∑
j=1

(τδ∆ − I)j

j
(−1)j+1,

where I denotes the identity operator and moreover, τkδ∆ = τkδ∆. The
generalized gradient operator can then be viewed as follows: Let D =
(Di, i = 1, . . . , d)T , where for i = 1, . . . , d,

Di = 1
δ∆i

∞∑
j=1

(τδ∆ − I)j

j
(−1)j+1. (3.34)

From the above, one can obtain an estimator of order k by taking just
the sum of the first k terms above. This will then require that the
function f be only k times continuously differentiable and not infinite
times continuously differentiable as in the beginning of this section.
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Two-measurements (unbalanced) SPSA

The two-measurements version of SPSA here when using the GSPSA
estimator (3.34) will correspond to just taking the first term in the
summation above. Then, we will get

D1
i f(θ) 4=

(
τδ∆ − I
δ∆i

)
f(θ) = f(θ + δ∆)− f(θ)

δ∆i
,

where D1 = (D1
i , i = 1, . . . , d)T denotes the first order approximation

operator. When acting on f(θ), it gives the one-sided (unbalanced)
version of SPSA, see (Chen et al., 1999; Bhatnagar et al., 2013). Observe
that a Taylor’s expansion of f(θ + δ∆) around θ gives

D1
i f(θ) = f(θ + δ∆)− f(θ)

δ∆i
= ∆T∇f(θ)

∆i
+O(δ). (3.35)

Three-measurements SPSA

This estimator is obtained from (3.34) by truncating the series at j = 2.

D2
i f(θ) 4=

[(
τδ∆ − I
δ∆i

)
− (τδ∆ − I)2

2δ∆i

]
f(θ)

=
[(
τδ∆ − I
δ∆i

)
−
(
τ2δ∆ + I − 2τδ∆

2δ∆i

)]
f(θ)

=
(
f(θ + δ∆)− f(θ)

δ∆i

)
−
(
f(θ + 2δ∆) + f(θ)− 2f(θ + δ∆)

2δ∆i

)
=
(4f(θ + δ∆)− 3f(θ)− f(θ + 2δ∆)

2δ∆i

)
.

As before, D2 indicates the second order approximation operator. This
is a new gradient SPSA estimator that has previously not been proposed.
Through suitable Taylor’s expansions, one obtains

D2
i f(θ) = ∆T∇f(θ)

∆i
+O(δ2). (3.36)

The first term in the expansion in (3.36) is the same as the first term
in (3.35). However, the second term in (3.36) is O(δ2) as opposed to
O(δ) in (3.35).
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Four-measurements SPSA

This estimator is obtained from (3.34) by truncating the series at j = 3.

D3
i f(θ)

=
[(

τδ∆ − I
δ∆i

)
− (τδ∆ − I)2

2δ∆i
+ (τδ∆ − I)3

3δ∆i

]
f(θ)

=
[(

τδ∆ − I
δ∆i

)
−
(
τ2δ∆ + I − 2τδ∆

2δ∆i

)

+
(
τ3δ∆ − 3τ2δ∆ + 3τδ∆ − I

3δ∆i

)]
f(θ)

= 2f(θ + 3δ∆)− 9f(θ + 2δ∆) + 18f(θ + δ∆)− 11f(θ)
6δ∆i

.

Note that this estimator requires four function measurements at the
parameter values θ, θ + δ∆, θ + 2δ∆ and θ + 3δ∆, respectively. The
RHS above is obtained upon simplification and Taylor’s expansions as
before give us in this case

D3
i f(θ) = ∆T∇f(θ)

∆i
+O(δ3). (3.37)

The zeroth order as well as second and third order terms turn out to
be zero due to cancellations of the various terms in the expansions
resulting in (3.37).

Generalized (k + 1)-measurements SPSA

Proceeding in a similar manner, one can obtain the kth order estimator
by truncating the series in (3.34) at the kth term in the summation.
Thus, one has in this (general) case

Dki = 1
δ∆i

k∑
j=1

(τδ∆ − I)j

j
(−1)j+1 = 1

δ∆i

k∑
l=0

(−1)1−l(τδ∆)l

l! Cl,



92 Gradient estimation

where Cl = 1
l

l−1∏
j=0

(k − j). Then,

Dki f(θ) =
[

1
δ∆i

k∑
l=0

(−1)1−lClτlδ∆
l!

]
f(θ)

= 1
δ∆i

k∑
l=0

(−1)1−lClf(θ + lδ∆)
l! .

This gradient estimator requires (k + 1) function measurements at
the parameter values θ + lδ∆, l = 0, 1, . . . , k. It has been shown in
(Bhatnagar and Prashanth, 2023; Pachal et al., 2023) that the order k
generalized SPSA algorithm satisfies

Dki f(θ) = ∆T∇f(θ)
∆i

+O(δk). (3.38)

Remark 3.3. Several remarks are in order.

1. As the Taylor’s expansions of the various higher order generalized
SPSA algorithms demonstrate, generalized SPSA of order k has
a bias of order O(δk). Thus, an advantage with this class of
algorithms is that given an accuracy level O(δk), one can find
a gradient estimator within this class that provides this level
of accuracy. Such guarantees are not available in the classes of
estimators seen previously.

2. Note that here, one need not restrict oneself to only generalized
SPSA estimators but in fact, the same can be done for smoothed
functional and RDSA based perturbations, see Pachal et al., 2023.

3. Finally, note that the estimators presented above are not balanced
like two-simulation SPSA. In (Pachal et al., 2023)[Section IV],
balanced estimators are also derived by noting that

τδ∆f(θ)− τ−δ∆f(θ) = f(θ + δ∆)− f(θ − δ∆).

A similar calculation as before shows that

τδ∆ − τδ∆ = exp(δ∆D)− exp(−δ∆D) = 2 sinh 2δD.
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Thus,
D = 1

δ∆ sinh−1
(
τδ∆ − τ−δ∆

2

)
.

Balanced estimators requiring even number of function measure-
ments are then presented by terminating the infinite series of the
sinh−1(·) function after varying number of steps.

4. We refer the reader to Pachal et al., 2023 for detailed proofs of
non-asymptotic and asymptotic convergence of the algorithms
derived using the above gradient estimators.

3.4 Summary

Property → Bias Variance
Gradient estimate

↓

Two-point estimate (3.6), f ∈ C3 C1δ
2 C2

δ2

Two-point estimate (3.6)
C1δ

C2
δ2f convex+smooth

One-point estimate (3.12), f ∈ C3 C1δ
2 C2

δ2

One-point estimate (3.12)
C1δ

2 C2
δ2f convex+smooth

Gaussian smoothing (3.15), f ∈ C1 C1δ
C2
δ2

Gaussian smoothing with L-smooth F ,
C1δ C2 + C3δ

2
common random noise

3.5 Bibliographic remarks

The idea of simultaneous perturbation dates back to (Katkovnik and
Kulchitsky, 1972), where the authors proposed the smoothed functional
scheme for gradient estimation. A closely related estimation scheme
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is RDSA, proposed by (Kushner and Clark, 1978), where the random
perturbation are chosen uniformly on the surface of a d-dimensional
sphere. This idea is equivalent to using d-dimensional standard Gaussian
vector for the random perturbations — a choice studied in (Polyak and
Tsybakov, 1990; Dippon, 2003; Bhatnagar and Borkar, 2003; Bhatnagar,
2007; Nesterov and Spokoiny, 2017). The asymptotic convergence of a
zeroth-order algorithm with Gaussian smoothing where the gradient is
estimated using a single measurement y+ = f(θ+δ∆)+ξ+ alone is shown
in (Bhatnagar and Borkar, 2003). The same with a balanced estimator
with two measurements y+ = f(θ+ δ∆) + ξ+ and y− = f(θ− δ∆) + ξ−

is shown in (Bhatnagar, 2007). The latter reference also proposes one
and two measurement Newton algorithms where both the gradient and
Hessian are estimated using y+ and y− respectively. In (Rubinstein,
1981), conditions on perturbation distributions needed to construct
zeroth-order gradient estimators have been presented. It is also shown
that the uniform, Cauchy and Gaussian distributions satisfy these
properties. Simultaneous perturbation gradient search algorithms with
q-Gaussian smoothed functionals have been proposed in (Ghoshdastidar
et al., 2014b) for a wide range of the q-value parameter, for which the
aforementioned distributions namely uniform, Cauchy and Gaussian
emerge as special cases for certain values of q. It is shown that Variants
of RDSA, employing uniform and asymmetric Bernoulli distributed
random perturbations, have been proposed recently in (Prashanth et al.,
2017). SPSA, proposed by (Spall, 1992), is a very popular simultaneous
perturbation method, which also exhibits the lowest asymptotic mean-
square error (cf. (Chin, 1997; Prashanth et al., 2017)). Deterministic
perturbation variants of SPSA have been proposed and analyzed in
(Bhatnagar et al., 2003), while the corresponding deterministic variation
for RDSA has been proposed recently in (Prashanth et al., 2020).
A comprehensive text-book reference on simultaneous perturbation
methods is (Bhatnagar et al., 2013). The latter reference contains a
rigorous treatment of SPSA/SF methods, and includes both first as
well as second-order schemes.

We now briefly survey other recent work on stochastic optimization.
In (Berahas et al., 2022), the authors assume the measurement noise
is bounded a.s. and analyze simultaneous perturbation-based gradient
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estimators under this condition. In particular, they establish bounds on
the bias and variance of the gradient estimators and also conduct detailed
numerical experiments comparing the performance of finite difference-
based estimators with those employing simultaneous perturbation on
a synthetic setup. In (Gasnikov et al., 2022), zeroth-order stochastic
optimization algorithms for non-smooth convex optimization problems
are presented with perturbations distributed uniform on the surface of
a unit sphere. Bounds on the number of iterations needed as well as
the complexity of the estimator are provided. In (Kozak et al., 2023;
Rando et al., 2023; Rando et al., 2024), one-sided zeroth-order gradient
estimation algorithms for both convex objectives as well as non-convex
objectives, involving perturbation matrices with orthogonal random
directions are presented. At each iterate, a random matrix P of size d× l
is obtained with in general, fewer columns than rows and satisfying the
conditions (i) PTP = (d/l)I and (ii) E[PPT] = I (the identity matrix).
A total of l zeroth order gradient estimates are then obtained and
summed with each column of the P matrix. This is then used in the
gradient update procedure. Various cases such as coordinate descent,
spherical smoothing etc., are then considered, and rate bounds on the
algorithm in both non-convex and convex cases are obtained. Almost
sure convergence of the iterates in the convex case is also shown in
(Rando et al., 2024).

Another recent work along these lines in (Wang and Feng, 2024).
Measurement noise is not considered in the system observations and
the only noise that is present is in the gradient search directions. The
convergence rates of such algorithms for Lojasiewicz functions which are
generalizations of the Polyak-Lojasiewicz (PL) functions are obtained.
Assuming existence of an almost sure limit point of the parameter
sequence θn, n ≥ 0, the rate of convergence of {f(θn)} and {θn} is
obtained. For a class of smooth as well as convex and non-smooth
Lojasiewicz functions, the convergence is shown to be faster than stan-
dard zeroth-order gradient search. The work of (Kornowski and Shamir,
2024) provides a zeroth-order stochastic optimization scheme that pro-
duces the complexity of obtaining a (δ, ε)-stationary point of a possibly
non-smooth and non-convex Lipschitz objective. Their algorithm incor-
porates a two-measurement gradient estimator using a common random



96 Gradient estimation

noise sequence and with perturbations that are distributed uniform on
the unit sphere. The proposed algorithm requires O(dδ−1ε−3) function
evaluations which the authors argue is the best complexity obtained so
far.

There is also work on algorithms that provide better bounds due to
reduced variance in the iterates. In (Duchi et al., 2012), a stochastic
optimization algorithm for a smoothed convex function that works
with sub-differentials is presented that is however not a zeroth-order
stochastic optimization scheme. The authors consider sample average
of the estimates and show that the same has a better (finite-time)
convergence rate due to the resulting lower variance in the iterates with
extra averaging. Zeroth-order stochastic gradient search algorithms with
variance reduction have been presented in (Ji et al., 2019). In (Huang et
al., 2020), a class of Franke-Wolfe methods using zeroth-order stochastic
gradient estimation approaches involving an accelerated scheme with
reduced variance are presented. Their approach shows improved function
query complexity for finding an approximate stationary point.



4
Asymptotic analysis of stochastic gradient

algorithms

Consider the following stochastic gradient algorithm for solving θ∗ =
arg min
θ∈Θ

f(θ), given noisy sample access to f :

θn+1 = θn − a(n)∇̂f(θn), n ≥ 0. (4.1)

In Chapter 3, we learned how to form ∇̂f(θn) from function samples
so that ∇̂f(θn) ≈ ∇f(θn). Recall that these estimators incorporate
search directions based on randomly perturbed parameters. The question
of the error in the simultaneous perturbation-based estimate was also
handled in the earlier chapter. In this chapter, we shall be concerned
with whether θn governed by (4.1) converges to a local optimum θ∗ or a
neighborhood of it, when the underlying gradient estimates are biased.

The update in (4.1) is equivalent to

θn+1 = θn − a(n)
(
∇f(θn) + βn + ηn

)
, (4.2)

where ηn = ∇̂f(θn)− E
[
∇̂f(θn) | Fn

]
is a martingale difference term,

and βn = E
[
∇̂f(θn) | Fn

]
−∇f(θn) is the error in the gradient estimate.

Recall that the latter is of the order O(δ2).

97
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Algorithm Gradient
Oracle Environment

θ, δ

∇̂f(θ)

f

Figure 4.1: The interaction of the algorithms with a stochastic zeroth-order oracle
that provides a gradient at the input point θ, with perturbation constant δ.

We analyse both cases of direct gradient measurements where in-
formation on sample performance (noisy though unbiased) gradients is
available and zeroth order methods where one has access to only noisy
function observations and not sample performance gradients. In the
second case, we further consider the following sub-cases: (i) where the
sensitivity parameter δ ≡ δn ↓ 0 as n ↑ ∞ and (ii) where the parameter
δ > 0 is held fixed in the algorithms. In the sub-case (ii), one can argue
that there exists ε > 0 such that βn ∈ Bε(0) (the closed ball of radius
ε centred at the origin) for all n ≥ 0. In the above, Fn keeps a record
of observations until time n. For instance, in the case of SPSA, one
may let Fn = σ(θm,m ≤ n,∆m,m < n), n ≥ 1, and F0 = σ(θ0) as the
sequence of sigma algebras generated by the associated quantities. This
choice of Fn would ensure ∆n is independent of Fn, for all n.

Map of the results Table 4.1 provides a summary of the main con-
vergence results for the stochastic gradient algorithm 4.1 with gradient
estimates constructed using measurements from a zeroth-order oracle.
The analysis of the previous chapter can be encapsulated into a biased
gradient oracle, as illustrated in Figure 4.1. For a given input parame-
ter θ and perturbation constant δ, one could use the schemes outlined in
the previous chapter to obtain a gradient estimate ∇̂f(θ) that satisfies∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ
2, and E

[∥∥∥∇̂f(θ)− E
[
∇̂f(θ)

]∥∥∥2
]
≤ C2
δ2 ,

(4.3)

for given θ and some constants C1 and C2.
As mentioned before, we consider both (a) the case when noisy

gradient-based though unbiased estimates are available and (b) the
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gradient-free case where only noisy function measurements are available.
In the second case (i.e., case (b)), we further consider two sub-cases for
analysis. First, the gradient estimates at the nth update in (4.1) are
obtained with input parameter θn and perturbation constant δn. The
sequence {δn} is assumed to vanish asymptotically. Even though there
is bias in the gradient estimates in this setting, the same asymptotically
vanishes, as a result of which this setting allows analysis using the ODE
approach for stochastic approximation. The unbiased (gradient-based)
setting as well as the first case in the second setting (of asymptotically
vanishing bias terms) form the content of Section 4.1.

The second sub-case above pertaining to zeroth-order gradient esti-
mation, where the bias terms do not asymptotically vanish because the
δ-parameter is kept constant requires a separate, more-detailed, analysis.
Here, in the nth iteration of the stochastic gradient algorithm (4.1),
the input parameter considered is θn while the perturbation parameter
δn ≡ δ > 0 is a constant (i.e., is iteration-invariant). The analysis in this
setting (with a constant δ) requires more sophisticated arguments as
compared to the vanishing δ ≡ δn case, and involves the theory of differ-
ential inclusions (DIs). Section 4.2 provides the DI analysis. Note that
these algorithms are gradient-based algorithms where convergence can
typically be claimed only to stationary points. In Section 7.2, however,
we review work and provide some sufficient conditions under which one
can avoid saddle points that form unstable equilibria of the associated
ODE.

While this chapter focuses on the asymptotic convergence analysis,
in the next chapter, we provide non-asymptotic bounds for the iterate
sequence governed by (4.1).

4.1 Asymptotic convergence: An ODE approach

In this section, we analyse the asymptotic convergence of the algorithm
(4.1) for two specific cases: (i) when direct (noisy and unbiased) gradient
estimates are available, and (ii) when direct gradient estimates are
not available but instead one has access to an oracle from where noisy
objective function measurements at randomly perturbed parameter
updates can be obtained and biased gradient estimates constructed
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Table 4.1: Summary of the convergence results for the algorithm governed by (4.1)

Result Perturbation Main Remark
type constant result

Asymptotic diminishing Theorem 4.4 Analysis via
convergence ODE limit

Asymptotic constant Theorem 4.7 Analysis via
convergence DI limit

Non-asymptotic constant Theorem 5.2 Bound on
bound iterate sequence

from these. For the latter case, we assume however, in this section,
that the sensitivity parameter δ is diminishing. In other words, δ ≡
δn ↓ 0 as n → ∞, as a result of which we also show that the bias
terms asymptotically vanish. This section thus treats the cases when
either unbiased gradient estimates or gradient estimates that become
asymptotically unbiased are available.

4.1.1 A variant of Kushner-Clark lemma for gradient systems

In this section, we provide a convergence result for a stochastic gradient
algorithm with possibly biased gradient estimates. We apply this result
to prove Theorem 4.4 for the case when unbiased gradient information
is available. Subsequently, we analyze the stochastic gradient algorithm
with biased gradient information, and use the aforementioned result in
the latter setting to establish asymptotic convergence.

Consider a general stochastic gradient scheme as described in (1.3),
involving the update rule below and under assumptions A2.1–A2.5.

θn+1 = θn + a(n)(−∇f(θn) + βn + ηn). (4.4)

The ODE associated with this scheme would be

θ̇ = h(θ) = −∇f(θ). (4.5)

For this ODE, V (θ) = f(θ) serves as a Lyapunov function. Further,
∇V (θ)Th(θ) ≤ 0, ∀θ. One may now apply Lasalle’s invariance principle,
see Theorem A.7–Lemma A.9 to obtain the following:



4.1. Asymptotic convergence: An ODE approach 101

Lemma 4.1. Any trajectory θ(·) of (4.5) must converge to the largest
invariant set that is a subset of H 4= {θ | ∇f(θ) = 0}

In the setting of gradient-based algorithms such as (1.3), we now have
the following result that is easily obtained by combining Theorem 2.3
and Lemma 4.1.

Theorem 4.2. Under A2.1–A2.5, {θn} given by (4.4) satisfies θn →
H̄, where H̄ denotes the largest invariant set contained in H.

In the case when the equilibrium points contained in H̄ are isolated,
we have the following result, see Corollary 3.3 of (Benaïm, 1996).

Corollary 4.3. Let the set H above comprise isolated equilibrium points.
Then, under conditions of Theorem 4.2, {θn} given by (4.4) satisfies
θn → θ∗ for some (possibly sample path dependent) limit point θ∗ ∈ H̄.

Corollary 4.3 is useful in most practical situations where the equi-
librium points of the ODE (4.5) are isolated. Theorem 4.2 will be used
in the analysis of algorithms that we shall present in later chapters. For
this we shall assume that δ → 0 as n→∞. We shall also subsequently
consider the case where the sensitivity parameter δ is held fixed to a
small positive value and provide an asymptotic analysis where we show
that the limiting dynamics of the recursion tracks a differential inclusion
instead of an ODE.

If the set H specified in Theorem 4.2 consists of a single point, then
the convergence would be to that point. Otherwise, the meaning of
convergence to a set is depicted by two graphs in Figure 4.2. If all the
elements in the set are disconnected, then convergence would be to a
single point in the set, with the specific point to which the algorithm
converges depending on the initial condition, the step size sequence, and
the noise, as illustrated in the left graph of Figure 4.2, which contains
two local minima and one local maximum. If some of the points are
connected, then the algorithm could “bounce” between such points
and not converge to a single point, as illustrated in the right graph of
Figure 4.2, which contains a flat local minimal region and a saddle point.
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f ′(x)

x

f ′(x)

x

Figure 4.2: Two graphs illustrating the types of convergence for a stochastic gradient
(SG) algorithm. In the left graph, an SG algorithm for minimization would converge
to one of the two local minima or the local maximum indicated by the filled (red)
circles, where which one it reaches depends on the starting point and the noise. In
the right graph, the SG algorithm could converge to the saddle point indicated by
the filled (red) circle or would eventually bounce between points in the circled (in
red) interval unless the noise goes to zero. As long as the gradient estimate remains
appropriately noisy, the SA algorithm would eventually move away from the local
maximum in the left graph and away from the saddle point in the right graph.

“Unstable” points such as local maxima (in minimization problems) and
saddle points can be avoided by ensuring that the gradient estimate is
suitably noisy, to be described in more detail below.

Since the ODE tracked by the iteration (4.4) is θ̇ = −∇f(θ), we know
that its stationary points will be local maxima or minima, saddle points,
or points of inflection. If these points are isolated, then the algorithm
(4.4) will a.s. converge to a (possibly) sample path-dependent stationary
point. Under additional assumptions, one can ensure convergence to
a local minimum, thereby avoiding convergence to local maxima or
saddle points. One such assumption is that the stationary points are
hyperbolic, i.e., the Hessian ∇2f does not have eigenvalues on the
imaginary axis. Then locally, it has a ‘stable manifold’ of dimension
equal to the number of eigenvalues in the left half plane and an unstable
manifold with the complementary dimension. A trajectory on the former
converges to the stationary point along the stable manifold, whereas one
on the latter moves away from it on the unstable manifold. A trajectory
initiated anywhere else also eventually moves away. Thus, if there is
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at least one unstable eigenvalue, the trajectories move away from the
stationary point except on the stable manifold, a set of zero Lebesgue
measure. Hence, if the noise is omnidirectional, i.e., rich in all directions
in a certain precise sense, the iterations will be pushed away from the
stable manifold often enough for the iterates to move away from the
stationary point for good, a.s. Then the iterates will a.s. converge to
a local minimum, where there are no unstable directions. In case the
conditions on noise cannot be verified for the problem at hand, one can
possibly add extraneous i.i.d. zero mean noise and have an SA update
iteration of the form

θn+1 = θn − a(n)(∇̂f(θn) + ϕn), (4.6)

where ϕn is extraneous noise added to ensure that the algorithm avoids
saddle points/local maxima. A simple choice is to sample ϕn from
the d-dimensional unit sphere uniformly. In practice, it may not be
necessary to add such a noise factor extraneously, since the algorithm
has an inherent noise component in the gradient estimates. We discuss
escaping saddle points in more detail in Chapter 7.

4.1.2 Stochastic gradient algorithm using unbiased (direct) gradi-
ent estimates

We begin by considering the case when unbiased direct (noisy) gradient
measurements are available. This would correspond to the setting of
infinitesimal perturbation analysis (IPA) based estimators where infor-
mation on direct sample performance gradients is available and one
does not resort to zeroth-order gradient estimation methods.

To solve (1.1), a stochastic gradient algorithm would update as
follows:

θn+1 = θn − a(n)∇̂f(θn), (4.7)

where ∇̂f(θn) is an estimate of the gradient ∇f(θn), and {a(n)} are
(pre-determined) step-sizes satisfying standard Robbins-Monro step-size
conditions (see A4.3 below).

In a zeroth-order setting, the gradient information is not directly
available, and instead, the optimization algorithm has oracle access to
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noise-corrupted function measurements. We also present in the latter
case, an analysis of the resulting stochastic approximation scheme
with gradient estimates obtained from zeroth-order information. Such
estimates are not unbiased, but feature a parameter that can reduce the
bias at the cost of variance. As mentioned, before getting to zeroth-order
gradient estimation, we shall cover a simpler setting where unbiased
gradient information is indeed available, i.e., E(∇̂f(θn)) = ∇f(θn). In
this case, the algorithm in (4.7) becomes an instance of the seminal
stochastic approximation scheme proposed by Robbins and Monro in
1951. The latter algorithm was proposed to find the zeroes of a function,
and in the case of (4.7), the function of interest is ∇f .

The algorithm in (4.7) can be shown to converge to local optima
of f , and we make this claim precise, by starting with the necessary
assumptions below.

A4.1. ∇f is a Lipschitz continuous Rd-valued function.

A4.2. ∇̂f(θn) is an unbiased estimate of the gradient ∇f(θn), i.e.,
E
[
∇̂f(θn) | Fn

]
= ∇f(θn), where Fn = σ(θm,m ≤ n) denotes the

underlying sigma-field. Further, there exists σ > 0 such that

E
[∥∥∥∇̂f(θn)− E

[
∇̂f(θn)

∣∣∣Fn]∥∥∥2
]
≤ σ2 <∞. (4.8)

A4.3. The step-sizes satisfy
∑
n

a(n) =∞ and
∑
n

a(n)2 <∞.

A4.4. The iterates {θn, n ≥ 0} are stable, i.e., sup
n
‖θn‖ <∞, a.s.

Theorem 4.4. Assume A4.1–A4.4. Let H̄ denote the largest in-
variant set contained in {θ | ∇f(θ) = 0}. Then, the sequence of
iterates θn, n ≥ 0, obtained from (4.7), satisfy

θn → H̄ a.s. as n→∞.

Before presenting a proof of this result, we discuss below the assumptions
made. First, the continuity requirement on the objective function h(θ) in
A4.1 is standard to the analysis of stochastic approximation algorithms.
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Indeed for the setting considered here, h(θ) = −∇f(θ). Second, the
unbiasedness condition in A4.2 is not satisfied in a zeroth-order optimiza-
tion setting, where the gradient information is directly unavailable, and
instead, one needs to infer this through measurements of the objective
function at any query point. In the following section, we shall discuss
the simultaneous perturbation trick, leading to asymptotically-unbiased
gradient estimates, in place of A4.2. Third, the condition on step-sizes
in A4.3 are standard requirements in stochastic approximation, and
the reader is referred to the next chapter for a brief motivation (or
Chapter 2 of (Borkar, 2022) for a detailed description). Fourth, the
stability requirement in A4.4 is standard in the analysis of stochastic
approximation algorithms, and this assumption was discussed in detail
in the previous chapter, see Section 2.3.

Proof of Theorem 4.4

For proving Theorem 4.4, we shall invoke Theorem 4.2.

Proof. The update in (4.7) is equivalent to

θn+1 = θn − a(n)
(
∇f(θn) + ηn

)
, (4.9)

where ηn = ∇̂f(θn) − E
[
∇̂f(θn)

∣∣∣Fn] is a martingale difference term.

The equivalent update rule above used the fact that E
[
∇̂f(θn)

∣∣∣Fn] =
∇f(θn), which holds by assumption A4.2.

The mean ODE underlying (4.1) is

θ̇ = −∇f(θ), (4.10)

with limit set H =
{
θ : ∇f(θ)

)
= 0

}
.

To apply Theorem 4.2, we verify a few conditions below.

1. A4.1 implies A2.1.

2. Since βn = 0, ∀n, A2.2 is trivially satisfied.

3. A4.3 implies A2.3.
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4. To verify A2.4, we first recall a martingale inequality attributed
to Doob (also given as (2.1.7) on pp. 27 of (Kushner and Clark,
1978)):

P
(

sup
m≥0
‖Wm‖ ≥ ε

)
≤ 1
ε2

lim
m→∞

E ‖Wm‖2 . (4.11)

Applying the inequality above to Wm ,
m∑
i=n

a(i)ηi, m ≥ n and

n ≥ 1, we obtain

P

(
sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi

∥∥∥∥∥ ≥ ε
)
≤ 1
ε2
E
∥∥∥∥∥
∞∑
i=n

a(i)ηi

∥∥∥∥∥
2

= 1
ε2

∞∑
i=n

a(i)2E ‖ηi‖2 .

(4.12)

The last equality above follows by observing that, for k < l,
E [ηT

kηl] = E [ηT
kE [ηl| Fk]] = 0.

Now, using the square-summability of the stepsize in A4.3 and
(4.8) in A4.2, we have

P

(
sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi

∥∥∥∥∥ ≥ ε
)
≤ 1
ε2

∞∑
i=n

a(i)2E ‖ηi‖2 ≤
σ2

ε2
lim
n→∞

∞∑
i=n

a(i)2

→ 0 as n→∞.

Thus, {θn} converges a.s. to the set H̄ by an application of Theorem
4.2.

4.1.3 Stochastic gradient algorithm using (zeroth-order) biased
gradient estimates

We now consider the case where we have zeroth-order gradient estimates
constructed from (noisy) function measurements obtained from an oracle.
The bias in these gradient estimates is seen to vanish asymptotically as
we allow the sensitivity parameter δ to tend to zero.

We analyze the following stochastic gradient algorithm:

θn+1 = θn − a(n)∇̂f(θn), (4.13)
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where ∇̂f(θn) is formed using the unified estimate from the previous
chapter, which is recalled below.

∇̂f(θn) =
(
y+
n − y−n

2δn

)
V (n), (4.14)

where y+
n = f(θn + δnU(n)) + ξ+

n , and y−n = f(θn − δnU(n)) + ξ−n . The
reader is referred to Chapter 3 for a variety of choices for the random
vectors U(n), V (n).

For the analysis of this algorithm, we require the following assump-
tions in addition to A4.4 listed earlier: Let Fn = σ(θi, i ≤ n,U(i), V (i), i <
n, ξ±i , i < n), n ≥ 1 denote a sequence of sigma fields.

A4.5. The noise factors ξ± in (4.14) satisfy

E[ξ+
n − ξ−n | Fn] = 0, and E[(ξ+

n − ξ−n )2| Fn] ≤ σ2 <∞ , ∀n ≥ 1.
(4.15)

A4.6. The objective function f : Rd → R satisfies

E[f(θn ± δnU(n))2 | Fn] ≤ B <∞, ∀n. (4.16)

A4.7. The step-sizes a(n) and perturbation constants δn are posi-
tive, for all n and satisfy

a(n), δn → 0 as n→∞,
∑
n

a(n) =∞ and
∑
n

(
a(n)
δn

)2
<∞.

Assuming f ∈ C3, and using Assumptions A4.5 to A4.6, it is possible to
infer the following bias and variance bounds on the gradient estimator
(4.14):

∀n ≥ 1,
∥∥∥E [∇̂f(θn) | Fn

]
−∇f(θn)

∥∥∥ ≤ C1δ
2
n, and

E
[∥∥∥∇̂f(θn)− E

[
∇̂f(θn)

∣∣∣Fn]∥∥∥2
]
≤ C2
δ2
n

,
(4.17)

for some constants C1 and C2. A straightforward adaptation of the
proof of Proposition 3.1 leads to the bound in Equation (4.17).
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The result below establishes asymptotic convergence of (4.13) to
stationary points of f and the bounds in (4.17) is a crucial ingredient
in the proof.

Theorem 4.5. Assume A4.5–A4.7, A4.4, and that f is L-smooth
as well as three times continuously differentiable with bounded
third derivative, i.e., f ∈ C3. Let H̄ denote the largest invariant
set contained in {θ | ∇f(θ) = 0}. Then, the iterates θn, n ≥ 1,
updated according to (4.13), satisfy

θn → H̄ a.s. as n→∞.

Proof. We first rewrite the update rule (4.13) as follows:

θn+1 = θn − a(n)(∇f(θn) + ηn + βn), (4.18)

where ηn = ∇̂f(θn)− E
[
∇̂f(θn) | Fn

]
is a martingale difference term,

and βn = E
[
∇̂f(θn) | Fn

]
−∇f(θn) is the bias in the gradient estimate.

Convergence of (4.13) can be inferred from Theorem 4.2, provided
we verify the necessary assumptions, and we do this verification below.

• f is L-smooth implies A2.1.

• From (4.17), we have βn = O(δ2
n). In conjunction with A4.7, we

have βn → 0, verifying A2.2.

• Applying Doob’s martingale inequality, Wm =
m∑
i=n

a(i)ηi, m ≥ n

and n ≥ 1, we obtain

P
(

sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi

∥∥∥∥∥ ≥ ε
)
≤ 1
ε2
E
∥∥∥∥∥
∞∑
i=n

a(i)ηi

∥∥∥∥∥
2

= 1
ε2

∞∑
i=n

a(i)2E ‖ηi‖2 , (4.19)

where, as in the proof of Theorem 4.4, the last equality used
E [ηT

kηl] = 0 for k < l. This verifies A2.4.
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Using (4.17), we have

E ‖ηn‖2 ≤
C2
δ2
n

. (4.20)

Now, substituting the bound in (4.20) into (4.19), we obtain

lim
n→∞

P

(
sup
m≥n

∥∥∥∥∥
m∑
i=n

a(i)ηi

∥∥∥∥∥ ≥ ε
)
≤ C2

ε2
lim
n→∞

∞∑
i=n

a(i)2

δ2
i

= 0.

The equality above follows from A4.7, as a consequence of∑
n

(
a(n)
δn

)2
<∞.

The main claim now follows by an application of Theorem 4.2.

Remark 4.1. The above result shows that the ODE tracked by (4.13) is
(4.5). Except for one gradient estimation scheme, all the other schemes
that we consider (see Chapter 3) track the ODE (4.5). However, for the
case when the truncated Cauchy smoothed functional (TCSF) gradient
estimator (3.31) is used, it can be seen that the ODE tracked is the
following:

θ̇(t) = −c2∇f(θ), (4.21)

with c2 > 0. While the asymptotic convergence in this case is also to
the stable fixed points of the ODE that is qualitatively the same as
(4.5), the effect of the multiplicative constant c2 > 0 manifests in the
speed of convergence of the ODE’s trajectories to the ODE’s stable
fixed points. In particular, c2 > 1 would result in faster convergence
of the trajectories of (4.21) as compared to that of the ODE (4.5). As
mentioned, the latter ODE is the one tracked by all the other algorithms
studied so far.

4.2 Asymptotic convergence: A differential inclusions approach

We now consider the case when gradient estimators such as (4.14) are
considered but where δ > 0 is held constant. This ensures that there is
a bias in the gradient estimates that however does not asymptotically
vanish as with the previous case.
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4.2.1 Assumptions

We make the following assumptions:

A4.8. f : Rd → R is continuously differentiable. Furthermore,
‖∇f(θ)‖ ≤ K̃(1 + ‖θ‖) for all θ ∈ Rd, for some K̃ > 0.

A4.9. {ηn} is a square-integrable martingale difference sequence
w.r.t. the filtration {Fn}, where Fn = σ(θm,m ≤ n, ηm,m <

n), n ≥ 0. Further,

E[‖ηn‖2 | Fn] ≤ K1(1 + ‖θn‖2),

for some constant K1 > 0.

A4.10. a(n) > 0, ∀n. Further,
∑
n

a(n) =∞ and
∑
n

a(n)2 <∞.

A4.11. sup
n
‖θn‖ <∞ w.p. 1.

A sufficient condition for the second part of Assumption A4.8 (in
addition to f being continuously differentiable) is that the function ∇f
is a Lipschitz continuous function of θ. This is because in such a case

‖∇f(θ1)−∇f(θ2)‖ ≤ Q ‖θ1 − θ2‖ ,

for some constant Q > 0 and for any θ1, θ2 ∈ Rd. Then by letting θ1 = θ

and θ2 = 0, we get

‖∇f(θ)‖ − ‖∇f(0)‖ ≤ ‖∇f(θ)−∇f(0)‖ ≤ Q ‖θ‖ ,

implying ‖∇f(θ)‖ ≤ K̃(1 + ‖θ‖) with K̃ = max(Q, ‖∇f(0)‖).
Assumption A4.9 is on the noise sequence {ηn}. From the manner in

which it is defined, viz., ηn = ∇̂f(θn)−E
[
∇̂f(θn) | Fn

]
and the various

forms of the gradient estimators ∇̂f(θn) discussed previously and the
assumptions on the measurement noise there, it can be easily seen that
this condition will be satisfied.

Assumption A4.10 is on the step size sequence and is a standard
requirement in stochastic approximation schemes. The condition on
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non-summability of the step size is needed to track the asymptotic
behaviour of the limiting differential equation or inclusion as the case
may be. The second condition ensures, in particular, that the errors
due to noise asymptotically vanish.

Finally, assumption A4.11 is necessary to establish convergence
of gradient-descent scheme but is a non-trivial requirement. Certain
sufficient conditions for stability of stochastic approximation schemes
that rely mainly on the underlying ODE and a certain scaling limit of the
same are given in (Borkar and Meyn, 1999). For the case of stochastic
recursive inclusions (SRI), i.e., stochastic approximations with set-valued
maps, similar conditions have recently been provided in (Ramaswamy
and Bhatnagar, 2016a; Ramaswamy and Bhatnagar, 2018). In particular,
(Ramaswamy and Bhatnagar, 2018) considers a gradient recursion with
errors in the setting of SRI and provides sufficient conditions for stability
of the scheme. We present these conditions from (Ramaswamy and
Bhatnagar, 2018) in the subsection following the convergence proof.
Prior work, for instance, (Benaïm, 1996; Kushner and Clark, 1978;
Kushner and Yin, 2003) show convergence of stochastic approximation
assuming stability of the stochastic iterates. Further, (Benaïm et al.,
2005) proves the almost sure convergence of SRI again assuming stability
of the iterates. As mentioned earlier, if one is unable to ensure stability
of the stochastic iterates, a common approach is to project these to a
large enough compact set that would ensure boundedness of the iterates.
This however comes at the cost of introducing spurious fixed points on
the projection set boundary to which the recursion might converge as
well, see (Kushner and Clark, 1978; Kushner and Yin, 2003) for detailed
analyses of projected stochastic approximations.

4.2.2 Proof of Convergence

Let G(θ) = ∇f(θ) +Bε(0), where Bε(0) is a closed ball of radius ε > 0
around the origin. In other words, G(θ) = Bε(∇f(θ)) is a closed ball of
radius ε > 0 around ∇f(θ).

Lemma 4.6. The set-valued map G is a Peano map.
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Proof. Recall Definition A.6 for definition of Peano map. We shall verify
the three conditions (i)-(iii) of Definition A.6. As noted earlier, for any
θ ∈ Rd, G(θ) is a closed ball in Rd of radius ε centred at ∇f(θ). Thus,
it is clearly convex and compact. Now for any y ∈ G(θ),

‖y‖ ≤ ‖∇f(θ)‖+ ‖y −∇f(θ)‖
≤ K̃(1 + ‖θ‖) + ε

≤ K̄(1 + ‖θ‖),

where K̄ = K̃+ ε. The second inequality above follows from the smooth-
ness assumption A4.8. Since y above is arbitrary, it follows that

sup
y∈G(θ)

‖y‖ ≤ K̄(1 + ‖θ‖).

Thus G(θ) is pointwise bounded.
Finally, consider a sequence θn, n ≥ 0 of parameters and another

sequence yn, n ≥ 0 of points such that yn ∈ G(θn), ∀n. Further, let
θn → θ and yn → y as n→∞. Now given δ > 0 small, let N be large
enough so that ‖yn − y‖ < δ/2 and similarly ‖∇f(θn)−∇f(θ)‖ < δ/2,
respectively, ∀n > N . Then,

‖y −∇f(θ)‖ ≤ ‖y − yn‖+ ‖yn −∇f(θn)‖
+ ‖∇f(θn)−∇f(θ)‖

≤ ε+ δ.

Since δ > 0 is arbitrary, let δ → 0. It then follows that ‖y −∇f(θ)‖ ≤ ε,
implying that y ∈ G(θ). Thus G is also upper-semicontinuous and the
claim follows.

Consider now the Differential Inclusion (DI):

θ̇(t) ∈ −G(θ(t)). (4.22)

Here −G(θ(t)) is used to denote the set {−g | g ∈ G(θ(t))}. The next
result follows directly from (Benaïm et al., 2005).
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Theorem 4.7. The iterates (4.2) converge to a closed connected
internally chain transitive and invariant set of the DI (4.22).

Proof. The claim follows from Theorem 3.6 and Lemma 3.8 of (Benaïm
et al., 2005).

Consider also the associated ODE that would result from the case
of ε = 0:

θ̇t = −∇f(θt). (4.23)

This will be the case when either the information on the gradient ∇f(θ)
is fully known for all θ and a (true) gradient scheme with noise is used
or else the sensitivity parameter δ is replaced by a slowly decreasing
δn → 0. Both of these cases have been analysed for their convergence in
Section 4.1.

As seen in Section 4.1, in the second case above, the square summa-
bility requirement of the step size sequence {a(n)} is considerably
tightened. More specifically, the condition

∑
n

a(n)2 <∞ in A4.10 is

replaced by the more stringent requirement
∑
n

(
a(n)
δn

)2
<∞ in A4.7.

The latter has the effect of significantly constraining the learning rates
in the update recursion.

LetM denote the minimum set of f and suppose the regular values
of f , i.e., θ for which ∇f(θ) 6= 0 are dense in Rd, then the chain recurrent
set of f is a subset of it’s minimum set, see Proposition 4 of Hurley
(Hurley, 1995). As shown earlier, the gradient descent scheme without
errors (i.e., with ε = 0), will converge toM almost surely.

We now state Theorem 3.1 of (Benaïm et al., 2012) adapted to the
setting considered here..

Theorem 4.8. Given δ > 0, ∃ε(δ) > 0 such that the chain recurrent set
of (4.22) is within the δ-open neighborhood of the chain recurrent set
of (4.23) for all ε ≤ ε(δ).

It follows as a consequence of Theorem 4.7 and Theorem 4.8 that
(4.2) with ε < ε(δ) (cf. Theorem 4.8) converges almost surely to N δ(M).
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4.2.3 A Set of Stability Conditions for Stochastic Recursive Inclu-
sions

We now present a set of conditions from (Ramaswamy and Bhatnagar,
2016a; Ramaswamy and Bhatnagar, 2018) that ensure that the stochas-
tic recursive inclusion (4.2) remains stable, i.e., that sup

n
‖θn‖ <∞ a.s.,

that was the last assumption for our analysis of the recursion (4.2). The
conditions that we present are a generalization of stability conditions
for stochastic approximation presented in (Borkar and Meyn, 1999).

Recall from Lemma 4.6 that G is a Peano or Marchaud map. For
each integer c ≥ 1, let

Gc(θ) :=
{
y

c
| y ∈ G(cθ)

}
.

Let
G∞(θ) := co(Limsupc→∞Gc(θ)),

where

Limsupxn→xJ(xn) = {y ∈ Rd | lim inf
xn→x

d(y, J(xn)) = 0},

see Definition A.7. Given A ⊆ Rd, the convex closure of A, denoted by
co(A), is the closure of the convex hull of A. It is worth noting that
Limsupc→∞Gc(θ) is non-empty for every θ ∈ Rd. It is also shown in
Lemma 1 of (Ramaswamy and Bhatnagar, 2018) that G∞ is Marchaud.
Thus, from (Aubin and Cellina, 1984), the DI θ̇(t) ∈ −G∞(θ(t)) has at
least one solution that is absolutely continuous.

We make the following additional assumptions:

A4.12. θ̇(t) ∈ −G∞(x(t)) has an attractor set A such that A ⊆
Ba(0) for some a > 0 and Ba(0) is a fundamental neighborhood of
A.

Since A ⊆ Ba(0) is compact, we have that sup
θ∈A
‖θ‖ < a.



4.3. Bibliographic remarks 115

A4.13. Let cn ≥ 1 be an increasing sequence of integers such that
cn ↑ ∞ as n→∞. Further, let θn → θ and yn → y as n →∞,
such that yn ∈ Gcn(θn), ∀n, then y ∈ G∞(θ).

It can be shown that the existence of a global Lyapunov function for
θ̇(t) ∈ −G∞(θ(t)) is sufficient to guarantee that A4.12 holds. Further,
A4.13 is satisfied when ∇f is Lipschitz continuous.

Theorem 4.9. Suppose A4.8–A4.10, A4.12-A4.13 hold and βn ≤
β, ∀n, for some constant β > 0. Then, the stochastic update
sequence given by (4.2) remains stable, i.e., sup

n
‖θn‖ <∞ almost

surely.

A detailed proof of this result is given in Theorem 1 of (Ramaswamy
and Bhatnagar, 2018). What is important to note here as also with
the original result of (Borkar and Meyn, 1999) (that was for the case
of stochastic updates involving single-valued functions as opposed to
set-valued maps as considered above), both the additional assumptions
A4.12 and A4.13 involve only deterministic systems, more precisely
scaled Differential Inclusions. Asymptotic stability properties of these
systems and in particular the limiting system are enough to guarantee
stability of the original stochastic recursions.

4.3 Bibliographic remarks

The steps involved in establishing the convergence analysis of stochastic
approximation algorithms with gradient estimators mirrors largely simi-
lar analysis for broader stochastic approximation algorithms dealt with
in Chapter 2, see (Benaïm, 1996; Borkar, 2022). Convergence analyses of
zeroth-order stochastic gradient algorithms with diminishing step-sizes
are for instance, available in (Spall, 1992; Spall, 1997) for the case of
two and one-sided SPSA, in (Prashanth et al., 2017) for the case of
RDSA, as well as (Prashanth et al., 2020) for deterministic perturbation
RDSA.
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Stochastic recursive inclusions or stochastic approximation with
set-valued maps have been analysed for the first time in (Benaïm et al.,
2005). The recursion there involves a set-valued map with a martingale
difference noise sequence and assumes stability of the stochastic iterates.
The works in (Ramaswamy and Bhatnagar, 2016a; Ramaswamy and
Bhatnagar, 2021) provide the first and only available sets of stabil-
ity conditions for such recursions. Stability conditions for stochastic
recursive inclusions with non-ergodic Markov noise are available in
(Ramaswamy and Bhatnagar, 2019).

The works in (Ramaswamy and Bhatnagar, 2016b; Yaji and Bhat-
nagar, 2020) present the first convergence analyses of two-timescale
stochastic recursive inclusions with set-valued maps on both timescales.
In (Yaji and Bhatnagar, 2018), the analysis of stochastic recursive in-
clusions with set-valued maps and Markov noise in addition, has been
conducted for the first time and in (Yaji and Bhatnagar, 2018), the
same in the two-timescale case is conducted in (Yaji and Bhatnagar,
2020). The Markov noise is assumed to be dependent on the parame-
ter sequence and in addition, depends on an additional control-valued
sequence, and furthermore is assumed to have multiple stationary distri-
butions. This combination makes it the hardest so far case of stochastic
inclusions that has been analysed in the literature. Such algorithms are
however seen to have applications in stochastic optimization as well
as reinforcement learning. For instance, an application of (Karmakar
and Bhatnagar, 2018) on two-timescale stochastic approximation with
Markov noise was studied on an application of off-policy gradient tem-
poral difference learning algorithms (Sutton et al., 2009). Finally, the
material on convergence of a zeroth-order stochastic gradient algorithm
for a fixed δ-parameter is based on (Ramaswamy and Bhatnagar, 2018),
where a corresponding set-valued map is obtained and analysed.



5
Non-asymptotic analysis of stochastic gradient

algorithms

We consider a SG algorithm for solving (1.1), with an update iteration
of the form:

θn+1 = θn − a(n)∇̂f(θn), n ≥ 0. (5.1)

We analyze the algorithm above with inputs from either an unbiased
gradient oracle or a biased one, i.e., corresponding to the cases where
E
[
∇̂f(θ) | θ

]
= ∇f(θ) and E

[
∇̂f(θ) | θ

]
= ∇f(θ) + O(δ2), with δ

denoting the perturbation constant (see Chapter 3), respectively. The
analysis in the former case serves as a useful contrast to the biased case,
since the proof technique is similar, while there is a loss in convergence
rate when one moves from an unbiased to a biased gradient oracle.

We consider an SG algorithm that runs for N iterations, and outputs
a (possibly random) point θR, that could be chosen based on the
iterates θ1, . . . , θN . For a general SG algorithm, we consider different
performance metrics based on the nature of the underlying objective.
More precisely, we consider the following cases:
(i) convex; (ii) strongly convex; and (ii) non-convex.
In case (i), we provide bounds on the optimization error, i.e.,
E (f(θR)− f(θ∗)), where θ∗ is a minimum of f , whereas in case (ii), we
establish bounds on the parameter error E ‖θR − θ∗‖2. On the other

117
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hand, in case (iii), i.e., when the objective is non-convex, it is difficult
to bound the optimization/parameter errors. A popular alternative is
to establish local convergence. i.e., to a point where the gradient of the
objective is small (cf. (Ghadimi and Lan, 2013; Bottou et al., 2018)).
The following definition makes the optimization objectives apparent in
all the cases studied in this chapter.

Definition 5.1. Let θR ∈ Rd be the output of a SG algorithm and
ε > 0 be a target accuracy, then:

1. If f is non-convex, θR is called an ε-stationary point of (1.1),
if E ‖∇f (θR)‖2 ≤ ε;

2. If f is convex, θR is called an ε-optimal point of (1.1), if
E[f (θR)]− f(θ∗) ≤ ε, where θ∗ is a minimizer of f .

3. If f is strongly convex, θR is called an ε-optimal point of
(1.1), if E

[
‖θR − θ∗‖2

]
≤ ε, where θ∗ is the unique minimizer

of f .

The SG algorithms are judged using the iteration complexity, which is
defined below.

Definition 5.2. For a given ε > 0, the iteration complexity of an algo-
rithm A is the number of iterations of A before finding an ε-stationary
(resp. ε-optimal) point for a non-convex (resp. convex/strongly-convex)
objective function.

For a gradient descent type algorithm, results from deterministic
optimization lead to complexity bounds listed in Table 5.1, cf. (Wright
and Recht, 2022, Chapter 3). The bounds in Table 5.1 are useful to
compare against the corresponding cases in the stochastic case that
we consider in this chapter. Moreover, as we shall see later, the case
of biased gradient oracle results in bounds that are weaker than the
unbiased counterpart.

For the bounds in this chapter, we consider a variant of SG algorithm,
namely randomized stochastic gradient (RSG), which was proposed in
(Ghadimi and Lan, 2013). This is a well-known scheme that provides a
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Function Type Condition Iteration Complexity

Non-convex ||∇f(θ∗)|| ≤ ε n ≥ 2L
ε2

[f(θ0)− f(θ∗)]

Convex |f(θ)− f(θ∗)| ≤ ε n ≥ L

2ε ||θ0 − θ∗||2

Strongly Convex |f(θ)− f(θ∗)| ≤ ε n ≥ L

µ
log

(
f(θ0)− f(θ∗)

ε

)

Table 5.1: Summary of iteration complexities of a gradient descent algorithm
for deterministic smooth optimization. Here iteration complexity is the number of
iterations n required to satisfy the condition specified in the second column. Here θ∗
denotes an optimum of f , θ0 is the starting point of the gradient descent algorithm,
µ is the strong-convexity parameter, and L is the smoothness constant.

non-asymptotic bound on a random iterate visited by a SG algorithm.
More precisely, suppose θ1, . . . , θm be the iterates visited along a sample
path of a SG algorithm that is run for m iterations. Then, the RSG
algorithm would return an iterate θR that is picked randomly from the
set {θ1, . . . , θm}. For the case where θR is picked uniformly at random
from the set mentioned above, the RSG scheme for picking the afore-
mentioned random iterate resembles the well-known Polyak-Ruppert
iterate averaging scheme (Polyak and Juditsky, 1992; Ruppert, 1985)
for stochastic approximation. The latter scheme performs averaging
of all the iterates {θi, i = 1, . . . ,m}, while RSG achieves the same
effect, except that the averaging happens in expectation. Algorithm
2 presents the pseudocode of RSG algorithm that takes as input the
probability mass function PR(·) for picking a random variable from the
set {1, . . . ,m}. The bounds we present are for the special case where
PR is the discrete uniform distribution over the aforementioned set.

In this chapter, we provide non-asymptotic bounds for Algorithm 2
with unbiased and biased gradient information, respectively, for three dif-
ferent assumptions on the underlying objective, namely convex, strongly
convex and non-convex. In a zeroth-order setting, the RSG algorithm is
provided gradient estimates formed using the simultaneous perturbation
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Algorithm 2: RSG algorithm
Input: Initial point θ1 ∈ Rd, iteration limit m, step sizes

{a(k)}k≥1 and probability mass function PR(·) of a
random variable R supported on {1, . . . ,m}.

for k = 1, . . . ,m do
Form the gradient estimate ∇̂f(θk) using one or more
function measurements;

Perform the following stochastic gradient descent update:
θk+1 = θk − a(k)∇̂f(θk).

end for
Output: θR

method described in Chapter 3.
The rest of this chapter is organized as follows: Sections 5.1–5.3

present the non-asymptotic bounds with proofs for non-convex, con-
vex, and strongly convex functions, respectively. In Section 5.4, we
present two settings where the non-asymptotic bounds for the RSG
algorithm features improved dimension dependence, as compared to
those in Sections 5.1–5.3. In Section 5.5, we discuss a zeroth-order model
variant, where the function measurements are biased. In Section 5.6,
we present a minimax lower bound for an algorithm that has access to
gradient estimates that satisfy a bias-variance tradeoff (e.g., see (4.3)).
In Section 5.7, we outline the connection between smooth optimization
in a zeroth-order setting and bandit convex optimization.

5.1 The non-convex case

We begin by considering the case of a non-convex objective function
f : Rd → R.

5.1.1 RSG with an unbiased gradient oracle

As a gentle start, first, we provide bounds for the simple “unbiased
gradient” model, and subsequently analyze the other challenging model
involving biased gradients.
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In this model, we assume access to a stochastic first-order oracle,
which for a given θk outputs a random estimate ∇̂f(θk) of the gradient
of f . We assume that the gradient estimate ∇̂f(θk) satisfies the following
assumption:

A5.1. Let Fk = σ(θi, i ≤ k). Recall Ek denotes the expectation
w.r.t. Fk. For any k ≥ 1, we have

1. Ek
[
∇̂f(θk)

]
= ∇f (θk) ,

2. Ek
[∥∥∥∇̂f(θk)−∇f (θk)

∥∥∥2
]
≤ σ2, for some parameter σ ≥ 0.

From the above, it is apparent that ∇̂f(θk) is an unbiased estimate of
∇f(θk) with bounded variance.

The results provide a bound on the gradient norm after m iterations
of RSG. As mentioned earlier, under a non-convex objective, bounding
the optimization error, i.e., f(θR) − f(θ∗) is difficult, where θ∗ is a
local optima. However, a popular alternative is to show that the RSG
algorithm converges to a point, where the gradient of the objective is
small (quantified by a bound on the squared norm of the gradient) (cf.
(Ghadimi and Lan, 2013; Bottou et al., 2018)).

Theorem 5.1. (Unbiased gradients: Non-convex case) Sup-
pose f is L-smooth and satisfies A5.1. Suppose that the RSG
algorithm is run with the stepsize sequence set as

a(k) = a,∀k with a = min
{ 1
L
,
c√
m

}
, (5.2)

for some constant c > 0. Then, for any m ≥ 1, we have

E
[
‖∇f (θR)‖2

]
≤ 2LDf

m
+ 1√

m

[2Df

c
+ Lσ2c

]
,

where R is uniformly distributed over {1, . . . ,m}, θ∗ is an optimal
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solution to (1.1), and

Df = f(θ1)− f(θ∗). (5.3)

Proof. Since f is L-smooth, we have

f (θk+1) ≤ f (θk) + 〈∇f (θk) , θk+1 − θk〉+ L

2 ‖θk+1 − θk‖2

= f (θk)− a(k)
〈
∇f (θk) , ∇̂f(θk)

〉
+ L

2 a(k)2
∥∥∥∇̂f(θk)

∥∥∥2

Using Ek
[
∇̂f(θk)

]
= ∇f (θk) , and the following inequality1:

Ek
[∥∥∥∇̂f(θk)

∥∥∥2
]
≤
∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ σ2,

we obtain

Ek[f (θk+1)]

≤ f (θk)− a(k) ‖∇f (θk)‖2 + L

2 a(k)2
[
‖∇f (θk)‖2 + σ2

]
= f (θk)−

(
a(k)− L

2 a(k)2
)
‖∇f (θk)‖2 + L

2 a(k)2σ2. (5.4)

Re-arranging the terms above and setting a(k) = a,∀k ≥ 1, we obtain

a ‖∇f (θk)‖2 ≤
2 [f (θk)− Ek[f (θk+1)]]

(2− La) + La2σ2

(2− La)

Now, summing up the above inequality for k = 1 to m, we obtain

a
m∑
k=1
‖∇f (θk)‖2 ≤ 2

m∑
k=1

[f (θk)− Ek[f (θk+1)]]
(2− La) + mLσ2a2

(2− La) .

Taking total expectations on both sides of above equation, and using
E [f (θk)] ≥ f(θ∗), for all k ≥ 1, we obtain

a
m∑
k=1

E ‖∇f (θk)‖2 ≤
2 (f(θ1)− f(θ∗))

(2− La) + mLσ2a2

(2− La) .

1When ‖ · ‖ is defined from an inner product, we have E
[
‖X − E [X]‖2

]
=

E
[
‖X‖2

]
− ‖E [X]‖2.
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Since θR is picked uniformly at random from {θ1, . . . , θm} and a ≤ 1/L,
we have

E
[
‖∇f (θR)‖2

]
= 1
m

m∑
k=1

E ‖∇f (θk)‖2

≤ 1
ma

[
2Df

(2− La) + Lσ2m
a2

(2− La)

]

≤ 1
ma

[
2Df + Lσ2ma2

]
= 2Df

ma
+ Lσ2a

≤ 2Df

m
max

{
L,

√
m

c

}
+ Lσ2 c√

m

≤ 2LDf

m
+ 2Df

c
√
m

+ Lσ2 c√
m

= 2LDf

m
+ 1√

m

[2Df

c
+ Lσ2c

]
.

The claim follows.

5.1.2 RSG with a biased gradient oracle

We make the following assumptions for the non-asymptotic analysis of
RSG algorithm in the zeroth-order setting:

A5.2. There exists a constant B > 0 such that ‖∇f(x)‖1 ≤ B, ∀x ∈ Rd.

A5.3. The gradient estimate ∇̂f(θk) satisfies the following inequalities
for all k ≥ 1: ∥∥∥Ek [∇̂f(θk)

]
−∇f (θk)

∥∥∥ ≤ c1δ
2, (5.5)

and

Ek
[∥∥∥∇̂f(θk)

∥∥∥2
]
≤
∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ c2
δ2 . (5.6)

In the above, Ek is shorthand for E(· | Fk), with Fk denoting the
sigma-field σ (θi, i ≤ k).
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As mentioned before, in the non-convex case, the gradient norm is a
standard benchmark for quantifying the convergence rate of stochastic
gradient algorithms. The main result concerning RSG’s non-asymptotic
performance is presented below.

Theorem 5.2.
Suppose the objective function f is L-smooth (see Definition 3.1),
and assumptions A5.2–A5.3 hold. Suppose that the RSG algorithm
is run with the stepsize a(k) = a and perturbation constant δ(k) = δ

for each k = 1, . . . ,m, where

a = min

{ 1
L
,

1
m2/3

}
, δ = 1

m1/6 , ∀k ≥ 1. (5.7)

Then, choosing θR uniformly at random from {θ1, . . . , θm}, we have

E ‖∇f (θR)‖2 ≤ 2L(f(θ1)− f(θ∗))
m

+ K1
m1/3 , (5.8)

where K1 = 2Dfd
4/3 + 4Bc1

d5/3 + Lc2
1

d11/3m
+ Lc2d

1/3, constants c1, c2

are defined in A5.3, B is as defined in A5.2,

Df = f(θ1)− f(θ∗), (5.9)

and θ∗ is a global optima of f .

Remark 5.1. From the bound in the result above, it is easy to see that
an order O

( 1
ε3

)
iterations of the RSG algorithm are enough to find a

point θR that satisfies E ‖∇f (θR)‖2 ≤ ε.

Remark 5.2. In comparison to the unbiased gradient information case
handled in the previous section, the O

( 1
m1/3

)
bound obtained here is

weaker. This drop in rate is owing to the bias-variance tradeoff in the
gradient estimates, i.e., choosing a very small perturbation constant δ
improves the accuracy of the gradient estimate at the cost of increased
variance, see Assumption A5.3. However, with additional structure,
the rate can be improved to O

( 1
m1/2

)
. We mention two such settings
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next. First, in the case of common random noise, discussed earlier in
Section 3.3.4, we have f(θ) = Eξ(F (θ, ξ)). Assuming F is smooth in θ, for

any given ξ, it is possible to establish a O

√ d

m

 bound on the gradient

norm square, i.e., E ‖∇f (θR)‖2. Notice that this bound improves both
the dependency on dimension d as well number of iterations m. The
second setting with improved bounds is that of sparse optimization.
Assuming the gradient is s-sparse, i.e., ‖∇f(x)‖0 ≤ s, ∀x, it is possible

to establish a O

√ log d
m

 bound on the gradient norm square. In

comparison to the first setting with smooth sample performance, this
bound has a better dependence on the dimension, and this is due to the
sparsity assumption. The reader is referred to Section 5.4 for further
details about the two settings mentioned above.

Proof. (Theorem 5.2)
Since f is L-smooth, we have

f (θk+1) ≤ f (θk) + 〈∇f (θk) , θk+1 − θk〉+ L

2 ‖θk+1 − θk‖2

≤ f (θk)− a
〈
∇f (θk) , ∇̂f(θk)

〉
+ L

2 a
2
∥∥∥∇̂f(θk)

∥∥∥2
. (5.10)

Taking expectations with respect to the sigma field Fk on both sides of
(5.10), and using (5.5) and (5.6) from A5.3, we obtain

Ek [f (θk+1)]

≤ Ek [f (θk)]− a
〈
∇f (θk) ,∇f (θk) + c1δ

21d×1
〉

+ L

2 a
2
[∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ c2
δ2

]
≤ f (θk)− a ‖∇f (θk)‖2 + c1δ

2aEk‖∇f (θk) ‖1

+ L

2 a
2
[
‖∇f (θk)‖2 + 2c1δ

2Ek‖∇f (θk) ‖1 + dc2
1δ

4 + c2
δ2

]
(5.11)

≤ f (θk)−
(
a− L

2 a
2
)
‖∇f (θk)‖2 + c1δ

2B
(
a+ La2

)
(5.12)

+ L

2 a
2
[
dc2

1δ
4 + c2

δ2

]
,
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where we have used the fact that −‖y‖1 ≤
N∑
i=1

yi for any vector N -vector

y, in arriving at the inequality (5.11). The last inequality follows from
the fact that ‖∇f (θk) ‖1 ≤ B by assumption A5.2. Re-arranging the
terms, we obtain

a ‖∇f (θk)‖2 ≤
2

(2− La)

[
f (θk)− Ekf (θk+1)

+ c1δ
2
(
a+ La2

)
B

]
+ La2

(2− La)

[
dc2

1δ
4 + c2

δ2

]
.

Now, summing up the inequality above for k = 1 to m, and taking
expectations, we obtain

m∑
k=1

aEm ‖∇f (θk)‖2

≤ 2
m∑
k=1

(Emf (θk)− Emf (θk+1))
(2− La) + 2mc1δ

2B

(
a+ La2

2− La

)

+ Lm
a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]
= 2

[
f (θ1)

(2− La) −
Em [f (θm+1)]
(2− La(m))

]
+ 2mc1δ

2B

(
a+ La2

2− La

)
+ Lm

a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]
.

Using Em [f (θk)] ≥ f(θ∗), we obtain
m∑
k=1

aEm ‖∇f (θk)‖2 ≤
2 (f(θ1)− f(θ∗))

(2− La) + 2mc1δ
2B

(
a+ La2

2− La

)

+ Lm
a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]
.

Using the fact that θR is picked uniformly at random from {θ1, . . . , θm},
we obtain

E
[
‖∇f (θR)‖2

]
≤ 1
ma

[
2Df

(2− La) + 2Bmc1δ
2
(
a+ La2

2− La

)

+Lm a2

(2− La)

[
dc2

1δ
4 + c2

δ2

]]
. (5.13)
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Next, we simplify the bound obtained above by substituting the step-size
and perturbation constant values specified in (5.7) as follows:

E
[
‖∇f (θR)‖2

]
≤ 1
ma

[
2Df + 4maBc1δ

2 + Lma2
[
dc2

1δ
4 + c2

δ2

]]
(5.14)

≤ 2Df

m
max

{
L,m2/3

}
+ 4B

(
c1
m1/3

)
+ L

[
dc2

1
m2/3 + c2

m−1/3

]
1

m2/3 .

(5.15)

In the above, the inequality (5.14) follows by using the fact that a ≤ 1/L,
while the inequality (5.15) uses the choice of δ in (5.7). The main claim
follows follows by rearranging terms in (5.15).

5.2 The convex case

We now study the non-asymptotic performance of the RSG algorithm
presented earlier, assuming that the objective is convex and smooth.
For the analysis, we use the projected variant of RSG with the following
update rule:

θk+1 = Π
(
θk − a(k)∇̂f(θk)

)
, (5.16)

where Π is an operator that projects orthogonally onto a convex and
compact set Θ ⊂ Rd.

The main result that provides a non-asymptotic bound for RSG
algorithm with gradient estimates satisfying A5.3 is given below.

Theorem 5.3.
Suppose the objective function f is L-smooth (see Definition 3.1),
and convex. Assume A5.3 holds and also that the projected region
Θ has a finite diameter, i.e.,

∥∥θ − θ′∥∥ ≤ D for all θ, θ′ ∈ Θ. Suppose
that the RSG algorithm is run for m iterations with stepsize a,
perturbation constant δ set as defined in (5.7). Let θR be chosen
uniformly at random from {θ1, . . . , θm}. Then, for any m ≥ 1, we
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have

E [f (θR)]− f(θ∗) ≤ LD2

m
+ K1
m1/3 ,

where K1 = D2 + 4
√
dDc1δ

2 + dc2
1δ

4

m
+ c2, constants c1 and c2 are

specified in A5.3, and θ∗ ∈ Θ is a global optima of f .

The case of unbiased gradient information leads to a O(1/
√
m) bound

and the proof is a complete parallel argument to the one employed for
the biased case in the result above, and we omit the details.

Remark 5.3. From the result above, it is apparent that an O
( 1
ε3

)
number of iterations is necessary to find a point that satisfies E [f (θR)]−
f(θ∗) ≤ ε. Moreover, this rate is not improvable in a minimax sense for
a gradient-based algorithm with inputs from a biased gradient oracle,
which we formalize in the next section.

Remark 5.4. For the special case of noise originating from a common
random number sequence that was discussed earlier in Section 3.3.4, it

is possible to obtain an improved bound of the order O

√ d

m

. This
improvement comes from the fact that the gradient estimate variance
does not blow up as the perturbation constant δ goes to zero, see
Proposition 3.5. The proof of this improved bound follows arguments
similar to those employed in the proof of Theorem 5.3, see Section 5.4
for the details.

Remark 5.5. The bound in Theorem 5.3 above is for a random iterate
θR. Using a different step size choice that decays in a geometric fashion,
and a radically different proof technique, it is possible to infer a bound
of the same order, i.e., O

(
m−1/3

)
for the last iterate θm. The reader

is referred to Section IV-B of (Bhavsar and Prashanth, 2022) for the
details. Note that the last iterate is preferred over a random iterate in
practice, and hence, it is desirable to obtain bounds for the last iterate.
For the non-convex case, to the best of our knowledge, there are no
bounds available for a stochastic gradient algorithm with inputs from a
biased gradient oracle.
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Proof. (Theorem 5.3)
Let ∆k = ∇̂f(θk)−∇f(θk) and ωk = ‖θk − θ∗‖ , ∀k ≥ 1. Then for any
k = 1, . . . ,m, we have

ω2
k+1 = ‖θk+1 − θ∗‖2

≤ ‖θk − a∇̂f(θk)− θ∗‖2

= ω2
k − 2a

〈
∇̂f(θk), θk − θ∗

〉
+ a2

∥∥∥∇̂f(θk)
∥∥∥2
, (5.17)

where the first inequality above used the fact that the projection operator
Π is non-expansive.

Taking expectations with respect to the sigma field Fk on both sides
of (5.17), and using (5.5), (5.6), we obtain

Ek[ω2
k+1] ≤ ω2

k − 2a 〈∇f(θk), θk − θ∗〉 − 2aE [〈∆k, θk − θ∗〉]

+ a2
[ ∥∥∥Ek [∇̂f(θk)

]∥∥∥2
+ c2
δ2

]
≤ ω2

k − 2a 〈∇f (θk) , θk − θ∗〉+ 2ac1δ
2‖θk − θ∗‖1

+ a2
[
‖∇f (θk) ‖2 + 2

√
dc1δ

2‖∇f (θk) ‖+ dc2
1δ

4 + c2
δ2

]
,

(5.18)

where the last inequality follows from the fact that −
N∑
i=1

Xi ≤ ‖X‖1

for any vector X. Now, using the fact that f is convex and ∇f(θ∗) = 0,
we have

‖∇f (θk)‖2 ≤ L 〈∇f (θk) , θk − θ∗〉 .

Further, since f is L-smooth, ‖∇f(θk)‖ ≤ L‖θk − θ∗‖. Plugging these
inequalities in (5.18), we obtain

E[ω2
k+1] ≤ E[ω2

k]− 2a 〈∇f (θk) , θk − θ∗〉+ 2ac1δ
2‖θk − θ∗‖1

+ a2
[
L 〈∇f (θk) , θk − θ∗〉+ 2

√
dc1δ

2L‖θk − θ∗‖

+ dc2
1δ

4 + c2
δ2

]
≤ E[ω2

k]− (2a− La2) [f (θk)− f(θ∗)]
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+ 2
√
dωkc1δ

2a+ La2) + a2
[
dc2

1δ
4 + c2

δ2

]
,

where the last inequality follows from the fact that f(·) is convex along
with ‖X‖1 ≤

√
d‖X‖ for any vector X. Re-arranging the terms, we

obtain

a [f (θk)− f(θ∗)]

≤ 1
(2− La)

[
ω2
k − E[ω2

k+1] + 2
√
dωc1δ

2(a+ La2) + a2
(
dc2

1δ
4 + c2

δ2

)]
.

Now summing up the inequality above from k = 1 to m and taking
expectations, we obtain

m∑
k=1

aEm [f (θk)− f(θ∗)] ≤
m∑
k=1

Em[ω2
k]− Em[ω2

k+1]
(2− La)

+ 2
√
d

m∑
k=1

Em [ωk] c1δ
2a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)

= ω2
1

(2− La) −
Em

[
ω2
m+1

]
(2− La)

+ 2
√
d

m∑
k=1

Em [ωk] c1δ
2 (a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)

≤ D2

(2− La) + 2
√
dD

m∑
k=1

c1δ
2 (a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)
where the last inequality follows by using (??), i.e., Em [ωk] ≤ D.
Combining the above result with the fact that θR is picked uniformly
at random from {θ1, . . . , θm}, we obtain

E [f (θR)]− f(θ∗)
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≤ 1
ma

[
D2

(2− La) + 2
√
dD

m∑
k=1

c1δ
2 (a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)]
, (5.19)

Using (5.7) in (5.19), we obtain

E [f (θR)]− f(θ∗)

≤ 1
ma

[
D2

(2− La) + 2
√
dD

m∑
k=1

c1δ
2 (a+ La2)

(2− La)

+
m∑
k=1

a2

(2− La)

(
dc2

1δ
4 + c2

δ2

)]

≤ 1
ma

[
D2 + 4

√
dDmac1δ

2 +ma2
(
dc2

1δ
4 + c2

δ2

)]
, (5.20)

where the final inequality follows by using the fact that a ≤ 1/L. The
main claim follows by using the definition of a, δ given in (5.7) followed
by simple algebraic manipulations.

5.3 The strongly-convex case

In this section, we present non-asymptotic analysis for the SG algorithm
(5.1) under a strongly convex objective, which is made precise in the
definition below.

Definition 5.3. A continuously differentiable function f is µ-strongly
convex if the following condition holds for any θ, θ′:

f(θ′) ≥ f(θ) +∇f(θ)T (θ′ − θ) + µ

2
∥∥θ′ − θ∥∥2

.

For a brief introduction to strong-convexity, the reader is referred to
Appendix D. As in the previous sections, we consider unbiased as well
as biased gradient information. We begin with the unbiased gradient
case in the next section.

5.3.1 SG with unbiased gradient information

We consider the following update iteration:

θk+1 = θk − a(k)∇̂f(θk). (5.21)
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We first state and prove a result for the case of a constant step size.

Theorem 5.4. Let f be a µ-strongly convex function. Assume A5.1.
Then, the SG algorithm governed by (5.21) and with a(k) = a s.t.
0 < aL < 1, satisfies

E[f(θm)− f(θ∗)] ≤ aLσ2

2µ + (1− aµ)m−1
(
f(θ1)− f(θ∗)− aLσ2

2µ

)
.

(5.22)

Proof. From the initial passage in the proof of Theorem 5.1, we have

Ek[f(θk+1)]− f(θk) ≤ −a(k)(1− 1
2a(k)L)‖∇f(θk)‖22 + 1

2a(k)2Lσ2.

Since a(k) = a and 0 < aL < 1, we have

Ek[f(θk+1)]− f(θk) ≤ −
1
2a‖∇f(θk)‖22 + 1

2a
2Lσ2. (5.23)

Since f is µ-strongly convex, the following inequality, which is well-
known as the Polyak-Lojasiewicz (PL) condition, holds2:

f(θ)− f(θ∗) ≤ 1
2µ‖∇f(θ)‖22, ∀θ.

Using the above inequality in (5.23), we obtain

Ek[f(θk+1)]− f(θk) ≤ −µa (f(θk)− f(θ∗)) + 1
2a

2Lσ2. (5.24)

2This inequality can be inferred as follows: Using strong convexity,

f(y)− f(x) ≥ ∇f(x)T(y − x) + µ

2 ‖y − x‖
2 .

Taking minimum over y on both sides, we have

min
y

(f(y)− f(x)) ≥ min
y

(
∇f(x)T(y − x) + µ

2 ‖y − x‖
2
)
.

The minimum on the RHS above is obtained for y∗ = − 1
µ
∇f(x) + x. Substituting

this value on the RHS, we obtain

f(x∗)− f(x) ≥ − 1
µ
‖∇f(x)‖2 + 1

2µ ‖∇f(x)‖2 .

Re-arranging leads to PL-condition.
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Subtracting f(θ∗) on both sides and re-arranging, we obtain

Ek[f(θk+1)− f(θ∗)] ≤ (1− aµ)[f(θk)− f(θ∗)] + 1
2a

2Lσ2. (5.25)

Taking expectations followed by straightforward simplifications, we
obtain

E[f(θk+1)− f(θ∗)]− aLσ2

2µ

≤ (1− aµ)E[f(θk)− f(θ∗)] + a2Lσ2

2 − aLσ2

2µ

= (1− aµ)
(
E[f(θk)− f(θ∗)]− aLσ2

2µ

)
. (5.26)

Using a < 1/L by assumption, and µ ≤ L, we have3

aµ <
µ

L
≤ 1.

A repeated application of the above inequality leads to the following
bound:

E[f(θm)− f(θ∗)] ≤ aLσ2

2µ + (1− aµ)m−1
(
f(θ1)− f(θ∗)− aLσ2

2µ

)
.

(5.27)

The claim follows.

Remark 5.6. Using the bound on the optimization error (or the differ-
ence in function values) in the result above, we can establish a bound
on the parameter error as follows: From µ-strong convexity of f , we
have

f(θ) +∇f(θ)T(θ̃ − θ) + µ

2

∥∥∥θ̃ − θ∥∥∥2
≤ f(θ̃).

At θ = θ∗, ∇f(θ∗) = 0, implying∥∥∥θ̃ − θ∥∥∥2
≤ 2
µ

(
f(θ̃)− f(θ∗)

)
.

3The second inequality can be inferred as follows: Using µ-strong convexity and
L-smoothness of f , for any θ, θ̃, we have

f(θ) +∇f(θ)T(θ̃ − θ) + µ

2
∥∥θ̃ − θ∥∥2 ≤ f(θ̃) ≤ f(θ) +∇f(θ)T(θ̃ − θ) + L

2
∥∥θ̃ − θ∥∥2

.

Thus, µ ≤ L.
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Thus, a bound on the difference in function values implies a bound on
the parameter error.

Remark 5.7. Taking limits as n→∞, the bound in (5.22) converges

to aLσ2

2µ . This observation implies that a constant step size stochastic
gradient algorithm does not converge to the optima, and instead gets
to within a ball around the optima.

Next, we consider the case of a diminishing step size.

Theorem 5.5. Let f be a µ-strongly convex function. Assume A5.1.
Then, the SG algorithm governed by (5.21) and with a(k) = c

k + 1
s.t. 1

µ
< c ≤ L, satisfies

E [f(θm)− f(θ∗)] ≤ 1
m+ 1 max

{
c2Lσ2

2(cµ− 1) , 2 (f(θ1)− f(θ∗))
}
.

(5.28)

Proof. We prove by induction. The base case holds trivially. Assuming
the claim holds for m, we show that it holds for m+ 1.

From (5.4), we have

Ek[f(θk+1)]− f(θk)] ≤ −a(k)(1− 1
2a(k)L)‖∇f(θk)‖22 + 1

2a(k)2Lσ2

≤ −a(k)‖∇f(θk)‖22 + 1
2a(k)2Lσ2

(Since a(k)L ≤ 1)

≤ −a(k)µ (f(θk)− f(θ∗)) + 1
2a(k)2Lσ2

(PL-condition)

Thus,

E[f(θk+1)]− f(θ∗)] ≤ (1− a(k)µ)E[f(θk)− f(θ∗)] + 1
2a(k)2Lσ2.

Using the induction hypothesis, the form of the step size a(k) and
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letting K = max
{

c2Lσ2

2(cµ− 1) , 2 (f(θ1)− f(θ∗))
}
, we obtain

E[f(θm+1)]− f(θ∗)] ≤
(

1− cµ

m+ 1

)
K

m+ 1 + c2Lσ2

2(m+ 1)2

= Km

(m+ 1)2 −
(cµ− 1)K
(m+ 1)2 + c2Lσ2

2(m+ 1)2

≤ K

m+ 2 ,

where the final inequality used the following fact:

−(cµ− 1)K
(m+ 1)2 + c2Lσ2

2(m+ 1)2 ≤ 0.

The inequality above holds by the definition of K, and simple algebra
to infer Km

(m+ 1)2 ≤
K

m+ 2.
The claim follows.

Remark 5.8. In contrast to the constant step size case handled pre-
viously, with a diminishing step size, we have a bound that vanishes
as m → ∞. However, the step size choice requires the knowledge of
the strong convexity parameter µ, while the constant step size case
in Theorem 5.4 did not assume such information. On a related note,
it is possible to obtain a bound of O

(
1/
√
m
)
with a step size choice

that does not require the knowledge of µ, and more importantly, with
a bound that does not scale inversely with µ. Such a bound may be
preferable for ill-conditioned problems, where µ is very small. The reader
is referred to (Nemirovski et al., 2009) for the details.

5.3.2 SG with biased gradient information

As before, we consider the update iteration in (5.21). Unlike the previous
section, where we assumed unbiased gradient estimates (i.e., the condi-
tion A5.1 holds), here the estimate ∇̂f(θk) is a biased approximation
to the gradient of the objective function f at θk.

As in the asymptotic analysis in Section 4.1.3, the biased gradient
estimate ∇̂f(θk) can be decomposed as follows:

∇̂f(θk) = ∇f(θk) + βk + ηk, where (5.29)
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βk = E
[
∇̂f(θk) | Fk

]
−∇f(θk),

ηk = ∇̂f(θk)− E
[
∇̂f(θk) | Fk

]
,

where Fk is a σ-field generated by {θi, i ≤ k}. In the above, βk is the
bias in the gradient estimate and ηk, n ≥ 0, is a martingale difference
sequence.

Using a simultaneous perturbation-based gradient estimate implies
βk = O(δ2

k), where δk is the perturbation parameter used in forming
the estimate (see Chapter 3 for several examples). While the bias goes
down as δ2

k, the variance of the gradient estimate scales inversely with
δ2
k. This has been formalized earlier in assumptions A5.2–A5.3.

We now present a non-asymptotic bound in expectation for the SG
algorithm (5.21) with inputs from a biased gradient oracle that satisfies
the aforementioned assumptions.

Proposition 5.1. Suppose the objective function f is L-smooth (see
Definition 3.1), and assumptions A5.2–A5.3 hold. Then, we have

E ‖θm+1 − θ∗‖2 ≤ 2 exp(−2µΓ(m)) ‖θ0 − θ∗‖2︸ ︷︷ ︸
initial error

+ 2
n∑
k=1

a2
k exp(−2µ(Γ(m)− Γ(k)))c2

1δ
4
k︸ ︷︷ ︸

bias error

+

n∑
k=1

a2
k exp(−2µ(Γ(m)− Γ(k)))c2δ

−2
k︸ ︷︷ ︸

sampling error

, (5.30)

where Γ(k) :=
k∑
i=1

ai.

Proof. Let zm = θm − θ∗ denote the error at time instant n of the
algorithm (5.21). Using ∇f(θ∗) = 0, we have(∫ 1

0
∇2f(θ∗ + λ(θm − θ∗))dλ

)
zm = ∇f(θm).

Using the fact above, we arrive at a recursion for zm from (5.29). Letting
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Jm :=
∫ 1

0
∇2f(θ∗ + λ(θm − θ∗)dλ, we have

zm+1 =(I − a(m)Jm)zm − a(m) (βm + ηm)

=Πmz0 −
n∑
k=1

a(k)ΠmΠ−1
k (βk + ηk),

where Πm :=
n∏
k=1

(I − a(k)Jk).

By the conditional Jensen’s inequality, we obtain

(Em ‖zm+1‖)2 ≤ Em(〈zm, zm〉)

= Em

‖Πmz0‖2 +
∥∥∥∥∥
n∑
k=1

a(k)ΠmΠ−1
k βk

∥∥∥∥∥
2

+
∥∥∥∥∥
n∑
k=1

a(k)ΠmΠ−1
k ηk

∥∥∥∥∥
2

−
〈

Πmz0,
n∑
k=1

a(k)ΠmΠ−1
k βk

〉
−
〈

Πmz0,
n∑
k=1

a(k)ΠmΠ−1
k ηk

〉

−
〈

n∑
k=1

a(k)ΠmΠ−1
k βk,

n∑
k=1

a(k)ΠmΠ−1
k ηk

〉)
(5.31)

≤ 2 ‖Πmz0‖2 + 2
n∑
k=1

a(k)2
∥∥∥ΠmΠ−1

k

∥∥∥2
c2

1δ
4
k

+
n∑
k=1

a(k)2
∥∥∥ΠmΠ−1

k

∥∥∥2
E ‖ηk‖2 . (5.32)

For the last inequality, we have used the following facts: (i) ηk is a
martingale difference implying the last two cross terms in (5.31) are
zero; (ii) βk ≤ c1δ

2
k from A5.3; and (iii) Cauchy-Schwarz inequality for

the first cross term in (5.31).
Now, we bound each of the square terms in (5.32) separately.

Since the objective is strongly convex, we have that ‖I − a(m)Jm‖ ≤
exp(−µa(m)). Hence,

∥∥∥ΠmΠ−1
k

∥∥∥
2

=

∥∥∥∥∥∥
n∏

j=k+1
(I − ajJj)

∥∥∥∥∥∥
2

≤
n∏

j=k+1
‖(1− ajµ)I − aj(Jj − µI)‖2
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≤
n∏

j=k+1
‖(1− ajµ)I‖2 ≤

n∏
j=k+1

(1− ajµ)

≤ exp (−µ(Γ(m)− Γ(k))) . (5.33)

From A5.3, we can infer that the second moment of the martingale
difference is bounded above by c2/δ

2
k. The main claim now follows by

plugging the bound on ηm and (5.33) into (5.32).

By specializing the result in the proposition above, we derive a
non-asymptotic bound of order O(1/

√
m).

Theorem 5.6. (Biased gradients and strongly convex ob-
jective) Let a(k) = c/k and δk = δ0/k

ζ . Choose c such that
1
2 < µc < 1. Then,

E ‖θm − θ∗‖2 ≤
2 ‖θ0 − θ∗‖2

(m+ 1)2µc + 8c2c2
1δ

4
024ζ

(2µc− 1)(m+ 1)1+4ζ

+ 4c2c224ζ

δ2
0(2µc− 1)(m+ 1)1−2ζ .

Remark 5.9. Choosing ζ = 0, one can obtain a bound of the order
O

( 1
m

)
for simultaneous perturbation schemes that lead to biased

gradient estimates, and this bound matches the corresponding bound
with unbiased gradient information up to constant factors. Contrast
this with the difference in rates between biased and unbiased gradient
information for the non-convex and convex cases in the previous sections.

Remark 5.10. Using L-smoothness of f and ∇f(θ∗) = 0, we have

E [f (θm)]− f(θ∗) ≤ L

2 E ‖θm − θ∗‖2 = O

( 1
m

)
.

Proof. Bounding a sum by an integral, we obtain

exp(−2µΓ(m)) ≤ exp(−µc log(m+ 1)) = (m+ 1)−2µc.
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Plugging a(k) = c/k and δk = δ0/k
ζ into the bias error term in

(5.30), we obtain
m∑
k=1

a(k)2 exp(−2µ(Γ(m)− Γ(k)))c2
1δ

4
k

≤
m∑
k=1

c2

k2 (m+ 1)−2µc(k + 1)2µcc2
1
δ4

0
m4ζ

≤ c2(m+ 1)−2µc−4ζc2
1δ

4
024ζ

m∑
k=1

(k + 1)2µc−2

≤ 4c2c2
1δ

4
024ζ

(2µc− 1) (m+ 1)−1−4ζ ,

where we used the following argument to arrive at the penultimate
inequality above:

m∑
k=1

(k + 1)2µc

k2 =
m∑
k=1

(k + 1)2µc−2
(

1 + 1
k

)2
≤ 4(m+ 1)2µc

2µc− 1 .

Along similar lines, the sampling error term in (5.30) can be upper-
bounded as follows:

m∑
k=1

a(k)2 exp(−2µ(Γ(m)− Γ(k))) c2
δ2
k

≤ 4c2c224ζ

δ2
0(2µc− 1)

(m+ 1)−1+2ζ .

5.4 Bounds with improved dimension dependence

For a non-convex objective, under a smoothness assumption on the
objective function, we presented O(1/m1/3) bounds on the gradient
norm square, see Theorem 5.2. Here m denotes the number of iterations
of the RSG algorithm, and the gradient estimates had the usual bias-
variance tradeoff (see Assumption A5.3). However, this bound has two
shortcomings. First, the dependence on m is weaker as compared to
the case where unbiased gradient information is available. We show in
Section 5.6 that the 1/m1/3 dependence on m is unimprovable in the
minimax sense, when the underlying gradient estimates exhibit a bias-
variance tradeoff. Second, the dimension dependence in the O(1/m1/3)
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bound mentioned above is not encouraging, since this dependence is
not sub-linear in d.

In this section, we present two settings, where we exhibit sub-linear
dependence on d and a 1√

m
dependence on the number of iterations m,

under additional assumptions on the system model. In the first setting
we assume that the noisy observations are smooth, while the second
setting considers the sparse objective gradient case.

5.4.1 Smooth sample performance

We obtain O(1/
√
m) bounds for an objective function of the form f(θ) =

Eξ [F (θ, ξ)] if the sample performance F is L-smooth, i.e., satisfying
the following assumption:

A5.4. The sample performance F is such that (i)∇f(θ) = Eξ [∇F (θ, ξ)];
(ii) The gradient of F is Lipschitz continuous almost surely, for any ξ,
i.e., ∥∥∥∇F (θ, ξ)−∇F (θ̃, ξ)

∥∥∥ ≤ L ∥∥∥θ − θ̃∥∥∥ , ∀θ, θ̃ ∈ Rd,

for some L > 0; and (iii) There exists a σ > 0 such that the following
inequality holds for any θ:

E
[
‖∇F (θ, ξ)−∇f(θ)‖2

]
≤ σ2.

Assumption A5.4 implies f is L-smooth. This can be seen as follows:
For any θ, θ̃ ∈ Rd,∥∥∥∇f(θ)−∇f(θ̃)

∥∥∥ ≤ ∥∥∥∇[Eξ
(
F (θ, ξ)− F (θ̃, ξ)

)
]
∥∥∥

≤ Eξ
∥∥∥∇F (θ, ξ)−∇F (θ̃, ξ)

∥∥∥
≤ L

∥∥∥θ − θ̃∥∥∥ .
Using such a smooth sample F , it is possible to construct a gradient
estimate that satisfies the following conditions:∥∥∥E [∇̂f(θ)

]
−∇f (θ)

∥∥∥ ≤ c1δ, (5.34)

E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ c2δ

2 + c̃2. (5.35)
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One way to construct a gradient estimate satisfying the conditions
defined above is to employ the Gaussian smoothing approach, discussed
earlier in Section 3.3.3. For ease of readability, we recall this estimator
below.

∇̂f(θ) = ∆
[
F (θ + δ∆, ξ)− F (θ, ξ)

δ

]
, (5.36)

where ∆ is a d-dimensional standard Gaussian vector. An important
observation regarding the estimator above is that the noise ξ is common
to the two function measurements. In practical settings, where the noise
is generated using common random numbers, it is possible to keep the
noise factor ξ same across function measurements — a setting discussed
earlier in Section 3.3.4.

In Proposition 3.4, we established a c1δ bias bound for the estimator
in (5.36) without assuming that F is L-smooth and instead working
with only smoothness of the objective f . This bound is good enough to
obtain the bias guarantee in (5.34). On the other hand, the variance
bound in Proposition 3.4 is c2/δ

2, which precludes choosing a very small
δ in the gradient estimate. However, using a different proof technique,
it is possible to obtain the variance bound c2δ

2 + c̃2 in (5.35). This
proof would exploit the fact that F is L-smooth (see Assumption A5.4)
in conjunction with the common noise in the gradient estimate. We
present such a result below. On a related note, we established bounds
similar to those in (5.34)–(5.35) for the case where F is L-smooth and
in addition, f is convex, see Proposition 3.5.

Proposition 5.2. Assume A3.2, A3.3, A5.2, and A5.4. Then, the gra-
dient estimate defined in (5.36), with ∆ distributed as a multivariate
standard Gaussian, satisfies the following bounds for any given θ:∥∥∥E [∇̂f(θ)

]
−∇f(θ)

∥∥∥ ≤ C1δ, and (5.37)

E
[∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
]
≤ C̃2 + C2δ

2, (5.38)

where C1 is defined in Proposition 3.4, C2 = L2(d+ 6)3

2 , and C̃2 =
2(d+ 4)(B2 + σ2), with σ2 denoting a bound on the variance of F (θ, ξ)
(see Assumption A5.4).
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Proof. The first claim can be inferred from Proposition 3.4. We prove
the second claim here.

For a L-smooth function h, define

g(x; δ) = h(θ + δ∆)− h(θ)
δ

∆.

where δ is the perturbation/smoothing constant and ∆ ∼ N (0, Id).
Notice that

E∆
[
‖g(θ, δ)‖2

]
= 1
δ2E∆

[
(h(θ + δ∆)− h(θ))2 ‖∆‖2

]
.

Now,

(h(θ + δ∆)− h(θ))2 ≤ ‖h(θ + δ∆)− h(θ)− δ∇h(θ)T∆‖2 + δ2(∇h(θ)T∆)2

≤ 2
(
Lδ2

2 ‖∆‖
2
)

+ 2δ2(∇h(θ)T∆)2,

where we used the fact that |h(y)−h(x)−∇h(x)T(y−x)| ≤ L

2 ‖y−x‖
2.

Thus,

E∆(||g(θ, δ)||2) ≤ 1
δ2

[
2δ4

4 L2E∆[||∆||6] + 2δ2E∆((∇h(θ)T∆)2||∆||2)
]

≤ δ2

2 L
2(d+ 6)3 + 2(d+ 4)||∇h(θ)||2, (5.39)

where we used the fact that E∆[||∆||k] ≤ (d + k)k/2 for a standard
Gaussian vector ∆, and E∆

(
(∇h(θ)T∆)2||∆||2

)
≤ (d+ 4)||∇h(θ)||2 (cf.

Theorem 3 of (Nesterov and Spokoiny, 2017) for a proof).
Applying (5.39) for h = F , after noting that F is a L-smooth

function (see the lemma above), we bound the second moment of the
gradient estimate in (5.36) as follows:

E(||∇̂f(θ)||2) = E
(∥∥∥∥∆ [

F (θ + δ∆, ξ)− F (θ, ξ)
δ

]∥∥∥∥2)

≤ δ2

2 L
2(d+ 6)3 + 2(d+ 4)

[
1
2E||∇F (θ, ξ)||2 + δ2

4

]

≤ δ2

2 L
2(d+ 6)3 + 2(d+ 4)

(
||∇f(θ)||2 + σ2

)
, (5.40)
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where the final inequality used the variance bound from Assump-
tion A5.4. The bound in (5.38) follows by using (5.40) in conjunction
with E

∥∥∥∇̂f(θ)− E
[
∇̂f(θ)

]∥∥∥2
≤ E

∥∥∥∇̂f(θ)
∥∥∥2
.

Using the gradient estimate in (5.36) in a stochastic gradient algo-
rithm along the lines discussed in Section 5.1, it is possible to obtain

an order O

√ d

m

 bound. This is an improvement over the O(m−1/3)

derived for a smooth f in Section 5.1, see Theorem 5.2. The improve-
ment is w.r.t. the number of iterations m as well as dimension d. The
result below makes this claim precise.

Theorem 5.7.
Assume the conditions of Proposition 5.2 hold. Suppose the RSG
algorithm is run with a(k) = a and perturbation constant δ(k) = δ

for each k = 1, . . . ,m, where

a = min
{ 1
L
,

1√
dm

}
, δ = 1

d
√
m
. (5.41)

Then, choosing θR uniformly at random from {θ1, . . . , θm}, we have

E ‖∇f (θR)‖2 ≤ 2LDf

m
+ Z5√

m
,

where Z5 = 2
√
dDf + 4BK3 + L

(√
dK2

3
m

+ C2
md5/2 + C̃2√

d

)
, K3 =

C1d
−1, constants C1, C2, C̃2 are as defined in Proposition 5.2, B

is as defined in A5.2, and Df is as defined in (5.3).

The bound above is O

√ d

m

 ifm > d. As mentioned before, a result in

similar spirit can be claimed for the convex case, by using Proposition 3.5
in place of Proposition 5.2 and we omit the details as the proof is a
completely parallel argument to Theorem 5.3.

Proof. Following the proof in a similar manner as that of Theorem 5.2,
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we obtain

E
[
‖∇f (θR)‖2

]
(5.42)

≤ 1
ma

[
2 (f(θ1)− f(θ∗))

(2− La) + 2mC1δ

(
a+ La2

2− La

)
B

+Lm a2

(2− La)
[
dC2

1δ
2 + C2δ

2 + C̃2
]]
.

The main claim follows by plugging values of a and δ, defined in the
theorem statement, in the inequality above.

5.4.2 The sparse case

The zeroth norm ‖θ‖0 of a vector θ is the number of non-zero entries

in θ, i.e., ‖θ‖0 =
d∑
i=1

I
{
θi 6= 0

}
, where θi denotes the ith coordinate of

the vector θ. In this section, we make the following sparsity assumption
on ∇f :

A5.5. For any θ ∈ Rd, the gradient of f is s-sparse, i.e.,

‖∇f(θ)‖0 ≤ s,

where s� d.

The assumption above implies

‖∇f(θ)‖2 ≤
√
s‖∇f(θ)‖∞ and ‖∇f(θ)‖1 ≤ s‖∇f(θ)‖∞.

Additionally, it follows that

‖∇fδ(θ)‖0 ≤ s for all θ ∈ Rd,

where ∇fδ(θ) = E∆[∇f(θ + δ∆)]. For the analysis in the sparse case,
we make the following assumption that is a variant of Assumption A5.4:

A5.6. The sample performance F is such that (i)∇f(θ) = Eξ [∇F (θ, ξ)];
(ii) the gradient of F is Lipschitz continuous almost surely, for any ξ,
i.e., ∥∥∥∇F (θ, ξ)−∇F (θ̃, ξ)

∥∥∥
1
≤ L

∥∥∥θ − θ̃∥∥∥
∞
, ∀θ, θ̃ ∈ Rd,
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for some L > 0; and (iii) there exists a σ > 0 such that the following
inequality holds for any θ:

E
[
‖∇F (θ, ξ)−∇f(θ)‖21

]
≤ σ2.

Next, we make the following assumption on the support of the
gradient vector.

A5.7. There exists a set S ⊂ {1, . . . , d} s.t. ∇if(θ) = 0 if i /∈ S, and
non-zero if i ∈ S.

Since supp(∇f(θ)) = S, it follows that supp(∇fδ(θ)) = S. Thus,

‖∇fδ(θ)−∇f(θ)‖2 =
(∑
i∈S

(∇ifδ(θ)−∇if(θ))2
) 1

2

,

‖∇fδ(θ)−∇f(θ)‖2 ≤
√
s‖∇fδ(θ)−∇f(θ)‖∞. (5.43)

The sparsity assumption A5.5 has been made earlier in (Balasubrama-
nian and Ghadimi, 2022a). However, the non-asymptotic bound derived
there is incorrect, as discussed in (Cai et al., 2022). Motivated by the
discussion in the aforementioned reference, we include the support
assumption A5.7 as a fix to the non-asymptotic analysis of RSG in
the sparse setting that we consider. While the support assumption in
Assumption A5.7 is restrictive, the analysis goes through under any
weaker assumption that ensures the condition in (5.43) holds.

Before presenting the main result, we provide a bound on the `∞-
norm of the gradient estimate below.

Proposition 5.3. Suppose assumptions A5.5, A5.6, A5.7 hold. Then,
the gradient estimator (5.36) satisfies

E[‖∇̂f(θ)‖2∞] ≤ Ca + Cb‖∇f(θ)‖21, (5.44)

where Ca = 4L2δ2C(log(d))3, Cb = 8C(log(d))2.
In addition, with fδ(θ) = E∆(f(θ + δ∆) denoting the Gaussian

smoothed functional, we have the following bound for any θ ∈ Rd:

‖∇fδ(θ)−∇f(θ)‖2 ≤ CδL
√

2s(log(d))
3
2 . (5.45)
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Proof. Notice that

E
[
‖∇̂f(θ)‖2∞

]
= E

[
(F (θ + δ∆, ξ)− F (θ, ξ))2

δ2 ‖∆‖2∞

]
(5.46)

= E
[

(F (θ + δ∆, ξ)− F (θ, ξ)− δ〈∇F (θ, ξ),∆〉+ δ〈∇F (θ, ξ),∆〉)2

δ2

×‖∆‖2∞
]

≤ E
[

2 (F (θ + δ∆, ξ)− F (θ, ξ)− δ〈∇F (θ, ξ),∆〉)2

δ2 ‖∆‖2∞

]

+ E
[

2 (δ〈∇F (θ, ξ),∆〉)2

δ2 ‖∆‖2∞

]

≤ E

2
(
L
2 δ

2‖∆‖2∞
)2

+ 2 (δ〈∇F (θ, ξ),∆〉)2

δ2 ‖∆‖2∞

 (5.47)

≤ L2

2 δ2E
[
‖∆‖6∞

]
+ 2E

[
‖∇F (θ, ξ)‖21

]
E
[
‖∆‖4∞

]
≤ 4L2δ2C(log(d))3 + 4C

(
‖∇f(θ)‖21 + σ2

)
(log(d))2, (5.48)

where we used L-smoothness of F , see Assumption A5.6, in arriving at
(5.47) and the following inequality in the last step above:

E[‖∆‖k∞] ≤ C(2 log(d))
k
2 , (5.49)

for some universal constant C (see Lemma 3.1 in (Balasubramanian
and Ghadimi, 2022a) for a proof).

The first claim follows. For the second claim, notice that

‖∇fδ(θ)−∇f(θ)‖2
≤
√
s‖∇fδ(θ)−∇f(θ)‖∞

≤
√
s

(2π)
d
2 δ

∫ ∞
−∞
|f(θ + δu)− f(θ)− δ〈∇f(θ)), u〉| ‖u‖∞ exp

(
−‖u‖

2

2

)
du

≤
√
s

(2π)
d
2

δL

2

∫ ∞
−∞
‖u‖3∞ exp

(
−‖u‖

2

2

)
du

≤ CδL
√

2s(log d)
3
2 , (5.50)

where the final inequality used (5.49).
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The main result that presents a non-asymptotic bounds for the RSG
algorithm with sparsity assumptions, is given below.

Theorem 5.8. Assume conditions of Proposition 5.3 hold. Suppose
RSG algorithm is run with the stepsize a(k) and the perturbation
constant δk set as follows:

a = min
{ 1

2sLCb
,

1√
m

}
, δ = 1√

m
,

where Cb is specified in Proposition 5.3. Then, choosing θR uni-
formly at random from {θ1, . . . , θm}, we have

E
[
‖∇f (θR)‖21

]
≤ 8s2LCbDf

m
+ 4sDf√

m
+ 4s

[
Cc
m2 + Cd

m
√
m

]
,

where Ca, Cb are defined in Proposition 5.3, Cc = 1
2
(
C2L2(2s)(log(d))3

)
,

Cd = LCa
2 , and Df is defined in (5.9).

The bound above is O
(

(log(d))3
√
m

)
. The poly-logarithmic dependence

on d is an improvement over the corresponding
√
d for the smooth

sample performance case handled in the previous section.

Proof. Using L-smoothness of f in the `∞-norm from Assumption A5.6,
we have

f(θk+1) ≤ f(θk) + 〈∇f(θk), θk+1 − θk〉+ L

2 ‖θk+1 − θk‖2∞

≤ f(θk)− a〈∇f(θk), ∇̂f(θk)〉+ La2

2 ‖∇̂f(θk)‖2∞,

Taking conditional expectation w.r.t. the sigma field Fk as in earlier
proofs, and using Proposition 5.3, we obtain

Ek[f(θk+1)]
≤ f(θk)− a‖∇f(θk)‖2 + a〈∇f(θk),∇f(θk)−∇fδ(θk)〉

+ La2

2 Ek[‖∇̂f(θk)‖2∞]
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≤ f(θk)−
a

2‖∇f(θk)‖22 + a

2‖∇f(θk)−∇fδ(θk)‖22

+ La2

2 Ek[‖∇̂f(θk)‖2∞].

Using (5.44), (5.45), and ‖∇f(θ)‖1 ≤ ‖∇f(θ)‖2
√
s, we obtain

E[f(θk+1)] ≤ f(θk)−
a

2s‖∇f(θk)‖21 + a

2
(
C2δ2L2(2s)(log(d))3

)
+ La2

2 (Ca + Cb‖∇f(θk)‖21).

Thus,(
a

2s −
La2

2 Cb

)
‖∇f(θk)‖21

≤ f(θk)− Ek[f(θk+1)] + a

2
(
C2δ2L2(2s)(log(d))3

)
+ La2

2 Ca.

Recall that Cc = 1
2
(
C2L2(2s)(log(d))3

)
, and Cd = L

2Ca. Using these
constants, the inequality above can be rewritten as follows:(

a

2s −
La2

2 Cb

)
‖∇f(θk)‖21 ≤ f(θk)−E[f(θk+1)]+Ccaδ2+Cda2. (5.51)

Taking total expectations, using a ≤ 1
2sLCb

and E [f (θk)] ≥ f(θ∗), for
all k ≥ 1, we obtain

a

4sE‖∇f(θk)‖21 ≤ E (f(θk)− f(θ∗)) + Ccaδ
2 + Cda

2. (5.52)

Since θR is picked uniformly at random from {θ1, . . . , θm} and a ≤ 1/L,
we have

E
[
‖∇f (θR)‖21

]
= 1
m

m∑
k=1

E ‖∇f (θk)‖21

≤ 4s
ma

[
Df + Ccaδ

2 + Cda
2
]

≤ 4sDf

m
max

{
2sLCb,

√
m

}
+ 4s

[
Ccδ

2

m
+ aCd

m

]

≤ 8s2LCbDf

m
+ 4sDf√

m
+ 4s

[
Cc
m2 + Cd

m
√
m

]
.

The claim follows.
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5.5 Biased function measurements

In this section, we discuss a variant in which the function measurements
are not unbiased and, instead, feature an estimation error component
that can be controlled by increasing the batch size. We provide two
motivating examples to illustrate this model variant.

Example 5.1. Consider a model in which the function measurements
have an error term with a positive mean. In this model, the objective f is
obtained as a solution to the following sub-problem over the optimization
variable y that belongs to a convex and compact set Y :

f(θ) = min
y∈Y

E[Hθ(y, ξ)],∀θ ∈ Rd. (5.53)

In practical applications, owing to computational considerations, a
closed-form solution of the sub-problem defined above cannot be com-
puted. A computationally efficient alternative is to perform gradient
descent (GD) for a few steps, say m, and use the GD iterate as a
proxy the function measurement. More precisely, let F (θ,m) denote an
approximate solution of (5.53), where m denotes a batch-size parameter.
Motivated by the GD approximation, we use the following form for
F (θ,m) :

F (θ,m) = min
y∈Y

E[Hθ(y, ξ)] + ε(m), ∀θ ∈ Rd, (5.54)

where ε is a ‘positive’ estimation error term. Choosing a larger batch size
m implies that the subproblem in (5.53) can be solved more accurately
(e.g. with more GD steps), leading to a lower estimation error ε(m).

The next example shows that biased function measurements appear
naturally in the context of estimation of risk measures from i.i.d. samples.

Example 5.2. For a random variable X, recall that VaRα(X) and
CVaRα(X), at a pre-specified level α ∈ (0, 1) are defined by

VaRα(X) = inf{ξ : P [X ≤ ξ] ≥ α}, and

CVaRα(X) = Vα(X) + 1
1− αE [X − Vα(X)]+ ,
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where [X]+ = max(0, X). If the distribution underlying X is continuous,
then CVaRα(X) = E[X|X ≥ VaRα(X)].

We now describe a well-known estimate of CVaR using m i.i.d.
samples {Xi, i = 1, . . . ,m}. Note that CVaR estimation requires an
estimate of VaR. Let V̂m,α and Ĉm,α denote the estimates of VaR and
CVaR. These quantities are defined as follows (see (Serfling, 2009)):

V̂m,α = X[bmαc], Ĉm,α = 1
m

m∑
i=1

XiI
{
Xi ≥ V̂m,α

}
(1− α) . (5.55)

In the above, X[i] denotes the ith order statistic, ∀i. Notice that
E
(
Ĉm,α

)
6= CVaRα(X), since the VaR estimate in (5.55) is not unbi-

ased. However, a recent CVaR concentration result in (Prashanth and
Bhat, 2022) shows that if the underlying r.v. X is σ-sub-Gaussian4,
then, for any ε > 0, the following inequality holds:

P(|Ĉm,α − CVaRα(X)| > ε) ≤ c1 exp(−c2mε
2(1− α)2), (5.56)

where constants c1, c2 depend on σ. Using (5.56), we have

E
∣∣∣Ĉm,α − CVaRα(X)

∣∣∣
=
∫ ∞

0
P(|Ĉm,α(X)−VaRα(X)| > ε)dε ≤ c3√

m
, (5.57)

where c3 > 0 is an absolute constant.

In both the examples illustrated above, the common element is biased
function measurements. Using such measurements, one could construct
gradient estimates using the simultaneous perturbation (SP) method
that was discussed earlier in Chapter 3. We make this construction
precise below.

Let y+(m) = f (θ + δ∆)+ξ+(m), and y−(m) = f (θ − δ∆)+ξ−(m).
Here ξ±(m) are the estimation errors assuming a batch size of m, δ is
a perturbation constant, and ∆ =

(
∆1, . . . ,∆d

)>
is a d-dimensional

standard Gaussian vector. For the two examples discussed above, it
4A r.v.X with mean µ is said to be σ-sub-Gaussian for some σ > 0 if E[exp(λ(X−

µ))] ≤ exp
(
λ2σ2

2

)
, for any λ ∈ R.



5.5. Biased function measurements 151

is apparent that the estimation error is O( 1√
m

) in expectation, if m

samples are used for estimation of f at (θ ± δ∆) input parameters.
A gradient estimate is formed using two function evaluations (i.e.,

y+ and y−) as follows:

g(θ, δ,m) = ∆
[
y+(m)− y−(m)

δ

]
, (5.58)

where ∆ is a d-dimensional Gaussian vector composed of standard
normal r.v.s. Recall that the estimate defined above is referred to
variously as Gaussian smoothed functional, and Gaussian smoothing.
Assuming that the underlying function f is three-times continuously
differentiable, we have

f(θ ± δ∆) = f(θ)± δ∆T∇f(θ) + δ2

2 ∆T∇2f(θ)∆ +O(δ3).

Hence,

E
[
∆
(
f(θ + δ∆)− f(θ − δ∆)

2δ

)]
= E [∆∆T]∇f(θ) +O(δ2)

= ∇f(θ) +O(δ2),

where we used the fact that E [∆∆T] = Id, since ∆ is a d-dimensional
standard Gaussian vector. Combining the equality above with the fact
that the estimation error is O( 1√

m
), we obtain

‖E [g (θ, δ,m)]−∇f (θ) ‖ ≤ c1δ
2 + c2√

m
,

for some constants c1, c2 > 0. This satisfies the requirement (a) in (O1).
A similar argument works for the case of a convex and smooth

objective as well. In addition, a variety of distributions can be employed
for the random perturbations, as discussed in Chapter 3.

Motivated by the discussion above, we define a biased gradient oracle
with an estimation error component below.

(O1) Biased gradient oracle
Input: θ ∈ Rd, perturbation constant δ > 0, and batch size m > 0.
Output: a gradient estimate g(θ, δ,m) ∈ Rd that satisfies
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(a) ‖Eξ [g (θ, δ,m)]−∇f (θ) ‖∞ ≤ c1δ
2 + c3

δ
√
m
,

(b) Eξ
[
‖g (θ, δ,m)− Eξ [g (θ, ξ, δ,m)]‖2

]
≤ c2
δ2 ,

for some constants c1, c2, c3 > 0.

In the oracle defined above, the parameter δ is used to tradeoff bias and
variance in the gradient estimates, while the parameter m is motivated
by practical models where mini-batching is used for estimating the
objective function. To elaborate, the function measurements are biased,
however, one could choose larger values of m to increase the accuracy
of the function measurements.

Using the gradient estimate from the oracle defined above, one can
implement a stochastic gradient algorithm with the following update
iteration:

θk+1 = θk − a(k) g (θk, δk,mk) , (5.59)

where δk is the perturbation constant and mk the batch size at time
instant k.

Following the proof technique from Section 5.1, it can be shown
that the algorithm (5.59) satisfies the following bounds (see Exercise 1
below):

E ‖∇f (xR)‖2 ≤ C

m1/3 , (5.60)

for some constant C.

5.6 Minimax lower bound

In the analysis so far, we have observed that the convergence proofs
rely on two properties of the gradient estimates formed using the
simultaneous perturbation method, namely the bias and variance bounds
in (4.3). Moreover, using such gradient estimates, we obtained a non-
asymptotic bound of the order O(1/m1/3) in the previous section. We
now establish that this bound is not improvable in a minimax sense for
any algorithm that is fed inputs from a biased gradient oracle, which is
formalized below.
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(O1) Biased gradient oracle
Input: θ ∈ Rd, perturbation constant δ > 0.
Output: a gradient estimate ∇̂f(θ) ∈ Rd that satisfies

(a) ‖E
[
∇̂f(θ)

]
−∇f (θ) ‖ ≤ C1δ

2,

(b) E
∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
≤ C2
δ2 ,

for some constants C1, C2 > 0.

For the lower bound, we consider a setting where an optimization
algorithm is required to select a point θ̂m ∈ K after querying the oracle
(O1) m times. The algorithm’s performance is quantified using the
optimization error, defined as

∆m = E
[
f(θ̂m)

]
− inf
θ∈K

f(θ), (5.61)

where K ⊂ Rd is a convex body, i.e., a nonempty closed convex set with
a non-empty interior, and f is the objective function that is convex
and L-smooth. We use F to denote the the set of convex and L-smooth
functions with domain including K.

The worst-case error is defined as follows:

∆AF ,m(C1, C2) = sup
f∈F

sup
γ∈Γ1(f,C1,C2)

∆Am(f, γ) , (5.62)

where ∆Am(f, γ) is the optimization error that A suffers after m rounds
of interaction with f through an oracle γ, and Γ1(f, C1, C2) denotes the
set of (O1) oracles with constants C1, C2 satisfying the requirements
(O1)a–(O1)b.

The minimax error is defined as

∆∗F ,n(C1, C2) = inf
A

∆AF ,n(C1, C2),

where A ranges through all algorithms that interact with f through an
oracle.

The main result that establishes a minimax lower bound is stated
below5.

5The reader is encouraged to read Appendix E before diving into the proof,
as KL-divergence and Pinsker’s inequality are essential to understanding of the
derivation.
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Theorem 5.9. Let m > 0 be an integer, C1, C2 > 0, K ⊂ Rd

convex, closed, with [+1,−1]d ⊂ K. Then, for any algorithm that
observes m random elements from a (O1) oracle, the minimax
error satisfies the following bound:

∆∗F ,m(C1, C2) ≥ K1
√
dC

2
3
1 C

1
3
2 m
− 1

3 ,

where K1 is a universal constant.

Proof. First, we establish the lower bound for the one-dimensional case
with F denoting the set of L smooth and convex functions with domain
K that includes [−1, 1], and L ≥ 1/2. For brevity, let ∆∗m denote the
minimax error ∆∗m(F , c1, c2). Throughout the proof, a d-dimensional
normal distribution with mean µ and covariance matrix Σ is denoted
by N(µ,Σ).

We begin by defining two functions f+, f− ∈ F with associated
biased gradient oracles γ+, γ− such that the expected error of any
deterministic algorithm can be bounded from below for the case when the
environment is chosen uniformly at random from {(f+, γ+), (f−, γ−)}.
By Yao’s principle (Yao, 1977), the same lower bound applies to the
minimax error ∆∗m even when randomized algorithms are also allowed.

We consider the class of biased gradient oracles the construct a a
random gradient estimate, when given input (θ, δ), as follows:

∇̂f(θ, δ) = γ(θ, δ) + ξ (5.63)

with some map γ : K × [0, 1) → R, where ξ is a zero-mean normal
random variable with variance C2δ

−2, satisfying (O1)b. The map γ

which will be chosen such that the bias requirement in (O1)a is satisfied.
Next, we define the two target functions and their associated oracles6.

For v ∈ {±1}, let

fv(θ) := ε (θ − v) + 2ε2 ln
(
1 + e−

θ−v
ε

)
, x ∈ K . (5.64)

6With a slight abuse of notation, we will use interchangeably the subscripts +
(−) and +1 (−1) for any quantities corresponding to these two environments, e.g.,
f+ and f+1 (respectively, f− and f−1).
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The idea underlying these functions is that they approximate ε|θ − v|,
but with a prescribed smoothness. The first and second derivatives of
fv are

f ′v(θ) = ε
1− e−

θ−v
ε

1 + e−
θ−v
ε

, and f ′′v (θ) = 2e−
θ−v
ε(

1 + e−
θ−v
ε

)2 .

From the above calculation, it is easy to see that 0 ≤ f ′′(θ) ≤ 1/2. Thus,
fv is 1

2-smooth, and so fv ∈ F .
For fv, v ∈ {−1,+1}, the gradient oracle we consider is defined as

γv(θ, δ) = γv(θ, δ) + ξδ,

with ξδ ∼ N(0, C2
δ2 ) selected independently for every query, where γv

is a biased estimate of the gradient f ′v. We define the “bias” in γv to
move the gradients closer to each other: The idea is to shift f ′+ and f ′−
towards each other, with the shift depending on the allowed bias C1δ

2.
In particular, since f ′+ ≤ f ′−, f ′+ is shifted up, while f ′− is shifted down.
However, the shifted up version of f ′+ is clipped for positive x so that it
never goes above the shifted down version of f ′−. By moving the curves
towards each other, algorithms which rely on the obtained oracles will
have an increasingly harder time (depending on the size of the shift) to
distinguish whether the function optimized is f+ or f−. Since

0 ≤ f ′−(θ)− f ′+(θ) ≤ sup
x
f ′−(θ)− inf

x
f ′+(θ) = 2ε ,

we don’t allow shifts larger than ε, leading to the following formal
definitions:

γ+(θ, δ) =f
′
+(θ) + min(ε, C1δ

2) , if x < 0 ;
min

{
f ′+(θ) + min(ε, C1δ

2), f ′−(θ)−min(ε, C1δ
2)
}
, else ,

(5.65)

and

γ−(θ, δ) =
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f
′
−(θ)−min(ε, C1δ

2) , if x > 0 ;
max

{
f ′−(θ)−min(ε, C1δ

2), f ′+(θ) + min(ε, C1δ
2)
}
, else .

(5.66)
We claim that the oracle γv based on these functions satisfies the
conditions imposed in (O1). The variance condition (O1)b is trivially
satisfied. To see that the bias is C1δ

2, notice that γv(θ, δ) = −γ−v(−x, δ)
and f ′v(θ) = −f ′−v(−x). Thus, |γ+(θ, δ)−f ′+(θ)| = |γ−(−x, δ)−f ′−(−x)|,
hence it suffices to consider v = +1. The bias condition trivially holds
for x < 0. For x ≥ 0, using that f ′+(θ) ≤ f ′−(θ), we get

f ′+(θ)−min(ε, C1δ
2) ≤ γ+(θ, δ) ≤ f ′+(θ) + min(ε, C1δ

2),
showing |γ+(θ, δ)− f ′+(θ)| ≤ C1δ

2. Thus, γv is indeed a biased gradient
oracle with the required properties.

To bound the performance of any algorithm in minimizing fv, v ∈
{±1}, notice that fv is minimized at θ∗v = v, with fv(v) = 2ε2 ln 2. Next
we show that if θ has the opposite sign of v, the difference fv(θ)−fv(θ∗v)
is “large”. This will mean that if the algorithm cannot distinguish
between v = +1 and v = −1, it necessarily chooses a highly suboptimal
point for either of these cases.

Since vfv is decreasing on {θ : θv ≤ 0}, we have

Mv := min
x:xv≤0

fv(θ)− fv(v) = fv(0)− fv(v) = ε

(
−v + 2ε ln 1 + e

v
ε

2

)
.

Let h(v) = −v + 2ε ln 1 + e
v
ε

2 . Simple algebra shows that h is an even
function, that is, h(v) = h(−v). Indeed,

h(v) = −v + 2 ε ln
(
e
v
ε

1 + e−
v
ε

2

)
= −v + 2 ε v

ε
+ 2 ε ln 1 + e−

v
ε

2 = h(−v) .

Specifically, h(1) = h(−1) and thus

M+ = M− = ε

(
−1 + 2ε ln 1 + e

1
ε

2

)
.

From the foregoing, when θv ≤ 0 and ε < 1
4 ln 2, we have

fv(θ)− fv(θ∗v) ≥ ε
(
−1 + 2ε ln 1 + e

1
ε

2

)
>
ε

2 .
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Hence,

fv(θ)− fv(θ∗v) ≥
ε

2I {θv < 0} . (5.67)

Given the above definitions and (5.67), by Yao’s principle, the minimax
error (5.62) is lower bounded by

∆∗m ≥ inf
A

E[fV (X̂m)− inf
x∈X

fV (θ)] ≥ inf
A

ε

2 P(X̂mV < 0) , (5.68)

where V ∈ {±1} is a random variable, X̂m is the estimate of the
algorithm after n queries to the oracle γV for fV , the infimum is taken
over all deterministic algorithms, and the expectation is taken with
respect to the randomness in V and the oracle. More precisely, the
distribution above is defined as follows:

Consider a fixed biased gradient oracle γ satisfying (5.63) and a
deterministic algorithm A. Let θAt (respectively, δAt ) denote the map
from the algorithm’s past observations that picks the point (respectively,
accuracy parameter δ), which are sent to the oracle in round t. Define
the probability space (Ω,B, PA,γ) with Ω = Rd×{−1, 1}, its associated
Borel sigma algebra B, where the probability measure PA,γ takes the
form PA,γ := pA,γN(λ×m), where λ is the Lebesgue measure on Rn,
m is the counting measure on {±1} and pA,γ is the density function
defined by

pA,γ(g1:n, v)

= 1
2

(
pA,γ(gm | g1:m−1) · . . . · pA,γ(gm−1 | g1:m−2) · . . . · pA,γ(g1)

)
= 1

2

(
pN
(
gm − γ(θAm(g1:m−1), δAm(g1:m−1)), c2(δAm(g1:m−1))

)
· . . . ·

pN
(
g1 − γ(θA1 , δA1 ), c2(δA1 )

))
,

where v ∈ {−1, 1} and pN (·, σ2) is the density function of a N(0, σ2)
random variable. Then the expectation in (5.68) is defined w.r.t. the
distribution P := 1

2
(
PA,γ+I {v = +1}+ PA,γ−I {v = −1}

)
and V : Ω→

{±1} is defined by V (g1:n, v) = v.7 Define P+(·) := P(· | V = 1),
7Here, we are slightly abusing the notation as P depends onA, but the dependence
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P−(·) := P(· | V = −1). From (5.68), we obtain

∆∗m ≥ inf
A

ε

4
(
P+(X̂m < 0) + P−(X̂m > 0)

)
, (5.69)

≥ inf
A

ε

4 (1− ‖P+ − P−‖TV) , (5.70)

≥ inf
A

ε

4

(
1−

(1
2Dkl (P+||P−)

) 1
2
)
, (5.71)

where (5.69) uses the definitions of P+ and P−, ‖·‖TV denotes the total
variation distance, (5.70) follows from its definition, while (5.71) follows
from Pinsker’s inequality. It remains to upper bound Dkl (P+||P−).

Define Gt to be the tth observation of A. Thus, Gt : Ω→ R, with
Gt(g1:n, v) = gt. Let P t+(g1, . . . , gt) denote the joint distribution of
G1, . . . , Gt conditioned on V = +1. Let P t+(· | g1, . . . , gt−1) denote the
distribution of Gt conditional on V = +1 and G1 = g1, . . . , Gt−1 = gt−1.
Define P t−j(· | g1, . . . , gt−1) in a similar fashion. Then, by the chain rule
for KL-divergences, we have

Dkl (P+||P−) =
m∑
t=1

∫
Rt−1

Dkl
(
P t+(· | g1:t−1)||P t−(· | g1:t−1)

)
dP t+(g1:t−1).

(5.72)

By the oracle’s definition on V = +1 we have
Gt ∼ N(γ+(θAt (G1:t−1), δAt (G1:t−1)), c2(δAt (G1:t−1))), i.e., P t+(· | g1:t−1)
is the normal distribution with mean γ+(θAt (G1:t−1), δAt (G1:t−1)) and
variance c2(δAt (G1:t−1)). Using the shorthands θAt := xAt (g1:t−1), δAt :=
δAt (g1:t−1), we have

Dkl
(
P t+(· | g1:t−1)||P t−(· | g1:t−1)

)
=

(γ+(θAt , δAt )− γ−(θAt , δAt ))2

2c2(δAt )
,

as the KL-divergence between normal distributions N(µ1, σ
2) and N(µ2, σ

2)

is equal to (µ1 − µ2)2

2σ2 .

is suppressed. In what follows, we will define several other distributions derived from
P, which will all depend on A, but for brevity this dependence will also be suppressed.
The point where the dependence on A is eliminated will be called to the reader’s
attention.
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It remains to upper bound the numerator. For (θ, δ) ∈ R × (0, 1],
first note that
γ+(θ, δ) ≤ γ−(θ, δ). Hence,

|γ+(θ, δ)− γ−(θ, δ)| = γ−(θ, δ)− γ+(θ, δ)
< sup

x
γ−(θ, δ)− inf

x
γ+(θ, δ)

= lim
x→∞

γ−(θ, δ)− lim
x→−∞

γ+(θ, δ)

= ε− ε ∧ C1δ
2 − (−ε+ ε ∧ C1δ

2)
= 2ε− 2ε ∧ C1δ

2

≤ 2(ε− C1δ
2)+ , (5.73)

where (u)+ = max(u, 0) is the positive part of u.
From the above, using the abbreviations θAt = xAt (g1:t−1) and δAt =

δAt (g1:t−1) (effectively fixing g1:t−1 for this step),

Dkl
(
P t+(· | g1:t−1)||P t−(· | g1:t−1)

)
<

2{(ε− C1(δAt )2)+}2 (δAt )2

C2
(5.74)

≤ sup
δ>0

2{(ε− C1δ
2)+}2 δ2

C2
, (5.75)

where inequality (5.74) follows from (5.73). Notice that the right-hand
side of the above inequality does not depend on the algorithm anymore.

Now, observe that sup
δ>0
{(ε−C1δ

2)+}2δ2 = sup
(ε/C1)1/p≥δ>0

(ε−C1δ
2)2δ2.

From this observation, we obtain

δ∗ =
( 2ε

6C1

)1/2
. (5.76)

Note that C1δ
2
∗ ≤ ε, hence max

δ>0
{(ε − C1δ

2)+}2δ2 = (ε − C1δ
2
∗)2δ2

∗.
Plugging (5.75) into (5.72) and using this last observation we obtain

Dkl (P+||P−) ≤ 2m
C2

(ε− C1δ
2
∗)2 δ2

∗ . (5.77)

Note that the above bound holds uniformly over all algorithms A.
Substituting the above bound into (5.71), we obtain

∆∗m ≥
ε

4

(
1−
√
m

(ε− C1δ
2
∗)δ∗√

C2

)
= ε

4
(
1−
√
mK1ε

3
2
)
, (5.78)



160 Non-asymptotic analysis of stochastic gradient algorithms

where K1 = 4
6
√
C2

( 2
6C1

) 1
2
.

By choosing ε =
( 2

5
√
mK1

) 2
3
, we see that

∆∗m ≥
9
20

( 1
25

)1/3
C

1/3
1 C

1/3
2 m−1/3 . (5.79)

Generalization to N dimensions: To prove the d-dimensional result,
we introduce a new device which allows us to relate the minimax error
of the d-dimensional problem to that of the 1-dimensional problem. The
main idea is to use separable d-dimensional functions and oracles and
show that if there exists an algorithm with a small loss for a rich set of
separable functions and oracles, then there exists good one-dimensional
algorithms for the one-dimensional components of the functions and
oracles.

This device works as follows: First we define one-dimensional func-
tions. For 1 ≤ i ≤ d, let Ki ⊂ R be nonempty sets, and for each
vi ∈ V := {±1}, let f (i)

v : Ki → R. Let K = ×di=1Ki and for v =
(v1, . . . , vd) ∈ V d, let fv : K → R be defined by

fv(θ) =
d∑
i=1

f (i)
vi (θi), θ ∈ K . (5.80)

Without the loss of generality, we assume that inf
θi∈Ki

f (i)
vi (θi) = 0, and

hence inf
x∈×di=1Ki

fv(θ) = 0, so that the optimization error of the algorithm

producing X̂n ∈ K as the output is f (i)
v (X̂n,i) and fv(X̂n), respectively.

We also define a d-dimensional separable oracle γv as follows: The oracle
is obtained from “composing” the d one-dimensional oracles, (γ(i)

vi )i. In
particular, the ith component of the response of γv given the history
of queries (θt, δt, . . . , θ1, δ1) ∈ (K × [0, 1))t is defined as the response
of γ(i)

vi given the history of queries (θt,i, δt, . . . , θ1,i, δ1) ∈ (Ki × [0, 1))t.
This definition is so far unclear about the randomization of the oracles.
In fact, it turns out that the one-dimensional oracles can even use
the same randomization (i.e., their output can depend on the same
single uniformly distributed random variable U), but they could also
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use separate randomization: our argument will not depend on this. Let
Γ(i)(f (i)

vi , c1, c2) denote a non-empty set of biased gradient oracles for
objective function f (i)

vi : Ki → R, and let us denote by Γsep(fv, c1, c2)
the set of separable oracles for the function fv defined above. We

also define Fsep = {f : f(θ) =
d∑
i=1

f (i)
vi (θi), x ∈ K, vi ∈ Vi}, the set

of componentwise separable functions. Note that when ‖·‖ = ‖·‖2 is
used in the definition of type-I oracles then Γsep(fv, C1/

√
d,C2/d) ⊂

Γ(fv, C1, C2).
Let an algorithm A interact with an oracle γ. We will denote the

distribution of the output X̂n of A at the end of n rounds by FA,γ (we
fix n, hence the dependence of F on n is omitted). Thus, the expected
optimization error of A on a function f with zero optimal value is

LA(f, γ) =
∫
f(θ)FA,γ(dx) .

Note that this definition applies both in the one and the d-dimensional
cases. For v ∈ V d, we introduce the abbreviation

LA(v) = LA(fv, γv) .

We also define

L̃Ai (v) =
∫
f (i)
vi (θi)FA,γv(dx)

so that

LA(v) =
d∑
i=1

L̃Ai (v) .

Also, for vi ∈ V and a one-dimensional algorithm A, we let

LAi (vi) = LA(f (i)
vi , γ

(i)
vi ) .

Note that while the domain of L̃Ai is V d, the domain of LAi is V ,
while both express an expected error measured against f (i)

vi . In fact, L̃Ai
depends on v because the algorithm A uses the d-dimensional oracle
γv, which depends on v (and not only on vi) and thus algorithm A
could use information returned by γ(j)

vj , j 6= i. In a way our proof shows
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that using this information cannot help a d-dimensional algorithm on a
separable problem, a claim that we find rather intuitive, and which we
now formally state (see (Hu et al., 2016) for a detailed proof).

Lemma 5.10. Let (fv)v∈V d , fv ∈ Fsep,
(γv)v∈V d , γv ∈ Γsep(fv, c1, c2) be separable for some arbitrary functions
c1, c2, and let A be any d-dimensional algorithm. Then there exist d
one-dimensional algorithms, A∗i , 1 ≤ i ≤ d (using only one-dimensional
oracles), such that

max
v∈V

LA(v) ≥ max
v1∈V1

L
A∗1
1 (v1) + · · ·+ max

vd∈Vd
L
A∗d
d (vd) . (5.81)

Now, let

F (i) = {fvi : vi ∈ V }, i = 1, . . . , d .

The next result follows easily from the previous lemma:

Lemma 5.11. Let ‖·‖ = ‖·‖2 in the definition of the type-I oracles.
Then, we have that

∆∗Fsep,n(c1, c2) ≥
d∑
i=1

∆∗F(i),n(c1/
√
d, c2/d) .

Let K ⊂ Rd, such that ×iKi ⊂ K, {±1} ⊂ Ki ⊂ R, Fd = FL,0(K),
where recall that L ≥ 1/2. For any 1 ≤ i ≤ d, θi ∈ Ki,

f (i)
vi (θi) := ε (θi − vi) + 2ε2 ln

(
1 + e−

θi−vi
ε

)
. (5.82)

i.e., f (i)
vi is like in the one-dimensional lower bound proof (cf. equa-

tion 5.64). Note that fv ∈ Fd since fv is separable, so its Hessian is di-

agonal and from our earlier calculation we know that 0 ≤ ∂2

∂θ2
i

f (i)
vi (θi) ≤

1/2. Let ∆(d)∗
m denote the minimax error ∆∗Fd,n

(
C1δ

2,
C2
δ2

)
for the d-

dimensional family of functions Fd. Let F (i) = {f (i)
−1, f

(i)
+1}. As it was

noted above, fv ∈ Fd for any v ∈ {±1}d. Hence, by Lemma 5.11,

∆(d)∗
m ≥

d∑
i=1

∆∗F(i),m

(
C1√
d
δ2,

C2
d
δ−2

)
. (5.83)
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Plugging the lower bound derived in (5.79) for the one-dimensional
setting into the bound in (5.83), we obtain a

√
d-times bigger lower

bound for the d-dimensional case. In particular, we obtain

∆(d)∗
m ≥ 9

10

(
C1C2

25

)1/3√
dm−1/3.

5.7 Bandit convex optimization

The bounds presented in this chapter relate to bandit convex optimiza-
tion (BCO) — a topic that is not dealt in detail directly in this book.
In this section, we show the connection between minimizing a smooth
convex function in a zeroth-order setting and BCO.

In the BCO setting, the environment chooses sequence {f1, . . . , fm}
of convex loss functions over a common domain K, and a bandit algo-
rithm chooses a sequence of points {θ1, . . . , θm} iteratively. The expected
regret Rm incurred by the algorithm is defined as follows:

Rn = E
[
m∑
t=1

ft(θt)
]
− inf
θ∈K

m∑
t=1

ft(θ).

A simple stochastic gradient algorithm for this setting would update as
follows:

θt+1 = θt − a(t)∇̂ft(θt), (5.84)

where ∇̂ft(θt) is an estimate of the gradient ∇ft(θt). To form this
gradient estimate, the bandit algorithm is given access to a function
observation at a point of its choice, say θ̃t in round t. Notice that the al-
gorithm’s query point θ̃t can be different from the point θt recommended
(and used in calculating regret Rn).

In (Flaxman et al., 2005; Saha and Tewari, 2011), the authors employ
a one point gradient estimate, along the lines described in Section 3.3.1.
While (Flaxman et al., 2005) established a regret bound of O(m3/4), it
was later improved to O(m3/4) by Saha and Tewari, 2011.

If the BCO setting allows two function observations for each ft,
then using a two-point gradient estimate, it is possible to obtain a
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regret bound of O(
√
m), see (Agarwal et al., 2010). In (Shamir, 2017),

the authors consider a variant of the two-point gradient estimate (see

Section 3.2) and obtain a O

√ d

m

 regret bound. This bound has the

optimal dimension dependence.
A simple scheme to convert a regret-minimizing bandit algorithm to

one that optimizes a smooth convex function in a zeroth-order setting

is to employ averaging. More precisely, let θ̄m = 1
m

m∑
i=1

θt denote the

average point, where θt is the point chosen by the bandit algorithm.
The average point θ̄m satisfies

E
[
f(θ̄m)

]
− inf
θ∈K

f(θ) ≤ Rm,

where the bandit algorithm is fed the same function f in each round
t = 1, . . . ,m.

We end this section with the remark that for a bandit algorithm
with inputs from a biased gradient oracle such as the one described in
Section 5.6, the best achievable regret bound is Ω(m2/3), and this is
equivalent to the bound of O(1/m1/3) on the optimization error that
we obtained in Theorem 5.9, see also (Hu et al., 2016).

5.8 Exercises

Exercise 1. Prove the bound in (5.60) while making the necessary
smoothness assumptions on the objective. Specify the choice of parame-
ters a(k),mk, δk.

Exercise 2. Given a datasetDn = {(ai, yi); i = 1, .., n} with ai ∈ Rd and
yi ∈ R, consider the linear regression problem of finding the minimizer
x∗ of the following objective:

J(x) = 1
2n

n∑
i=1

(yi − xTai)2. (5.85)

Answer the following:

(a) Find the gradient and Hessian of J at a given point x.
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(b) Does the function J have a minimizer? Is it unique?

(c) Write down the update rule for a gradient descent (GD) algorithm
to find the minimizer x∗ of J .

(d) Let A be the n× d matrix whose ith row is aTi . Assume ATA is
positive definite and let µ > 0 denote its minimum eigenvalue.
Show that the gradient descent iterate, say xn, after n iterations,
satisfies the following bounds:

‖xn − x∗‖2 ≤ (x0 − x∗)T (I − αATA)2n(x0 − x∗), and
J(xn)− J(x∗) ≤ (x0 − x∗)T (I − αATA)2nATA(x0 − x∗),

where α is the constant stepsize used by the GD algorithm.

(e) What is the optimal value of α that minimizes the bounds specified
in the part above? Justify your choice for α.

Exercise 3. Let f(x) =
m∑
i=1

fi(x), where f is a L-smooth function, and

‖∇fi(x)‖2 ≤ σ2, for i = 1, . . . ,m. Do note that f is *not* necesarily
convex.

Answer the following:

(a) For minimizing f , write the update iteration of the SGD algorithm
with stepsize denoted by a(k) and iterate by xk.

(b) Show the following bound holds for SGD algorithm from the part
above:

E [f(xk+1)− f(xk)] ≤ −a(k)‖∇f(xk)‖22 + 1
2a(k)2Lσ2. (5.86)

(c) Fix n, set α = c√
n

for some constant c. Is there a choice for
the constant c such that the following bound holds for the SGD
algorithm with stepsize α:

min
0≤k≤n−1

E
[
‖∇f(xk)‖22

]
≤

√
2(f(x0)− f(x∗))Lσ2

n
,

where x∗ is a global minimum of f . Show your work in arriving
at the bound above for suitable α.
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(d) Is the bound in the part above the best achievable using a stochas-
tic gradient algorithm? Or can it be improved?

Exercise 4. Generalize the minimax lower bound in Theorem 5.9 to
the following biased gradient oracle variant with a gradient estimate
that satisfies the following properties:

‖E
[
∇̂f(θ)

]
−∇f (θ) ‖ ≤ C1δ

p,

E
∥∥∥∇̂f(θ)− E

[
∇̂f(θ)

]∥∥∥2
≤ C2
δq
,

for some constants C1, C2 > 0.
In particular, for the convex and L-smooth case, show that the

minimax error satisfies

∆∗F ,m(C1, C2) = Ω(m−
p

2p+q ),

and for the strongly convex case

∆∗F ,m(C1, C2) = Ω(m−
p

p+q/2 ).

5.9 Bibliographic remarks

The presentation of non-asymptotic upper as well as lower bounds is
based on recent research on analysis of SG algorithms in a zeroth-order
setting. In the following, we provide some references section-wise.

5.1,5.2 RSG algorithm was proposed and analyzed in (Ghadimi and
Lan, 2013). We follow this reference for the unbiased gradient
information, while specialize the results in Bhavsar and Prashanth,
2022 for the biased case. A special case worth considering is
f(θ) = Eζ(F (θ, ζ)), where ζ denotes the noise element. One can
obtain an improved rate of O(1/

√
m) when F is assumed to be

L-smooth. This implies f is L-smooth, but the converse is not true.
Recall that in the latter case, we could obtain O(1/m1/3) bound.
For the convex case, one could employ a geometric step-size rule
to derive a O (1/m) bound for the optimization error in the zeroth-
order setting. The reader is referred to Section IV of (Bhavsar
and Prashanth, 2022) for the details. The approach adopted in
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the aforementioned reference in arriving at a last iterate bound is
inspired from (Jain et al., 2021).

5.3 For the strongly-convex case, we have used the analysis in the
survey article (Bottou et al., 2018). This applies to the unbiased
gradient information case, while the biased case requires careful
handling of the bias-variance trade-off parameter. For the bound
on SG with biased gradient information, we rely on the proof
technique from (Frikha and Menozzi, 2012), and do the necessary
modifications to handle the bias in gradient estimates.

5.6 The presentation of the lower bound is based on the results in (Hu
et al., 2016).



6
Hessian estimation and a stochastic Newton

algorithm

Recall that a stochastic Newton algorithm’s update is the following:

θn+1 = θn − an
(
Hn

)−1
∇̂f(θn), (6.1)

where ∇̂f(θn) and Hn denote the gradient and Hessian estimates,
respectively. The topic of gradient estimation was handled in Chapter 3,
while this chapter focuses on Hessian estimation. In the next chapter, we
shall perform a convergence analysis of (6.1), where we use zeroth-order
estimates of both the gradient and the Hessian.

The Hessian estimate Hn is usually arrived at by explicit averaging

of previously obtained estimates, i.e., 1
n

n∑
k=1

Ĥk, with Ĥk denoting the

Hessian estimate formed using a certain number of function measure-
ments in iteration k of (6.1). Alternatively, one can employ stochastic
approximation with a more general step size to arrive at an average of
Ĥk, k = 1, . . . , n, implicitly. The focus of this chapter is to form Ĥk,
using function measurements. For simplicity, we drop the dependence
on the iteration number k. The convergence analysis of (6.1) in the
next chapter would make the Hessian estimate iteration-dependent.

168
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Algorithm Hessian
Estimator Environment

θ, δ

Ĥ

f

Figure 6.1: The interaction of a second-order stochastic gradient algorithm with
an estimator that estimates the Hessian at the input point θ, with perturbation
constant δ.

6.1 The estimation problem

As illustrated in Figure 6.1, the second-order algorithm would ask for
Hessian estimates (in addition to gradient estimates — a topic that is
already covered) in each update iteration. For simplicity, henceforth we
drop the dependence on the iteration number n of (6.1) and instead,
consider the problem of obtaining an estimate Ĥ of the Hessian at a
given point θ ∈ Rd, using multiple function measurements.

We first describe the classic FDSA scheme, which was proposed
by Fabian, 1971. This scheme requires O(d2) function observations
to estimate the Hessian. Subsequently, we introduce the simultaneous
perturbation trick to Hessian estimation and describe the following well-
known variants that require a constant number of function observations,
irrespective of the dimension d:

SPSA: We consider two variants (both balanced) that require four and
three function measurements, respectively;

SF: We present two variants that require one and two function mea-
surements, respectively. Both methods are based on the idea of
Gaussian smoothed functional, which was considered earlier in
Chapter 3 in the context of gradient estimation;

RDSA: A scheme that requires three function measurements.
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6.2 FDSA for Hessian estimation

Consider a scalar variable θ. A finite difference approximation of the
first derivative for this simple case of a scalar parameter θ is:

df(θ)
dθ

≈
(
f(θ + δ)− f(θ − δ)

2δ

)
. (6.2)

Assuming the objective is smooth, and employing Taylor series expan-
sions of f(θ + δ) and f(θ − δ) around θ, we obtain:

f(θ ± δ) = f(θ)± δ df(θ)
dθ

+ δ2

2
d2f(θ)
dθ2 +O(δ3),

Thus, f(θ + δ)− f(θ − δ)
2δ = df(θ)

dθ
+O(δ2).

From the above, it is easy to see that the estimate (6.2) converges to

the true gradient df(θ)
dθ

in the limit as δ → 0.
This idea can be extended to estimate the second derivative by

applying a finite difference approximation to the derivative in (6.2) as
follows:
d2f(θ)
dθ2 ≈(
f(θ + δ + δ)− f(θ + δ − δ)

2δ

)
−
(
f(θ − δ + δ)− f(θ − δ − δ)

2δ

)
2δ

(6.3)

As before, using Taylor series expansions, it can be shown that the RHS
above is a good approximation to the second derivative.

For the case of a vector parameter, one needs to perturb each co-
ordinate separately, leading to the following scheme for estimating the
Hessian ∇2f(θ): For any i, j ∈ {1, . . . , d},

∇2
ijf(θ) ≈ 1

4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)

− (f(θ − δei + δej)− f(θ − δei − δej))
)
. (6.4)

Such an approach requires 4d2 number of function measurements to form
the Hessian estimate. In the next section, we overcome this limitation by
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employing the simultaneous perturbation trick. Before that, we extend
the estimate in (6.4) to the case of noisy function measurements. Suppose
we have the following function measurements: For any i, j ∈ {1, . . . , d},

y++
ij = f(θ + δei + δej) + ξ++

ij , y+−
ij = f(θ + δei − δej) + ξ+−

ij , (6.5)
y−+
ij = f(θ − δei + δej) + ξ−+

ij and y−−ij = f(θ − δei − δej) + ξ−−ij .

(6.6)

Using these function measurements, we form the Hessian estimate Ĥ
as follows:

Ĥij =
(
y++
ij − y

+−
ij − y

−+
ij + y−−ij

4δ2

)
,∀i, j (6.7)

We analyze the bias of the estimator defined above, under the following
assumptions:

A6.1. f is four-times continuously differentiable1 with
∣∣∣∇4

i1,i2,i3,i4f(θ)
∣∣∣ <

∞, for i1, i2, i3, i4 = 1, . . . , d and for all θ ∈ Rd.

A6.2. E
[
ξ++
ij

∣∣∣ θ] = E
[
ξ+−
ij

∣∣∣ θ] = E
[
ξ−+
ij

∣∣∣ θ] = E
[
ξ−−ij

∣∣∣ θ] = 0 for
i, j = 1, . . . , d.

The four-times continuously differentiability assumption on f in A6.1
allows Taylor series expansions, while A6.2 ensures the noise factors
vanish in the bias analysis. Under A6.1–A6.2, we have

E[Ĥij | θ] = 1
4δ2

(
f(θ + δei + δej) + f(θ + δei − δej)

− (f(θ − δei + δej)− f(θ − δei − δej))
)

= ∇2
ijf(θ) +O(δ2).

The final equality can be arrived at using Taylor series expansions
followed by straightforward simplifications.

1Here ∇4f(θ) = ∂4f(θ)
∂θT∂θT∂θT∂θT

denotes the fourth derivative of f at θ and
∇4
i1,i2,i3,i4f(θ) denotes the (i1, i2, i3, i4)th entry of ∇4f(θ), for i1, i2, i3, i4 = 1, . . . , d.
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6.3 SPSA for Hessian estimation

6.3.1 Four measurements Hessian estimator

In this section, we present the Hessian estimation scheme from (Spall,
2000). Let ∆ be a d-vector of symmetric, ±1-valued Bernoulli r.v.s, as
in the case of first-order SPSA (see Section 3.2). Suppose G(θ± δ∆) are
approximations to the gradient of f at θ ± δ∆. Then, the simultaneous
perturbation trick suggests the following Hessian estimate:

Ĥ = ∆−1G(θ + δ∆)−G(θ − δ∆)
4δ , (6.8)

where ∆−1 4= (1/∆1, . . . , 1/∆d)T .
What remains to be specified are the gradient estimates for input

parameters θ + δ∆. For forming this estimate, we use the simultaneous
perturbation trick again, i.e.,

G(θ ± δ∆) = ∆̂−1
(
y++ − y+)

δ
,

where ∆̂ denote a second independent set of perturbations having the
same distribution as ∆,

y++ = f(θ + δ∆ + δ∆̂) + ξ++, y−+ = f(θ − δ∆ + δ∆̂) + ξ−+,

y+ = f(θ + δ∆) + ξ+, and y− = f(θ − δ∆) + ξ−.

We can reuse these samples to form a SPSA-based gradient estimate
as follows:

∇̂f(θ) = ∆−1
(
y+ − y−

2δ

)
.

We require the gradient as well as the Hessian estimates to implement a
Newton step, as given in (6.1). The bias of the gradient estimate given
above is analyzed in Chapter 3.

For the bias bound of the Hessian estimator defined in (6.8), we
require the following assumption on the noise elements.

A6.3. Let ∆ = (∆1, . . . ,∆d)T and ∆̂ = (∆̂1, . . . , ∆̂d)T be two indepen-
dent d-vectors of mutually independent, symmetric, ±1-valued Bernoulli
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r.v.s. Further, given θ, {ξ++, ξ−+, ξ+, ξ−} is independent of ∆, ∆̂. In
addition,

E
[
ξ++

∣∣∣ θ] = E
[
ξ−+

∣∣∣ θ] = E
[
ξ+
∣∣∣ θ] = E

[
ξ−
∣∣ θ] = 0.

Lemma 6.1. Assume A6.1 and A6.3. Then, for any i, j ∈ {1, . . . , d},
we have ∣∣∣E [Ĥij

∣∣∣ θ]−∇2
i,jf(θ)

∣∣∣ = O(δ2),

where Ĥij and ∇2
i,jf(·) denote the (i, j)th entry in the Hessian

estimate Ĥ and the true Hessian ∇2f(·), respectively.

Proof. Using A6.2, we have

E
[
Ĥij

∣∣∣ θ] = E

[ [
f(θ + δ∆ + δ∆̂)− f(θ + δ∆)

2δ∆iδ∆̂j

]

−
[
f(θ − δ∆ + δ∆̂)− f(θ − δ∆)

2δ∆iδ∆̂j

]∣∣∣∣∣ θ
]
. (6.9)

Since f satisfies A6.1, we employ Taylor series expansions to obtain

f(θ ± δ∆ + δ∆̂) = f(θ ± δ∆) + δ
d∑

k=1
∆̂k∇kf(θ ± δ∆)

+ 1
2δ

2
d∑

k=1

d∑
l=1

∆̂k∇2
k,lf(θ ± δ∆)∆̂l +O(δ3).

Using (6.9) and the expansion above, we have

E
[
Ĥij

∣∣∣ θ] =

E

[
∇if(θ + δ∆)−∇if(θ − δ∆)

2δ∆j
+
∑
k 6=i

∆̂k

∆̂i

∇kf(θ + δ∆)−∇kf(θ − δ∆)
2δ∆j

+ δ
d∑

k=1

d∑
l=1

∆̂k(∇2
k,lf(θ + δ∆)−∇2

k,lf(θ − δ∆))∆̂l

4δ∆j∆̂i

+O(δ2) | θ
]
(6.10)
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Expanding ∇if(θ ± δ∆) around ∇if(θ), we obtain

∇if(θ + δ∆)−∇if(θ − δ∆)
2δ∆j

= ∇2
i,jf(θ) +

∑
l 6=j

∆l

∆j
∇2
l,jf(θ) +O(δ3).

The second term on the RHS of (6.10) can be simplified in an analogous
fashion.

The third term on the RHS of of (6.10) can be simplified as follows:

δ
d∑

k=1

d∑
l=1

∆̂k(∇2
k,lf(θ + δ∆)−∇2

k,lf(θ − δ∆))∆̂l

4δ∆j∆̂i

= δ
d∑

k=1

d∑
l=1

d∑
m=1

∆̂k∆(m)∇3
k,l,mf(θ)∆̂l

2∆̂i∆j

+O(δ2).

In the above, we used the following equality:

∇2
k,lf(θ + δ∆)−∇2

k,lf(θ − δ∆)
4δ∆j

=
d∑

m=1

∆(m)∇3
k,l,mf(θ)

2∆j
+O(δ2)

Using the simplified forms for each of the terms on the RHS of (6.10),
we have

E
[
Ĥij

∣∣∣ θ] = E

[
∇2
i,jf(θ) +

∑
l 6=i

∆l

∆i
∇2
i,lf(θ) +

∑
k 6=j

∆̂k

∆̂j

∇2
k,if(θ)

+
∑
k 6=i

∑
l 6=i

∆̂k

∆̂i

∆l

∆j
∇2
k,lf(θ) + δ

d∑
k,l,m=1

∆̂k∆(m)∇3
k,l,mf(θ)∆̂l

2∆̂i∆j

+O(δ2) | θ
]

= ∇2
i,jf(θ) +

∑
l 6=j

E

[
∆l

∆j
| θ
]
∇2
i,lf(θ) +

∑
k 6=i

E

[
∆̂k

∆̂i

| θ
]
∇2
k,if(θ)

+
∑
k 6=i

∑
l 6=j

E

[
∆̂k

∆̂i

∆l

∆j

∣∣∣∣∣ θ
]
∇2
k,lf(θ)

+ δ
d∑

k=1

d∑
l=1

d∑
m=1

E

[
∆̂k∆̂l∆(m)

2∆̂j∆i

∣∣∣∣∣ θ
]
∇3
k,l,mf(θ) +O(δ2).

Since ∆, ∆̂ are independent vectors of zero mean, symmetric Bernoulli
r.v.s, each term involving an expectation on the RHS above vanishes.
The claim follows.
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6.3.2 Three measurements Hessian estimator

We now present a variation to 2SPSA, where the number of function
measurements required for forming the Hessian estimate is brought down
to three. This scheme was proposed by Bhatnagar and Prashanth, 2015,
and can be motivated by using the following balanced approximation
to the second derivative in the case of a scalar parameter:

d2f(θ)
dθ2 ≈

(
f(θ + δ)− f(θ)

δ

)
−
(
f(θ)− f(θ − δ)

δ

)
δ

=
(
f(θ + δ) + f(θ − δ)− 2f(θ)

δ2

)
. (6.11)

The extension to a vector parameter is performed by using the following
function measurements:

y++ = f(θ + δ∆ + δ∆̂) + ξ++,

y−− = f(θ − δ∆− δ∆̂) + ξ−−, and
y = f(θ) + ξ.

Using y± and y, together with two random perturbation vectors ∆ and
∆̂ (as in the previous section), the Hessian estimate Ĥ is formed as
follows:

Ĥij =
(
y++ + y−− − 2y

δ2∆i∆̂j

)
,∀i, j. (6.12)

Reusing the sample measurements, we form the gradient estimate as
follows:

∇̂f(θ) = ∆−1 y
++ − y−−

2δ .

For the noise elements to vanish in the bias analysis of the Hessian
estimator above, we make the following assumption.

A6.4. Let ∆ = (∆1, . . . ,∆d)T and ∆̂ = (∆̂1, . . . , ∆̂d)T be two indepen-
dent d-vectors of mutually independent, symmetric, ±1-valued Bernoulli
r.v.s. Further, given θ, {ξ, ξ++, ξ−−} is independent of ∆, ∆̂. In addi-
tion,
E
[
ξ++

∣∣∣ θ] = E
[
ξ−−

∣∣ θ] = E [ξ| θ] = 0.
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Lemma 6.2. Assume A6.1 and A6.4. Then, for any i, j ∈ {1, . . . , d},
we have ∣∣∣E [Ĥij | θ

]
−∇2

i,jf(θ)
∣∣∣ = O(δ2) a.s.

Proof. We first consider the case when i, j ∈ {1, . . . , d}, i 6= j. Let

f̂(θ,∆, ∆̂) = f(θ + δ∆ + δ∆̂) + f(θ − δ∆− δ∆̂)− 2f(θ).

Then, using suitable Taylor’s expansions, we obtain

f̂(θ,∆, ∆̂)
δ2∆i∆̂j

= (∆ + ∆̂)T∇2f(θ)(∆ + ∆̂)
∆i∆̂j

+O(δ2)

=
d∑
l=1

d∑
m=1

∆l∇2
lmf(θ)∆m

∆i∆̂j

+ 2
d∑
l=1

d∑
m=1

∆l∇2
lmf(θ)∆̂m

∆i∆̂j

+
d∑
l=1

d∑
m=1

∆̂l∇2
lmf(θ)∆̂m

∆i∆̂j

+O(δ2).

It is now easy to see that

E
[
d∑
l=1

d∑
m=1

∆l∇2
lmf(θ)∆m

∆i∆̂j

∣∣∣∣∣ θ
]

= E
[
d∑
l=1

d∑
m=1

∆̂l∇2
lmf(θ)∆̂m

∆i∆̂j

∣∣∣∣∣ θ
]

= 0 a.s., and

E
[
d∑
l=1

d∑
m=1

∆l∇2
lmf(θ)∆̂m

∆i∆̂j

| θ
]

= ∇2
i,jf(θ) a.s.

Thus,

E
[
f̂(θ,∆, ∆̂)
δ2∆i∆̂j

∣∣∣∣∣ θ
]

= 2∇2
i,jf(θ) +O(δ2).

The case when i = j ∈ {1, . . . , d} follows in a similar manner. The claim
follows after observing that

E
[
Ĥij

∣∣∣ θ] = E
[
f̂(θ,∆, ∆̂)
δ2∆i∆̂j

∣∣∣∣∣ θ
]
.

The equality above holds since the noise elements ξ++, ξ−−, ξ satisfy
A6.4.
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6.4 Gaussian smoothed functional for Hessian estimation

We now present a couple of Hessian estimation procedures from (Bhat-
nagar, 2007) that are based on Gaussian smoothing.

6.4.1 One-Measurement SF (1SF) Estimator

We begin with a one-measurement Hessian estimator D2
δ,1f(θ) that

uses one function measurement with the same perturbed parameter as
the one-measurement gradient SF procedure. We shall later provide a
two-sided Hessian estimator as well that estimates both the Hessian
and the gradient using two function measurements. We shall continue
to assume A6.1.

As with gradient SF, we begin by taking a convolution of the objec-
tive function Hessian with a multi-variate Gaussian density functional.
Through an integration-by-parts argument applied twice, the same is
seen to be a convolution of the objective function with a scaled Gaussian
density functional. Let

D2
δ,1f(θ) =

∫
Gδ(θ −∆′)∇2

∆′f(∆′)d∆′, (6.13)

denote the convolution of the Hessian ∇2
∆′f(∆′) with the d-dimensional

multivariate normal p.d.f.

Gδ(θ −∆′) = 1
(2π)d/2δd

exp
(
−1

2

d∑
i=1

(θi −∆′i)2

δ2

)
,

where θ,∆′ ∈ Rd.

A6.5. Let ∆ = (∆1, . . . ,∆d)T where ∆i ∼ N(0, 1), i = 1, . . . , d and
with ∆i independent of ∆j , ∀i 6= j. Further, given θ, ξ+ is independent
of ∆. Further, E

[
ξ+
∣∣∣ θ] = 0.

Let y+ = f(θ + δ∆) + ξ+ denote a noisy function measurement,
where ξ+ denotes the measurement noise. The one-simulation (1SF)
Hessian estimator is then the following:
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Ĥ(θ) = (∆∆T − I)
δ2 y+. (6.14)

The reason for having this form for the Hessian estimator will become
evident in Proposition 6.1.

As with earlier estimates, we can reuse the function measurement
y+ to form a gradient estimate as follows:

∇̂f(θ) = ∆
(
y+

δ

)
.

Proposition 6.1 (Stein’s Lemma for Hessian Estimation).

D2
δ,1f(θ) = 1

δ2E
[
(∆∆T − I)f(θ + δ∆)

]
,

where the expectation above is taken w.r.t. the d-dimensional
multivariate normal p.d.f. G(∆) corresponding to the random
vector of d independent N(0, 1)–distributed random variables.

Proof. Upon integrating by parts, one obtains

D2
δ,1f(θ) =

∫
∇θGδ(θ −∆′)∇∆′f(∆′)d∆′. (6.15)

Now
∇θGδ(θ −∆′) = −(θ −∆′)

δ2 Gδ(θ −∆′).

Upon substituting the above in (6.15) and performing integration-by-
parts, we obtain

D2
δ,1f(θ) = − 1

δ2

∫
∇θ((θ −∆′)Gδ(θ −∆′))f(∆′)d∆′.

A change of variables then gives

D2
δ,1f(θ) = − 1

δ2

∫
∇∆′(∆′Gδ(∆′))f(θ −∆′)d∆′. (6.16)
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We now evaluate ∇∆′(∆′Gδ(∆′)) = ∇∆′((∆′1Gδ(∆′), . . ., ∆′NGδ(∆′)).
Note that

∇∆′(∆′Gδ(∆′)) =
∇∆′1(∆′1Gδ(∆′)) ∇∆′2(∆′1Gδ(∆′)) · · · ∇∆′

d
(∆′1Gδ(∆′))

∇∆′1(∆′2Gδ(∆′)) ∇∆′2(∆′2Gδ(∆′)) · · · ∇∆′
d
(∆′2Gδ(∆′))

· · · · · · · · · · · ·
∇∆′1(∆′dGδ(∆′)) ∇∆′2(∆′dGδ(∆′)) · · · ∇∆′

d
(∆′dGδ(∆′))



=



(
1− ∆′21

δ2

)
−∆′1∆′2

δ2 · · · −∆′1∆′d
δ2

−∆′2∆′1
δ2

(
1− ∆′22

δ2

)
· · · −∆′2∆′d

δ2

· · · · · · · · · · · ·

−∆′d∆′1
δ2 −∆′d∆′2

δ2 · · ·
(

1− ∆′2d
δ2

)


Gδ(∆′)

=
(
I − ∆′∆′T

δ2

)
Gδ(∆′)

4= Ȟ(∆′)Gδ(∆′).

From (6.16), we have

D2
δ,1f(θ) = − 1

δ2

∫
Ȟ(∆′)Gδ(∆′)f(θ −∆′)d∆′.

Let ∆ 4= ∆′/δ. Then d∆′ = δdd∆. From (6.16), we then obtain

D2
δ,1f(θ) = 1

δ2

∫
Ī(∆)

(
1

(2π)d/2
exp(−1

2

d∑
i=1

(∆i)2)
)
f(θ − δ∆)d∆,

(6.17)
where

Ī(∆) 4= (∆∆T − I). (6.18)

Note that ∆i, i = 1, . . . , d are independent N(0, 1) distributed random
variables. Now since ∆ and −∆ have the same distribution, one obtains

D2
δ,1f(θ) = 1

δ2E
[
(∆∆T − I)f(θ + δ∆)

]
.

The claim follows.
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Proposition 6.2. Under Assumptions A6.1 and A6.5, we have that

‖ E[Ĥ(θ)|θ]−∇2f(θ) ‖≤ O(δ).

Proof. From the definition of Ĥ(θ),

E[Ĥ(θ)|θ)] = 1
δ2E[Ī(∆)(f(θ + δ∆) + ξ+)|θ]

= D2
δ,1f(θ) + 1

δ2E[(I −∆∆T)ξ+|θ].

The second term on the RHS equals zero in the light of Assumption A6.5.
Now, from Proposition 6.1, we have that

D2
δ,1f(θ) = E

[ 1
δ2 Ī(∆)f(θ + δ∆) | θ

]
,

where ∆ = (∆1, . . . ,∆d)T is a vector of independent N(0, 1) random
variates and the expectation is taken w.r.t. the density of ∆. Using a
Taylor series expansion of f(θ + δ∆) around θ, one obtains

D2
δ,1f(θ) = E

[ 1
δ2 Ī(∆)(f(θ) + δ∆T∇f(θ)

+δ2

2 ∆T∇2f(θ)∆ + o(δ2) | θ
]

= 1
δ2E[Ī(∆)f(θ) | θ] + 1

δ
E[Ī(∆)∆T∇f(θ) | θ]

+1
2E[Ī(∆)∆T∇2f(θ)∆ | θ] +O(δ).

(6.19)

Now observe that E[Ī(∆)] = 0 (the matrix of all zero elements) with
E[H̄(∆)]. Hence the first term on the RHS of (6.19) equals zero. Now
consider the second term on the RHS of (6.19). Note that

E[Ī(∆)∆T∇f(θ) | θ] =

E


(∆2

1 − 1)∆T∇f(θ) ∆1∆2∆T∇f(θ) · · · ∆1∆d∆T∇f(θ)

∆2∆1∆T∇f(θ) (∆2
2 − 1)∆T∇f(θ) · · · ∆2∆d∆T∇f(θ)

· · · · · · · · · · · ·

∆d∆1∆T∇f(θ) ∆d∆2∆T∇f(θ) · · · (∆2
d − 1)∆T∇f(θ)

| θ

 .
(6.20)
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One can verify that expectation of each term (conditioned on θ) within
the matrix above equals zero since E[∆i] = E[∆3

i ] = 0 and E[∆2
i ] = 1,

∀i = 1, . . . , d. Also, ∆i is independent of ∆j for all i 6= j. Hence the
second term on the RHS of (6.19) equals zero as well. Consider now the
third term on the RHS of (6.19). Note that

1
2E[H̄(∆)∆T∇2f(θ)∆ | θ] =

1
2E



(∆2
1 − 1)

d∑
i,j=1
∇ijf(θ)∆i∆j · · · ∆1∆d

d∑
i,j=1
∇ijf(θ)∆i∆j

∆2∆1

d∑
i,j=1
∇ijf(θ)∆i∆j · · · ∆2∆d

d∑
i,j=1
∇ijf(θ)∆i∆j

· · · · · · · · ·

∆d∆1

d∑
i,j=1
∇ijf(θ)∆i∆j · · · (∆2

d − 1)
d∑

i,j=1
∇ijf(θ)∆i∆j

| θ


. (6.21)

Consider now the term corresponding to the first row and first column
above. Note that

E[(∆2
1 − 1)

d∑
i,j=1
∇ijf(θ)∆i∆j | θ]

= E[∆2
1

d∑
i,j=1
∇ijf(θ)∆i∆j | θ]− E[

d∑
i,j=1
∇ijf(θ)∆i∆j | θ].

(6.22)

The first term on the RHS of (6.22) equals

E[∆4
1∇11f(θ) | θ] + E[

∑
i=j,i6=1

∆2
1∆2

i∇ijf(θ) | θ]

+E[
∑

i 6=j,i6=1
∆2

1∆i∆j∇ijf(θ) | θ] = 3∇11f(θ) +
∑

i=j,i6=1
∇ijf(θ),

since E[∆4
1] = 3. The second term on RHS of (6.22) equals −

d∑
i=1
∇iif(θ).

Adding the above two terms, one obtains

E[(∆2
1 − 1)

d∑
i,j=1
∇ijf(θ)∆i∆j | θ] = 2∇11f(θ).
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Consider now the term in the first row and second column of the matrix
in (6.21). Note that

E[∆1∆2

d∑
i,j=1
∇ijf(θ)∆i∆j | θ]

= 2E[∆2
1∆2

2∇12f(θ) | θ] + E[
∑

(i,j) 6∈{(1,2),(2,1)}
∆1∆2∆i∆j∇ijf(θ) | θ]

= 2∇12f(θ).

Proceeding in a similar manner, it is easy to verify that the (i, j)th term
(i, j ∈ {1, . . . , d}) in the matrix in (6.21) equals 2∇ijf(θ). Substituting
the above back in (6.21), one obtains

1
2E[Ī(∆)∆T∇2f(θ)∆] = ∇2f(θ).

Thus, (6.19) now becomes

D2
δ,1f(θ) = ∇2f(θ) +O(δ).

The claim follows.

6.4.2 Two-measurement SF (2SF) estimator

We now present the balanced form of the Hessian estimator from Bhat-
nagar, 2007 that requires only two function measurements. Let

D2
δ,2f(θ) = E

[ 1
2δ2 Ī(∆)(f(θ + δ∆) + f(θ − δ∆)) | θ

]
,

with Ī(∆) as in (6.18). We now present the balanced form of the Hessian
estimator based on two function measurements. Let y+ = f(θ+δ∆)+ξ+

and y− = f(θ + δ∆) + ξ−, respectively, where ξ+ and ξ− denote the
measurement noise in y+ and y−. The 2SF Hessian estimator is then
the following:

Ĥ(θ) = (∆∆T − I)
2δ2 (y+ + y−). (6.23)

A gradient estimate re-using the function measurements y± is given by

∇̂f(θ) = ∆
(
y+ − y−

2δ .

)
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This gradient estimate’s bias was analyzed earlier in Chapter 3. We
analyze the bias of the Hessian estimator in (6.23). For this analysis,
we shall continue to assume A6.1. In addition, we have the following
assumption on the measurement noise:

A6.6. Let ∆ = (∆1, . . . ,∆d)T where ∆i ∼ N(0, 1), i = 1, . . . , d and
with ∆i independent of ∆j , ∀i 6= j. Further, given θ, ξ+ and ξ− are
independent of ∆ and they are also independent of each other. Further,
E
[
ξ+
∣∣∣ θ] = E

[
ξ−
∣∣ θ] = 0.

Proposition 6.3. Under Assumptions A6.1 and A6.6, we have that∥∥∥E[Ĥ(θ)|θ]−∇2f(θ)
∥∥∥ ≤ O(δ2).

Proof. From (6.23), note that

E[Ĥ(θ)|θ)] = 1
2δ2E[Ī(∆)((f(θ + δ∆) + ξ+) + (f(θ − δ∆) + ξ−)|θ]

= D2
δ,2f(θ) + 1

2δ2E[(I −∆∆T)(ξ+ + ξ−)|θ].

The second term on the RHS equals zero in the light of Assumption A6.6.
We now consider the first term on the RHS above. Using Taylor

series expansions of f(θ + δ∆) and f(θ − δ∆) around θ, one obtains

f(θ+δ∆) = f(θ)+δ∆T∇f(θ)+ δ2

2 ∆T∇2f(θ)∆+ δ3

6 ∇
3f(θ)(∆⊗∆⊗∆)+O(δ4)

f(θ−δ∆) = f(θ)−δ∆T∇f(θ)+ δ2

2 ∆T∇2f(θ)∆− δ
3

6 ∇
3f(θ)(∆⊗∆⊗∆)+O(δ4).

From the foregoing, one obtains

D2
δ,2f(θ) = E

[ 1
2δ2 Ī(∆)

(
2f(θ) + δ2∆T∇2f(θ)∆ +O(δ4)

)
| θ
]
.

It has been shown in the proof of Proposition 6.2 that E[Ī(∆)f(θ) | θ] =
0 and 1

2E[Ī(∆)∆T∇2f(θ)∆ | θ] = ∇2J(θ), respectively. We thus have

D2
δ,2f(θ) = ∇2f(θ) +O(δ2).

The claim follows.
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6.5 RDSA for Hessian estimation

In this section, the random perturbations are chosen using an asymmet-
ric Bernoulli distribution. More precisely, we choose ∆i, i = 1, . . . , d,
i.i.d. as follows:

∆i =


−1 w.p. (1 + ε)

(2 + ε) ,

1 + ε w.p. 1
(2 + ε) ,

(6.24)

where ε > 0 is a constant that can be chosen to be arbitrarily small.
Note that, for any i = 1, . . . , d, E∆i = 0, E(∆i)2 = 1 + ε and E(∆i)4 =
(1 + ε)(1 + (1 + ε)3)

(2 + ε) . Henceforth, we will use τ to denote E(∆i)4.

Suppose we have the following function measurements:

y+ = f(θ + δ∆) + ξ+, y− = f(θ − δ∆) + ξ−, and y = f(θ) + ξ.

We would like to obtain a Hessian estimate Ĥ that is not too far
from the true Hessian ∇2f(θ). Suppose we use the three measurements
above, together with a matrix M (to be specified later) to form Ĥ as
follows:

Ĥ = M

(
y+ + y− − 2y

δ2

)
(6.25)

= M

[(
f(θ + δ∆) + f(θ − δ∆)− 2f(θ)

δ2

)
+
(
ξ+ + ξ− − 2ξ

δ2

)]

= M

(
∆T∇2f(θ)∆ +O(δ2) +

(
ξ+ + ξ− − 2ξ

δ2

))
. (6.26)

We form a gradient estimate using y± as follows:

∇̂f(θ) = 1
(1 + ε)∆

(
y+ − y−

2δ

)
.

The bias of this estimator is analyzed in Chapter 3.
We now deconstruct the Hessian estimate in (6.26). Taking expec-

tations on both sides of (6.26), we observe that the last term in (6.26)
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vanishes, while the first and second term remain. However, we do not
have the true Hessian in the first term and it would be nice to re-
cover ∇2f(θ) from this term via a suitable matrix M and the following
definition for M achieves this goal:

M =



1
κ

(
(∆1)2− (1 + ε)

)
· · · 1

2(1 + ε)2 ∆1∆d

1
2(1 + ε)2 ∆2∆1 · · · 1

2(1 + ε)2 ∆2∆d

· · · · · · · · ·
1

2(1 + ε)2 ∆d∆1 · · · 1
κ

(
(∆d)2 − (1 + ε)

)


, (6.27)

where κ = τ

(
1− (1 + ε)2

τ

)
and τ = E(∆i)4 = (1 + ε)(1 + (1 + ε)3)

(2 + ε) ,

for any i = 1, . . . , d.
While the definition of M above looks complicated, the motivation

behind such a definition can be seen through the following calculation
that established that the first term, i.e., M

(
∆T∇2f(θ)∆

)
in (6.26)

turns out to be the true Hessian evaluated at θ.
As before, we make the following assumption to ensure noise elements

vanish in the analysis of the RDSA Hessian estimator (6.25).

A6.7. Let ∆ = (∆1, . . . ,∆d)T be a d-vector of mutually indepen-
dent, asymmetric, Bernoulli r.v.s satisfying (6.24). Further, given θ,
{ξ, ξ+, ξ−} is independent of ∆. In addition, E

[
ξ+
∣∣∣ θ] = E

[
ξ−
∣∣ θ] =

E [ξ| θ] = 0.

Lemma 6.3. (Bias in Hessian estimate) Assume A6.1 and
A6.7. Then, Ĥ defined according to (6.27) satisfies the following
bound for any i, j = 1, . . . , d,∣∣∣E [Ĥ(i, j)

∣∣∣ θ]−∇2
ijf(θ)

∣∣∣ = O(δ2). (6.28)

From the above lemma, it is evident that the bias in the Hessian estimate
above is of the same order as that of the other balanced estimators in
the previous sections.
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Proof. By a Taylor’s expansion, we obtain

f(θ ± δ∆) = f(θ)± δ∆T∇f(θ) + δ2

2 ∆T∇2f(θ)∆

± δ3

6 ∇
3f(θ)(∆⊗∆⊗∆) + δ4

24∇
4f(θ̃+)(∆⊗∆⊗∆⊗∆).

Hence,

f(θ + δ∆) + f(θ − δ∆)− 2f(θ)
δ2

=∆T∇2f(θ)∆ +O(δ2)

=
d∑
i=1

d∑
j=1

∆i∆j∇2
ijf(θ) +O(δ2)

=
d∑
i=1

(∆i)2∇2
iif(θ) + 2

d−1∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ) +O(δ2).

Now, taking the conditional expectation of the Hessian estimate Ĥ and
observing that E[ξ+ + ξ−− 2ξ | θ] = 0 by A6.7, we obtain the following:

E[Ĥ | θ] =E
[
M

(
d−1∑
i=1

(∆i)2∇2
iif(θ)

+2
d∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ) +O(δ2)

∣∣∣∣∣∣ θ
 . (6.29)

Note that the O(δ2) term inside the conditional expectation above
remains O(δ2) even after the multiplication with M . We analyse the
diagonal and off-diagonal terms in the multiplication of the matrix M
with the scalar above, ignoring the O(δ2) term.

Diagonal terms in (6.29):

Recall that τ denotes the fourth moment E(∆i)4, for any i = 1, . . . , d.
Consider the lth diagonal term inside the conditional expectation in
(6.29):

1
τ(1− (1+ε)2

τ )
E
((

(∆l)2 − (1 + ε)
)( d∑

i=1
(∆i)2∇2

iif(θ)
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+2
d−1∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ


= 1
τ(1− (1+ε)2

τ )
E
(

(∆l)2
d∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)

− (1 + ε)
τ(1− (1+ε)2

τ )
E
(

d∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)

(6.30)

From the distributions of ∆i,∆j and the fact that ∆i is independent of

∆j for i < j, it is easy to see that E

(∆l
n)2

d−1∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ
 =

0 and E

d−1∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ
 = 0. Thus, the conditional expec-

tations of the second and fourth terms on the RHS of (6.30) are both
zero.

The first term on the RHS of (6.30) can be simplified as follows:

1
τ(1− (1+ε)2

τ )
E
(

(∆l)2
d∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)

= 1
τ(1− (1+ε)2

τ )
E
(

(∆l)4∇2
llf(θ) +

d∑
i=1,i 6=l

(∆l)2(∆i)2∇2
iif(θ)

)

= 1
(1− (1+ε)2

τ )

∇2
llf(θ) + (1 + ε)2

τ

d∑
i=1,i 6=l

∇2
iif(θ)

 . (6.31)

For the second equality above, we have used the fact that E[(∆l)4] = τ

and E[(∆l)2(∆i)2] = E[(∆l)2]E[(∆i)2] = (1 + ε)2, ∀l 6= i.
The second term in (6.30) with the conditional expectation and

without the negative sign can be simplified as follows:

(1 + ε)
τ(1− (1+ε)2

τ )
E
(

d∑
i=1

(∆i)2∇2
iif(θ)

∣∣∣∣∣ θ
)

= (1 + ε)
τ(1− (1+ε)2

τ )

d∑
i=1

E
[
(∆i)2

]
∇2
iif(θ)
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= (1 + ε)2

τ(1− (1+ε)2

τ )

d∑
i=1
∇2
iif(θ). (6.32)

Combining (6.31) and (6.32), the correctness of the Hessian estimate
follows for the diagonal terms.

Off-diagonal terms in (6.29)

Consider the (k, l)th term in (6.29), with k < l. We obtain

1
2(1 + ε)2E

∆k∆l

 d∑
i=1

(∆i)2∇2
iif(θ) + 2

d−1∑
i=1

d∑
j=i+1

∆i∆j∇2
ijf(θ)

∣∣∣∣∣∣ θ


= 1
2(1 + ε)2

d∑
i=1

E
(
∆k∆l(∆i)2

)
∇2
iif(θ)

+ 1
(1 + ε)2

d−1∑
i=1

d∑
j=i+1

E (∆k∆l∆i∆j)∇2
ijf(θ) (6.33)

=∇2
klf(θ).

Note that the first term on the RHS of (6.33) equals zero since k 6= l.
The claim follows.

6.6 Summary

Tables 6.1 and 6.2 summarize the various gradient and Hessian estimates
discussed in this chapter.

6.7 Asymptotic convergence of stochastic Newton algorithms

We consider the following coupled sequence of updates for the analysis
of the Hessian recursion:

θn+1 = Γ
(
θn − a(n)Θ

(
Hn

)−1
∇̂f(θn)

)
, (6.34)

Hn+1 = Hn + b(n)(Ĥn −Hn), (6.35)
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Property → # measurements Bias
Hessian estimate

↓

FDSA (6.7) 4d2 O(δ2)

SPSA (6.8) and 4
O(δ2)its variant (6.12) 3

SF (6.14) 1 O(δ)
and its variant (6.23) 2 O(δ2)

RDSA (6.25) 3 O(δ2)

Table 6.1: A summary of the Hessian estimates presented in this chapter, along
with their bias bounds.

where the quantity Ĥn in (6.35) can correspond to any of the simulta-
neous perturbation Hessian estimators described in Chapter 6. Also,
∇̂f(θn) could be any of the simultaneous perturbation gradient esti-
mators described in Chapter 3. As can be seen, it makes better sense
from a computational perspective to have a similar class of estimators
for both gradient and Hessian estimation. Thus, for instance, if one
incorporates two-measurement SF for gradient estimation, the same
two measurements can then also be used as in (6.23) for estimating the
objective function Hessian. We consider here the case of a diminishing
{δn}, i.e., 0 < δn → 0 as n→∞.

In (6.34), Γ : Rd → C ⊂ Rd is a projection operator, where
C is a compact and convex set. Also, in the above, Θ : Rd×d →
{positive definite and symmetric d × d matrices} is a projection op-
erator that projects any d× d matrix to the space of positive definite
and symmetric matrices. Such an operator is needed to ensure that
the algorithm proceeds in a descent direction. If a matrix A is already
positive definite and symmetric, then Θ is chosen such that Θ(A) = A

itself.
The operator Θ can be characterized using methods such as the
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Algorithm Gradient Hessian
estimate estimate

SPSA (6.8) ∆−1
(
y+ − y−

2δ

)
Ĥ = ∆−1G(θ + δ∆)−G(θ − δ∆)

4δ
G(θ ± δ∆) = ∆̂−1

(
y++ − y+)

δ

SPSA variant
∆−1

(
y++ − y−−

2δ

)
Ĥij =

(
y++ + y−− − 2y

δ2∆i∆̂j

)
(6.12)

SF (6.14) ∆
(
y+

δ

)
Ĥ = (∆∆T − I)

δ2 y+

SF variant
∆
(
y+ − y−

2δ

)
Ĥ = (∆∆T − I)

2δ2 (y+ + y−)(6.23)

RDSA (6.25) ∆
(
y+ − y−

2δ(1 + ε)

)
Ĥ = M

(
y+ + y− − 2y

δ2

)

Table 6.2: A summary of the function measurements used and the form of gra-
dient/Hessian estimates for the stochastic Newton algorithm (6.1). In the table,
y++, y−−, y+, y−, y denote the function measurements corresponding to input
parameters θ+ δ∆+ δ∆̂, θ+ δ∆− δ∆̂, θ+ δ∆, θ− δ∆, and θ, respectively. The choice
of random perturbation varies between rows. The matrix M used in the Hessian
estimate presented in last row is defined in (6.27).

modified Choleski factorization procedure, see (Bertsekas, 1999), or
the procedures in (Spall, 2000) as well as (Zhu and Spall, 2002). For a
matrix A, let (Θ(A))−1 denote the inverse of Θ(A) which is also positive
definite and symmetric.

A6.8. (i) For any two sequences of d× d matrices {An} and {Bn},
lim
n→∞

‖Θ(An)−Θ(Bn)‖ = 0 if lim
n→∞

‖An −Bn‖ = 0.

(ii) We have

sup
n
‖Θ(Cn)‖ <∞, sup

n
‖(Θ(Cn))−1‖ <∞,

if sup
n
‖Cn‖ <∞ for a given sequence {Cn} of d× d matrices.

The requirement in Assumption A6.8(i) can be easily imposed, see
(Bertsekas, 1999; Spall, 2000; Zhu and Spall, 2002). Further, a sufficient
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condition for Assumption A6.8(ii) is

c1‖z‖2 ≤ zTΘ(Cn)z ≤ c2‖z‖2, (6.36)

for all z ∈ Rd, n ≥ 0. Most projection operators are seen to satisfy
(6.36), see (Bhatnagar, 2005) for a detailed discussion.

A6.9. The step size schedules {a(n)} and {b(n)} together with the
perturbation sequence {δn} of positive real numbers satisfy the following:

∑
n

a(n) =
∑
n

b(n) =∞, (6.37)

∑
n

(
a(n)
δn

)2
<∞;

∑
n

(
b(n)
δ2
n

)2
<∞, (6.38)

lim
n→∞

(
a(n)
b(n)

)
= 0. (6.39)

Note that (6.37) ensures that the algorithm does not exhibit prema-
ture convergence as trajectories obtained by putting the parameters in
(6.34) and (6.35) along time points obtained from the sequences {a(n)}
and {b(n)}, respectively, and obtaining continuous linear interpolations
of these. This helps in arguing that these continuously interpolated
trajectories asymptotically track the limit points of corresponding ODEs
provided the noise in the sample observations vanishes asymptotically.
The latter happens from (6.38). The first condition in (6.38) is the
same as the corresponding condition for gradient based schemes (see
Chapter 4. The second condition is necessitated from the form of the
Hessian estimators in Chapter 6 where δ2

n appears in the denominator of
the Hessian estimator, see for instance, (6.23). As with gradient-based
schemes, one can show convergence of the resulting martingale sequence
obtained from the Hessian estimator under the second condition in
(6.38). Finally, (6.39) results in a difference in timescales within the re-
cursions (6.34)-(6.35). In particular, it ensures that the Hessian update
(6.35) proceeds on a faster scale as compared to the θ-recursion (6.34)
that makes use of the inverse of the projected Hessian update.

A6.10. The function f is four-times continuously differentiable with∣∣∣∇4
i1,i2,i3,i4f(θ)

∣∣∣ <∞, for i1, i2, i3, i4 = 1, . . . , d and for all θ ∈ Rd.
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Assumption A6.10 is the same as Assumption A6.1 (restated here
for ease of reference).

A6.11. We have

(i) ∥∥∥E [∇̂f(θn)
∣∣∣ θn]−∇f(θn)

∥∥∥ = O(δ2
n),

where ∇̂f(θn) and ∇f(θn) are the gradient estimate and the true
gradient respectively.

(ii) ∥∥∥E [Ĥn

∣∣∣ θn]−∇2f(θn)
∥∥∥ = O(δ2

n),

where Ĥn and ∇2f(θn) are respectively the Hessian estimate and
the true Hessian respectively.

Assumptions A6.11(i) and A6.11(ii) have been shown to hold for the
various gradient and Hessian estimators based on random perturbations
in Chapters 3 and 6 respectively.

Lemma 6.4. The sequence of Hessian updates {Hn} is uniformly
bounded with probability one. In other words, sup

n
‖Hn‖ <∞ a.s.

Proof. Note that (6.35) can be rewritten as

Hn+1 = Hn + b(n)(∇2f(θn) + ξn +Mn+1 −Hn), (6.40)
= Hn + b(n)(∇2f(θn) + ξn −Hn) + b(n)Mn+1, (6.41)

where ξn = E[Ĥn|θn]−∇2f(θn). From Assumption A6.11, ξn = O(δ2
n)→

0 as n→∞. Let us ignore for a moment, the term b(n)Mn+1 in (6.41).
Then, from Assumption A6.10 and the fact that θn ∈ C (a compact set),
it follows that sup

n
‖∇2f(θn)‖ <∞. It also follows from Assumption A6.9

that b(n) → 0 as n → ∞. Thus, outside a set of probability zero,
∃N0 ≥ 1 such that Hn+1 (upon ignoring the b(n)Mn+1 term in (6.41))
can be viewed as a convex combination of Hn and a uniformly bounded
quantity. Finally, observe that Mn+1 = Ĥn − E[Ĥn|θn] is a martingale
difference term. It can now be argued as before, using the step-size
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condition (6.38), and the martingale convergence theorem for square-
integrable martingales, see Theorem B.7, that

∑
m

b(m)Mm+1 <∞ a.s.

Thus, {Hn} as in (6.41) is uniformly bounded almost surely. The claim
follows.

As described in Chapter 2.7, the system of ODEs corresponding to
(6.34)-(6.35) when viewed from the faster timescale are the following:

θ̇(t) = 0, (6.42)
Ḣ(t) = ∇2f(θ(t))−H(t). (6.43)

In the light of (6.42), as also discussed in Chapter 2.7, one may let
θ(t) ≡ θ, ∀t. Thus, (6.43) can then be rewritten as

Ḣ(t) = ∇2f(θ)−H(t). (6.44)

The ODE (6.44) has H∗(θ) = ∇2f(θ) as its unique globally asymptoti-
cally stable attractor. By Assumption A6.10 and the fact that θ ∈ C, a
compact set, H∗(θ) is Lipschitz continuous in θ.

Lemma 6.5. We have

lim
n→∞

∥∥∥Hn −H
∗(θn)

∥∥∥ = 0, a.s.

Proof. An application of Theorem 2.2 on (6.35) gives us

‖Hn − E[Ĥn|θn]‖ → 0 a.s.,

as n → ∞. The claim follows from an application of the triangle
inequality and Assumption A6.11.

Lemma 6.6. We have∥∥∥Θ(Hn)−1 −Θ(H∗(θn))−1
∥∥∥ =

∥∥∥Θ(Hn)−1 −Θ(∇2f(θn))−1
∥∥∥→ 0,

as n→∞, a.s.

Proof. The equality in the claim follows because H∗(θn) = ∇2f(θn).
Now note that∥∥∥Θ(Hn)−1 −Θ(∇2f(θn))−1

∥∥∥
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=
∥∥∥Θ(∇2f(θn))−1

(
Θ(∇2f(θn))Θ(Hn)−1 − I

)∥∥∥
=
∥∥∥Θ(∇2f(θn))−1

(
Θ(∇2f(θn))Θ(Hn)−1 −Θ(Hn)Θ(Hn)−1

)∥∥∥
=
∥∥∥Θ(∇2f(θn))−1

(
Θ(∇2f(θn))−Θ(Hn)

)
Θ(Hn)−1

∥∥∥
≤
∥∥∥Θ(∇2f(θn))−1

∥∥∥ ∥∥∥Θ(∇2f(θn))−Θ(Hn)
∥∥∥ ∥∥∥Θ(Hn)−1

∥∥∥
≤ sup

n

∥∥∥Θ(∇2f(θn))−1
∥∥∥ sup

n

∥∥∥Θ(Hn)−1
∥∥∥ ∥∥∥Θ(∇2f(θn))−Θ(Hn)

∥∥∥
−→ 0 as n→∞, a.s.

The first inequality follows from the property on induced matrix norms,
cf. Proposition A.12 of (Bertsekas and Tsitsiklis, 1989). Note also the
following: (i) From Assumption A6.10 and the fact that θ ∈ C (a
compact set), sup

n
‖∇2f(θn)‖ ≤ K̄ < ∞, for some K̄ > 0 and by

Assumption A6.8(ii), sup
n
‖Θ(∇2f(θn))−1‖ <∞ a.s. (ii) By Lemma 6.4,

sup
n
‖Hn‖ < ∞ a.s. Thus, by Assumption A6.8(ii), sup

n
‖Θ(Hn)−1‖ <

∞ a.s. (iii) Finally, ‖Θ(Hn) − Θ(∇2f(θn))‖ → 0 as n → ∞ from
Assumption A6.8(i) and Lemma 6.5.

We now shift our attention to the slower timescale recursion (6.34).
Consider the following ODE associated with (6.34):

θ̇(t) = −Γ̄
(
Θ(∇2f(θ(t)))−1∇f(θ(t))

)
. (6.45)

Here, Γ̄ : C(C)→ C(Rd) is defined according to

Γ̄(v(x)) = lim
η→0

(Γ(x+ ηv(x))− x
η

)
, (6.46)

for any continuous v : C → Rd.
Let A ⊂ H 4= {θ ∈ Rd|∇f(θ) = 0} be the set of globally asymptoti-

cally stable attractors for the ODE (6.45). In fact, V (·) = f(·) serves as
a Lyapunov function for this ODE since

dV (θ)
dt

= ∇V (θ)T θ̇

= ∇f(θ)T Γ̄
(
−Θ(∇2f(θ(t)))−1∇f(θ(t))

)
≤ 0,

since Θ(∇2f(θ))−1 is a positive definite matrix for each θ.
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Theorem 6.7. The recursion (6.34) satisfies θn → A a.s., as n→
∞.

Proof. As a consequence of Lemma 6.6, we have

θn+1 = Γ
(
θn − a(n)Θ(Hn)−1∇̂f(θn)

)
= Γ

(
θn − a(n)(Θ(H∗(θn))−1∇f(θn)− κn)

)
= Γ

(
θn − a(n)(Θ(∇2f(θn))−1∇f(θn)− κn)

)
,

where κn = Θ(∇2f(θn))−1∇f(θn)−Θ(Hn)−1∇̂f(θn). Now note that
we can rewrite κn as

κn = Θ(∇2f(θn))−1(∇f(θn)− ∇̂f(θn))
+ (Θ(∇2f(θn))−1 −Θ(Hn)−1)∇̂f(θn)

= Θ(∇2f(θn))−1(∇f(θn)− ∇̂f(θn))
+ (Θ(∇2f(θn))−1 −Θ(Hn)−1)∇f(θn)
+ (Θ(∇2f(θn))−1 −Θ(Hn)−1)(∇̂f(θn)−∇f(θn)).

Thus,

‖κn‖ ≤
∥∥∥Θ(∇2f(θn))−1

∥∥∥ ∥∥∥∇f(θn)− ∇̂f(θn)
∥∥∥

+
∥∥∥Θ(∇2f(θn))−1 −Θ(Hn)−1

∥∥∥ ‖∇f(θn)‖

+
∥∥∥Θ(∇2f(θn))−1 −Θ(Hn)−1

∥∥∥ ∥∥∥∇̂f(θn)−∇f(θn)
∥∥∥ .

From Assumption A6.11(i),
∥∥∥∇̂f(θn)−∇f(θn)

∥∥∥ = O(δ2
n) → 0 as

n → ∞ and from Lemma 6.6,
∥∥∥Θ(∇2f(θn))−1 −Θ(Hn)−1

∥∥∥ → 0 as

n → ∞. Thus,
∥∥∥Θ(∇2f(θn))−1 −Θ(Hn)−1

∥∥∥ ∥∥∥∇̂f(θn)−∇f(θn)
∥∥∥ → 0

as n→∞. Further, from Assumption A6.10 and the fact that θn ∈ C,
∀n, sup

n
‖∇f(θn)‖ ≤ M̌ <∞ for some M̌ > 0. Likewise from Assump-

tion A6.10 together with the fact that θn ∈ C (a compact set) and
Assumption A6.8(ii), it follows that sup

n

∥∥∥Θ(∇2f(θn))−1
∥∥∥ ≤ Ň <∞, for

some Ň > 0. Thus, ‖κn‖ → 0 as n→∞ a.s.
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Now observe that ∇f(θ) is continuous in θ (by Assumption A6.10).
Further, ∇2f(θ) is continuous in θ by Assumption A6.10 and Θ(∇2f(θ))
is also continuous by Assumption A6.8. It can also be shown as in
Lemma 6.6 that Θ(∇2f(θ))−1 is continuous. Thus, the function F (θ) =
Θ(∇2f(θ))−1∇f(θ) is continuous. Thus, Assumption A2.9 holds. Now,
from Assumption A6.9, it follows that

∑
n

a(n) =∞, a(n) → 0 as

n→∞, thereby satisfying Assumption A2.10. Further, using the identi-
fication βn = κn with ‖κn‖ → 0 a.s. as n→∞, Assumption A2.11 can
be seen to be satisfied. Finally, Assumption A2.12 is trivially satisfied
since ηn = 0, ∀n (in our case). The claim now follows from Theorem 2.5
(the Kushner-Clark theorem for projected stochastic approximation,
cf. Chapter 5 of (Kushner and Clark, 1978)).

6.8 Bibliographic remarks

Hessian estimation

In (Fabian, 1971), the author analyzes a finite differences Hessian
estimation scheme with O(d2) function measurements. In an importance
advance, the author in (Spall, 2000) brings the idea of simultaneous
perturbation for Hessian estimation, using random perturbations similar
to those employed in SPSA. The advantage with this scheme is the
drastic reduction in the number of function measurements to four,
irrespective of the dimension. Subsequent advances that we presented
in Sections 6.3.2, 6.5 are based on (Bhatnagar and Prashanth, 2015)
and (Prashanth et al., 2017), respectively.

Gaussian smoothed functional — an idea explored in Chapter 3
for estimating gradients, can be extended to estimate the Hessian as
well. In Section 6.4.1 and 6.4.2, we presented two Gaussian SF schemes
for Hessian estimation, and these are adapted from (Bhatnagar, 2007).
Proposition 6.1 is extracted from the proof of the bias of 1SF estimation
in (Bhatnagar, 2007), and this result has also been separately shown in
later works, cf. (Erdogdu, 2016; Balasubramanian and Ghadimi, 2022b).
These works provide the connection of the result in Proposition 6.1 to
the classic Stein’s identity, which includes a first as well as second-order
variant, see (Stein, 1972; Stein, 1981) and also (Balasubramanian and
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Ghadimi, 2022b, Theorem 1.2). Proposition 6.1 is central to the analysis
of SF1 as well as SF2 estimators, in particular, to provide bounds of
O(δ) and O(δ2) on the bias of these estimators, respectively.

Zeroth-order Stochastic Newton

There is considerable work on Newton-based algorithms though not as
much as for gradient-based schemes. In some early work, the Hessian is
estimated using finite difference approximations that are in turn finite
difference estimates of the gradients (Fabian, 1971). Such a scheme
however requires O(d2) samples of the objective function at each update
epoch. In (Ruppert, 1985), it is assumed that the objective function
gradients are known and these are in turn used to estimate the Hessian
at each update instant. Zeroth-order simultaneous perturbation Hessian
estimates have been developed for the first time in (Spall, 2000) and
Newton-based algorithms studied. The Hessian estimator here requires
four function measurements. A procedure for projecting the Hessian to
the space of positive definite and symmetric matrices is proposed. In
(Zhu and Spall, 2002), another method for projecting the eigenvalues
to the positive half line is proposed for the algorithm in (Spall, 2000).
Certain feedback and weighting mechanisms for obtaining improved
Hessian estimates have been proposed in (Spall, 2009).

Building on the work in (Spall, 2000), four Newton algorithms have
been developed and studied in (Bhatnagar, 2005) that require four,
three, two and one simulations, respectively, for estimating the Hessian
regardless of the parameter dimension d. In (Bhatnagar, 2007), two
smoothed functional algorithms based on Gaussian perturbations have
been presented that require one and two function measurements, respec-
tively. In (Bhatnagar and Prashanth, 2015), a balanced SPSA based
Hessian estimator is presented that requires three function measure-
ments. Efficient ways of obtaining the Hessian inverse – a direct method
and another procedure based on the Sherman-Morrison-Woodbury iden-
tity are also proposed here. The latter technique has also been made
use of to obtain an efficient procedure in (Rastogi et al., 2016). In
(Ghoshdastidar et al., 2014a), a family of Newton algorithms based
on q-Gaussian perturbations is presented. Here, one gets a wide range
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of smoothing functionals depending on the value of q with Gaussian,
Cauchy and Uniform emerging as special cases for different values of
the q parameter.

In (Spall, 2009), the sequence {b(n} is optimized for asymptotic
variance of the Hessian estimator in terms of the perturbation sen-
sitivity parameters δn, n ≥ 0. We do not consider here this variance
optimization problem in terms of the step-sizes b(n), n ≥ 0. In (Zhu
et al., 2019), an efficient method for reducing the number of floating
point operations from O(d3) to O(d2) is presented that is based on
the symmetric indefinite matrix factorization approach presented in
(Bunch and Parlett, 1971). The method seems highly effective and
stable, especially in high-dimensional problems.



7
Escaping saddle points

In Chapters 4 and 6, we provided theoretical guarantees that establish
asymptotic convergence to a stationary point of the objective function f .
On the other hand, in Chapter 5, we established convergence of zeroth-
order stochastic gradient algorithms to an approximate stationary point
in the non-asymptotic regime. However, these results are not sufficient
in a non-convex optimization setting since local maxima and saddle
points are also stationary points in addition to local minima. We shall
refer to such undesirable stationary points collectively as saddle points,
as in the recent literature (Jin et al., 2017; Ge et al., 2015; Jin et al.,
2021).

It is desirable to escape saddle points and converge to a local
minimum. In several ML applications, it may be enough to avoid saddle
points and converge to local minima, as such points may be as good as
global minima in many applications. A few concrete applications that
possess such a characteristic are as follows: low rank matrix factorization
(Jin et al., 2017), tensor decomposition (Ge et al., 2015), matrix sensing
(Bhojanapalli et al., 2016), dictionary learning (Sun et al., 2016), matrix
completion (Ge et al., 2016), robust principal component analysis (Ge
et al., 2017), and a sub-class of neural networks (Kawaguchi, 2016). In
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each of these applications, local minima are as good as global minima,
while there are innumerable first-order stationary points that are not
local minima. Moreover, at each such saddle point, there is a direction
of escape corresponding to a negative eigenvalue.

We discuss two schemes to escape saddle points. This goal is also
referred to as avoidance of traps, cf. (Borkar, 2003; Barakat et al.,
2021; Gadat and Gavra, 2022). The first scheme is the vanilla ZSG
algorithm presented earlier. We show that, when the noise in the function
measurements is rich, then the ZSG algorithm, which employs the unified
gradient estimate, converges to a local minimum asymptotically. We shall
use the ODE approach for this result. The second scheme is a variant of
the stochastic Newton algorithm, and incorporates a cubic-regularization
term. We establish the convergence of the cubic-regularized Newton
algorithm to an approximate second-order stationary point (SOSP) in
the non-asymptotic regime. An SOSP would be a local minimum when
the objective satisfies a strict saddle condition, made precise later.

The rest of this chapter is organized as follows: In Section 7.1, we
introduce first and second-order stationary points. In Section 7.2, we
present an asymptotic result for escaping saddle points for ZSG algo-
rithm under assumptions on the measurement noise. In Section 7.3, we
discuss two algorithms for escaping saddle points in a setting where exact
gradient and Hessian measurements are available. The first algorithm
uses curvature information, while the second one adds extraneous noise
so that the iterates do not get stuck at a saddle point. In Section 7.4, we
present the cubic-regularized Newton algorithm with zeroth-order gradi-
ent/Hessian estimates and provide a non-asymptotic sample complexity
bound for identifying approximate SOSPs.

7.1 First and second-order stationary points

The non-asymptotic bounds in Chapter 5 were shown to converge to an
approximate stationary point. Recall that, at a first-order stationary
point (FOSP), say θ̄, the gradient vanishes, i.e., ∇f(θ̄) = 0. An ε-
approximation to FOSP is a point θ̄ that satisfies

∥∥∥∇f(θ̄)
∥∥∥ ≤ ε.

Finding an FOSP is not sufficient for a non-convex objective function
f , as such a point is not necessarily a local minimum. As a simple
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Figure 7.1: Illustration of three types of first-order stationary points. The image is
sourced from offconvex.org

example, consider f(θ1, θ2) = θ2
1 − θ2

2. Then, ∇f(0, 0) = 0, implying
(0, 0) is an FOSP. However, the origin is clearly not a local minimum
because f(0, ε) < f(0, 0) for any ε.

As illustrated in Figure 7.1, an FOSP could potentially be a saddle
point. In order to avoid such points and find local optima of f , we need
information with regard to the curvature of the underlying objective.
The notion of second-order stationary point (SOSP) formalizes this idea
and aids in escaping saddle points.

At a second-order stationary point (SOSP), say θ̄, we have∇f(θ̄) = 0
and λmin

(
∇2f(θ̄)

)
≥ 0, where as before, λmin(A) denotes the smallest

eigenvalue of the d× d-matrix A.
For the non-asymptotic analysis, an ε-version of SOSP is defined

below.

Definition 7.1 (ε-second-order stationary point). Fix ε > 0. Let
θR be the output of a stochastic iterative algorithm for solving
(1.1). Then, θR is said to be an ε-SOSP in expectation if

max
{√

E‖∇f(θR)‖, −1
√
ρ
Eλmin

(
∇2f(θR)

)}
≤
√
ε, (7.1)

where ρ is a positive parameter.

From the definition above, in expectation, θR can be inferred to
be a point where the size (or norm) of the objective gradient is small,
and the Hessian at θR is nearly positive semi-definite. Thus, θR is an
approximation to a point where the objective gradient vanishes and the

offconvex.org
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Hessian is positive semi-definite. We next elaborate on the subtleties
behind finding such a point.

If ∇f(θ) = 0 and ∇2f(θ) � 0, then one can conclude that θ is
a local minimum. On the other hand, if ∇f(θ) = 0 and ∇2f(θ) � 0,
then one has to go beyond a SOSP and look at the third derivatives to
infer if θ is a local minimum or not, and so on. Such a process is not
amenable for optimization using gradient-based methods, as there is no
end to calculating higher-order derivatives with the hope of finding a
local minimum. Staying within the realm of first and second derivatives
(or the gradient and Hessian), we would like to understand conditions
that guarantee that a candidate point is a local minimum and not
a saddle point. At an FOSP, if the Hessian is positive definite (resp.
negative definite), we have a local minimum (resp. local maximum). If
the Hessian is indefinite, i.e., has both positive and negative eigenvalues,
then we have arrived at a saddle point and the negative eigenvalues
can be used to move away from such a point. On the other hand, if
the Hessian is degenerate, i.e., either positive or negative semi-definite,
then the optimization process becomes hard, in particular, to find local
minima. More precisely, it is well-known that finding a local minimum is
an NP-hard problem, see (Anandkumar and Ge, 2016). However, if the
saddle points are strict, i.e., Hessian is not degenerate, then there exist
polynomial time algorithms for finding a local minimum. The strict
saddle condition is as follows:

∇f(θ) = 0 and λmin(∇2f(θ)) < 0. (7.2)

When the strict saddle condition (7.2) holds, an SOSP will be a local
minimum since at a saddle point one can find a direction corresponding
to a negative eigenvalue where the function decreases, whereas at an
SOSP no such directions exist.

When the strict saddle condition (7.2) is satisfied, the Hessian∇2f(θ)
has at least one negative eigenvalue and this gives a direction for a
method using second-order information to escape from saddle points.
The cubic-regularized Newton algorithm presented in Section 7.4 uses
the Hessian estimates to escape from a saddle point, and find an ε-SOSP,
as formalized in Definition 7.1, while using O

( 1
ε3.5

)
samples.
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The table below summarizes the conditions for FOSP, SOSP and
their approximate variants.

Type Condition

FOSP θ ∇f(θ) = 0

ε-FOSP θ ‖∇f(θ)‖ ≤ ε

SOSP θ ∇f(θ) = 0 and ∇2f(θ) � 0

ε-SOSP θ ‖∇f(θ)‖ ≤ ε and ∇2f(θ) � −√ρε I

We conclude this section with a simple example, where SOSPs
coincide with global minima.

Example 7.1 (Matrix factorization). For a given positive semi-definite
matrix M , consider the following objective function:

min
θ∈Rd

{
f(θ) = 1

2‖θθ
T −M‖2F

}
. (7.3)

Let M = UΛUT, where Λ is a diagonal matrix with eigenvalues
λ1, λ2, . . . , λd, and the matrix U contains the eigenvectors ofM . Assume
λ1 > λ2 ≥ · · · ≥ λd ≥ 0. Let u1, u2, . . . , ud denote the eigenvectors of
M corresponding to the eigenvalues λ1, . . . , λd.

The gradient and Hessian of f are given by

∇f(θ) = ‖θ‖22θ −Mθ, and (7.4)
∇2f(θ) = ‖θ‖22I + 2θθT −M. (7.5)

From the Hessian expression, it is apparent that the function f(θ) is non-
convex. Setting ∇f(θ) = 0, we obtain (‖θ‖22I−M)θ = 0 orMθ = ‖θ‖22θ.
Thus, the stationary points are zero and ±

√
λiui, for i = 1, . . . , d.

For θ =
√
λiui, notice that f(θ) = −λ2

i + ‖M‖2F . Thus, f is mini-
mized at ±

√
λ1u1. Moreover, using the expression of the Hessian above,

a straightforward calculation shows that ∇2f(θ) � 0 at ±
√
λ1u1 and

not at ±
√
λiui for i 6= 1. For the remaining local minima, say x̃, since

λ1 > λ2, we have a direction of escape using the top eigenvector u1,
since u1∇2f(x̃)Tu1 ≤ λ2 − λ1 < 0.
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7.2 Asymptotic escaping of saddle points for ZSG algorithm

A common trick to escape saddle points is to add extraneous noise so
that a stochastic gradient algorithm does not get stuck and instead,
converges to a local minima. This approach is the adopted in (Jin et al.,
2017; Ge et al., 2015; Jin et al., 2021). In particular, such a scheme,
referred to as perturbed gradient descent, involves the following update
iteration:

θn+1 = θn − a(n)
(
∇̂f(θn) + ζn

)
, (7.6)

where ζn is extraneous noise that is injected into the stochastic gradient
algorithm, and is usually sampled from a zero-mean multivariate Gaus-
sian vector with covariance matrix σ2I. The extraneous noise ensures
that the iterate θn, governed by (7.6), does not converge to an unstable
equilibrium of the underlying ODE θ̇(t) = −∇f(θ(t)), implying escape
from saddle points. We shall explore this idea in more detail in the next
section.

In this section, we adopt a different viewpoint, which is to show
convergence to local minima for the case where the noise in the gradient
estimates is rich in all directions, which in turn does not let the ZSG
algorithm get stuck at an undesirable saddle point. Recall ZSG uses the
following update:

θn+1 = θn − a(n)
(
∇̂f(θn)

)
, (7.7)

We shall use the unified gradient estimator described in Chapter 3. For
the sake of readability, we recall this estimator below.

∇̂f(θn) =
(
y+
n − y−n

2δ

)
Vn, (7.8)

where y+
n = f(θn + δUn) + ξ+

n , and y−n = f(θn− δUn) + ξ−n . Notice that,
unlike the asymptotic convergence analysis from Chapter 4, we employ
a constant sensitivity parameter δ > 0 and not a diminishing one. Such
a choice aids the main result of this section, which establishes avoidance
of saddle points for the update (7.7).

Under certain conditions on the measurement noise {ξ±n }, one can
avoid injecting noise artificially, and instead directly establish conver-
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gence to local minima, owing to the noise in the gradient estimator. The
additional assumption on measurement noise is made precise below.

A7.1. ∃ c3, c4 > 0 such that c3 ≤ Ek|ξ+
k − ξ

−
k |, where Ek(·) is shorthand

notation for E(· | Fk). In addition, |ξ+
k − ξ

−
k | ≤ c4, ∀k.

The assumption above ensures that the noise in function measure-
ments is rich in all directions.

Consider the following ODE:

θ̇(t) = −E
[(

f(θ(t) + δU)− f(θ(t)− δU)
2δ

)
V

∣∣∣∣ θ(t)] , (7.9)

where the expectation is over the joint distribution of U, V .

Theorem 7.1. Suppose the conditions of Proposition 3.1 and A7.1
hold. Further, assume ‖Vk‖ ≤ B0 a.s. for all k. Set a(k) = c5

kα
and

δk = δ, ∀k, for some constants c5, δ > 0 and α ∈
(1

2 , 1
]
. Then,

{θk} governed by (7.7), converges to the stable critical points of
the ODE (7.9).

The result above says that the stochastic gradient algorithm (7.7)
avoids unstable critical points of the ODE (7.9). However, the stable
critical points of this ODE are not necessarily the local minima of the
objective f . A related ODE is θ̇(t) = −∇f(θ(t)). By the bias bounds in
Chapter 3, we know that∥∥∥∥E [(f(θ + δU)− f(θ − δU)

2δ

)
V

∣∣∣∣ θ]−∇f(θ)
∥∥∥∥ = O(δ2).

While the bias could in principle add spurious points (that are not
local minima of f) to the limit set of (7.9), it is possible to find a δ0
for any ε > 0 such that for all δ ≤ δ0, the algorithm governed by (7.7)
converges almost surely to an ε-neighborhood of the local minima of f ,
cf. Theorem 2.4 of (Bhatnagar et al., 2003).

For the proof, we require a result from (Pemantle, 1990). We adapt
this result to a gradient update and state it below.
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Theorem 7.2 (Avoidance of traps). Consider the following stochastic
approximation update iteration:

θk+1 = θk + a(k)h(θk) + ψk. (7.10)

Suppose the following conditions hold.

(B1) c5
kα
≤ a(k) ≤ c6

kα
for some constants c5, c6 > 0 and α ∈

(1
2 , 1

]
;

(B2) Ek
[
(ψk · ϑ)+

]
≥ c7/k

α for some c7 > 0 and every unit vector
ϑ. Here (a · b) denotes the dot product between a and b, and
(a)+ = max(a, 0);

(B3) ‖ψk‖ ≤ c8/k
α for some c8 > 0.

Suppose h ∈ C2. Then, {θk} governed by (7.10), converges to the stable
critical points of the ODE θ̇(t) = h(θ(t)).

We now prove Theorem 7.1.

Proof. We first rewrite the update rule (7.7) as follows:

θk+1 = θk − a(k)∇̂f(θk)
= θk − a(k)∇f(θk)− ψk, (7.11)

where ψk = a(k)
[
ξ+
k − ξ

−
k

δ
Vk

]
.

The convergence of (7.11) to a local minimum can be inferred from
Theorem 7.2 provided that conditions (B1)–(B3) of (Pemantle, 1990)
are satisfied.

It is easy to see that a(k) defined in the theorem statement satisfies
condition (B1).

We now show that condition (B2) holds. Consider the unit vector ϑ
with the ith entry as 1. Letting V i

k denote the ith entry of the vector
Vk, we have

Ek[(ψk · ϑ)+] = Ek

[
(a(k)(ξ+

k − ξ
−
k )V i

k )+

δ

]
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(b)
≥ Ek

[
a(k)(ξ+

k − ξ
−
k )V i

k + a(k)|(ξ+
k − ξ

−
k )V i

k |
2δ

]
(c)= Ek

[
a(k)|ξ+

k − ξ
−
k | |V i

k |
2δ

]

(d)
≥
c5c3 min

i=1...,d
E|V i

k |

2δkα .

In the above, we used the fact that max(x, y) = x+ y + |x− y|
2 to infer

the equality in (b). To infer the equality in (c), we used Ek[(ξ+
k −ξ

−
k )V i

k ] =
0, which holds since Ek[ξ+

k −ξ
−
k ] = 0 and Vk is independent of Fk. Finally,

A7.1 allows us to infer (d). Thus, condition (B2) holds.
We now turn to verifying condition (B3). Notice that

‖ψk‖ ≤
a(k)
δ
‖(ξ+

k − ξ
−
k )Vk‖ ≤

c4c5B0
δkα

,

where we used the following facts:
(a) ‖(ξ+

k − ξ
−
k )‖ ≤ c4 from A7.1; (b) ‖Vk‖ ≤ B0 by assumptions in the

theorem statement; and (c) a(k) = c5
kα

. Thus, condition (B3) holds.
The verification of conditions (B1)–(B3) above together with the

fact f ∈ C3 (by assumption) imply that (7.11) avoids unstable critical
points of the ODE (7.9), by an invocation of Theorem 7.2.

7.3 Escaping saddle points with exact gradient/Hessian measure-
ments

In this section, we operate with exact gradient and/or Hessian measure-
ments. We use this setting to illustrate the main algorithmic ideas to
find an SOSP.

We make the following smoothness assumption for the sake of algo-
rithmic development as well as analysis.

A7.2. There exist positive scalars L1, L2 such that

‖∇f(θ1)−∇f(θ2)‖ ≤ L1 ‖θ1 − θ2‖ , and∥∥∥∇2f(θ1)−∇2f(θ2)
∥∥∥ ≤ L2 ‖θ1 − θ2‖ . (7.12)
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In addition, we shall assume a finite lower bound for the objective
f , made precise in the assumption below.

A7.3. There exists a f̄ > −∞ s.t. f(θ) ≥ f̄ for all θ ∈ Rd.

7.3.1 Hessian-aided scheme

Recall that, at an ε-SOSP, we have ‖∇f(θ)‖ ≤ ε and λmin(∇2f(θ)) ≥
−
√
ε. Finding a point with ‖∇f(θ)‖ ≤ ε is easy and a simple GD

algorithm would achieve this goal. This claim is made precise below for
a GD update iteration given by

θk+1 = θk − a∇f(θk). (7.13)

Since f is L1-smooth and setting a < 1
L1

, we have

f(θk+1) ≤ f(θk) +∇f(θk)T(θk+1 − θk) + L1
2 ‖θk+1 − θk‖2

= f(θk)− a ‖∇f(θk)‖2 + a2L1
2 ‖∇f(θk)‖2

≤ f(θk)−
a

2 ‖∇f(θk)‖2 . (7.14)

Thus, using the GD update (7.13), one could get to a point, say θ̄,
satisfying

∥∥∥∇f(θ̄)
∥∥∥ ≤ ε. However, such a point could be a saddle, and

needs to be escaped from. A natural alternative is to use second-order
information to move away from a potential saddle point. From an
algorithmic viewpoint, one could perform a GD step (7.13) when the
gradient is large, i.e., ‖∇f(θ)‖ > ε, and on arriving at a point with
a small gradient, inspect the Hessian to infer if an SOSP is found.
More precisely, let λk := λmin(∇2f(θk)). If λk ≥ −

√
ε, then an ε-SOSP

is found, since we inspect the Hessian ∇2f(θk) only if ‖∇f(θ)‖ ≤ ε.
Otherwise, find an eigenvector, say uk, corresponding to λk, with the
additional constraint that ‖uk‖ = 1 and uT

k∇f(θk) ≤ 0. Using this
eigenvector, perform the following update iteration:

θk+1 = θk + a(k)uk. (7.15)

Using Taylor expansions and the update given above, we obtain

f(θk+1) ≤ f(θk)+a(k)∇f(θk)Tuk+
1
2a(k)2uT

k∇2f(θk)uk+
1
6L2a(k)3‖uk‖3.
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Setting a(k) = 2|λk|
L2

, and using uT
k∇f(θk) ≤ 0, we obtain

f(θk+1) ≤ f(θk)−
1
2

4λ2
k

L2
2
|λk|+

1
6L2

8|λk|3

L3
2
. (7.16)

Thus, during each iteration of an algorithm that performs either (7.13)
or (7.15), the function value drops. For a GD step (7.13), the decrease
in function value is given by (7.14) and for the other step involving
curvature information from the Hessian, the decrease in function value
is given by (7.16). Now, the algorithm on termination, returns an SOSP.
The termination in a finite number of iterations can be argued by
the fact that the function value decreases in each iteration, and the
maximum decrease is f(θ0)− f(θ∗). Such a calculation would lead to
an O(1/ε2) number of iterations for finding an ε-SOSP.

Based on the discussion above, a two-step algorithm for finding
SOSPs is given as a pseudocode in Algorithm 3.

Theorem 7.3. Suppose Assumptions A7.2 to A7.3 hold. Then, Al-

gorithm 3 will find an ε-SOSP in O
(

max(2L1,
3
2L2)(f(θ0)− f?)
ε2

)
steps.

The algorithm above has two drawbacks. First, it requires explicit
Hessian computation. The cubic-regularized Newton algorithm in the
next section overcomes this drawback by working with Hessian-vector
products. The second drawback involves the computational overhead re-
sulting from the update (7.15), which requires examining the eigenvalues
of the Hessian. Even with Hessian vector products, the implementation
is computationally expensive when compared to a GD update. We next
discuss an alternative that is a variant of GD, which finds an SOSP.

7.3.2 Perturbed GD

Recall from the discussion in the section above that a GD step is
appropriate when the gradient norm is large. On the other hand, when
the gradient norm is small, then we have either found an SOSP or else
a saddle point. To avoid the latter case, the algorithm from the section
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Algorithm 3: Hessian-aided gradient descent
Input: Initial point θ1 ∈ Rd, step sizes {a(k)}.
for k = 0, 1, . . . do

if ‖∇f(θk)‖ > ε then
θk+1 = θk − a(k)∇f(θk);

end if
else

Let λk := λmin(∇2f(θk));
if λk ≥ −

√
ε then

return θk;
// ε-SOSP found

end if
else

Find eigenvector uk corresponding to λk s.t. ‖uk‖ = 1
and uT

k∇f(θk) ≤ 0;
θk+1 = θk + a(k)uk;

end if
end if

end for

above inspected the Hessian, in particular, to infer if the minimum
eigenvalue satisfies the SOSP condition or not. A computationally
efficient alternative is to inject noise artificially when the latter condition
holds, i.e., when gradient norm is small and the iterate has not moved
much for many iterations. This idea forms the basis for perturbed GD1,
with pseudocode in Algorithm 4.

Algorithm 4 performs a regular GD step when the gradient is large,
and as seen before, such a step would ensure a decrease in function value.
However, when the gradient norm ‖∇f(θk)‖ is small, the algorithm
may be either at a SOSP, or at a saddle point. To avoid the latter case,
Algorithm 4 adds noise from an isotropic distribution. More precisely,

1Here “perturbed” is not to be confused with “random perturbations” underlying
a simultaneous perturbation-based gradient estimation approach. Instead, here
“perturbed” refers to the fact that a GD iterate is forced out of potential saddle
points by noise factors.
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Algorithm 4: Perturbed gradient descent
Input: Initial point θ1 ∈ Rd, step size a, perturbation factors

ζk, threshold parameters tthres and gthres.
for t = 0, 1, . . . do

if ‖∇f(θk)‖ ≤ gthres and t− tnoise > tthres then
θ̃k ← θk, tnoise ← t;
θk+1 = θ̃k + ζk;

end if
if t− tnoise = tthres and f(θk)− f(θ̃tnoise) > −fthres then

return θ̃tnoise ;
end if
θk+1 ← θk − a∇f(θk);

end for

as an intermediate step, when ‖∇f(θk)‖ ≤ gthres for some threshold
parameter gthres, and no noise has been added for a certain threshold
tthres number of iterations, Algorithm 4 would perturb the iterate as
follows:

θk+1 = θk + ζk, (7.17)

where ζk is extraneous noise that could be chosen from an isotropic
distribution. In essence, Algorithm 4 performs regular GD between two
instants where the parameter is perturbed. The tthres parameter ensures
that these instants are separated in time well enough.

For a careful choice of parameters gthres, tthres, fthres and the distri-
bution of ζk, it can be shown that perturbed GD finds an ε-SOSP in
O(log4(d)/ε2) iterations. The result below makes this claim precise.

Theorem 7.4 (Theorem 3 of (Jin et al., 2017)). Suppose Assump-
tions A7.2 to A7.3 hold. Set perturbed GD algorithm’s param-
eters as follows: χ = 3 max{log

(
d`∆f

cε2δ

)
, 4}, a = c

`
, gthres =
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√
c

χ2 · ε, fthres = c

χ3 ·
√
ε3

ρ
, tthres = χ

c2 ·
`
√
ρε

tnoise = −tthres − 1.

Further, let the extraneous noise ζk in Algorithm 4 be sampled

uniformly from the surface of sphere with radius r =
√
c

χ2 ·
ε

`
.

Then, there exists an absolute constant cmax such that, for any

δ > 0, ε ≤ `2

ρ
, ∆f ≥ f(θ0)− f?, and constant c ≤ cmax, perturbed

GD will output an ε-SOSP, with probability 1− δ, and terminate
in the following number of iterations:

O

(
L2(f(θ0)− f?)

ε2
log4

(
dL2∆f

ε2δ

))
.

Proof. We provide a brief sketch of the main proof ideas below. We
refer the reader to (Jin et al., 2017) for the complete proof.

Recall from the previous section that a GD step results in a function
decrease given by

f(θk+1) ≤ f(θk)−
a

2 ‖∇f(θk)‖2 . (7.18)

Next, if θk satisfies ‖∇f(θt)‖ ≤ gthres and λmin(∇2f(θk)) ≤ −
√
ρε,

then adding one perturbation step (7.17) followed by tthres GD steps,
we have

f(θk+tthres)− f(θk) ≤ −ftthres with high probability.

Thus, if Algorithm 4 is at a saddle point, then perturb and GD steps
ensure a decrease in function value.

Next, at an SOSP, Algorithm 4 would either remain there, which
is the favorable case, or move away, in which case there is a function
value decrease.

Thus, there is a function value decrease with GD/perturbed GD
steps, and the total number of iterations can be inferred using the
average function value decrease per iteration. This calculation would
be along similar lines as in the previous section for Algorithm 3 in
the sense that the maximum decrease is f(θ0)− f∗, and the algorithm
either stops (with an SOSP), or continues to decrease the function value
between iterations.
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We remark that Algorithm 4 has been extended to the case with
stochastic gradients in (Jin et al., 2021). In particular, the aforemen-
tioned reference considers a setting where the gradient estimates are un-
biased, and the noise in these estimates satisfy a certain sub-Gaussianity
requirement. Under these conditions, the authors establish convergence
of a variant Algorithm 4 with noisy gradient estimates to an approximate
SOSP with high probability. However, to the best of our knowledge, a
similar result is not available for Algorithm 4 in the zeroth-order setting,
where the gradient estimates have a bias-variance tradeoff.

7.4 Cubic-regularized stochastic Newton

The standard Newton step is given by

θk+1 = θk −∇2f(θk)−1∇f(θk).

This is equivalent to finding a θ that minimizes a second-order approxi-
mation, i.e., the following:

θk+1 = arg min
θ∈Rd

{
〈∇f(θk), θ−θk〉+

1
2
〈
∇2f(θk)(θ−θk), θ−θk

〉}
.

For the case of a convex objective, the Newton method finds minima
efficiently as compared to a gradient method, since the former uses a
second-order approximation. However, for a non-convex objective, the
Newton method may not necessarily escape from saddle points. A fix
is to have an incremental algorithm that performs either a gradient
or a Newton step adaptively, with the decision for the type of the
step based on the gradient norm at the current point. In particular,
gradient steps for large gradients and Newton steps otherwise. Such a
two-step algorithm, analyzed for deterministic optimization in (Wright
and Recht, 2022, Section 3.6), finds an ε-SOSP in O

( 1
ε3

)
number of

iterations, where each iteration is either a gradient or Newton step. An
elegant alternative to achieve the same effect as the two-step algorithm
discussed above is cubic regularization, which is described next.

The cubic regularized Newton step adds a cubic term to the auxiliary
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Algorithm 5: Cubic-regularized stochastic Newton (CR-SN)
Input: Initial parameter θ0 ∈ Rd, a non-negative sequence

{αk}, positive integer sequences {mk} and {bk}, and an
iteration limit N ≥ 1.

for k = 1, . . . , N do
/* Gradient and Hessian estimation */
Obtain mk gradient estimates {∇̂f(θk, l), l = 1, . . . ,mk};
Obtain bk Hessian estimates {∇̂2f(θk, l), l = 1, . . . , bk};
Form estimates ḡk, H̄k as averages of the mk gradient and bk
Hessian estimates, i.e.,

ḡk = 1
mk

mk∑
l=1
∇̂f(θk, l), H̄k = 1

bk

bk∑
l=1
∇̂2f(θk, l).

/* Cubic-regularized Newton step */
Compute

θk = arg min
θ∈Rd

{
f̃k(θ) ≡ f̃(θ, θk−1, H̄k, ḡk, αk)

}
,where

f̃(x, y,H, g, α) = 〈g, x− y〉+ 1
2 〈H(x− y), x− y〉+ α

6 ‖x− y‖
3 .

(7.19)
end for
Output: Parameter θN

function in the following manner:

θk+1 = arg min
θ∈Rd

{
〈∇f(θk), θ − θk〉

+ 1
2
〈
∇2f(θk)(θ − θk), θ − θk

〉
+ α

6 ‖θ − θk‖
3
}
,

where α ∈ R+ is the regularization parameter. Since the gradient and
Hessian of f are not directly available, we obtain ∇̂f(θk, l), l = 1, . . . ,mk

estimates of the gradient and ∇̂2f(θk, l), l = 1, . . . , bk estimates of the
Hessian at θk. We use an average of these estimates, denoted by ḡk
and H̄k, respectively, to solve the cubic sub-problem (7.19) in each
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round of cubic-regularized stochastic Newton (CR-SN) algorithm, whose
pseudocode is presented in Algorithm 5. The mean-squared error (MSE)
of the gradient estimate ḡk is O

( 1
mk

)
, whereas the corresponding

bound for the Hessian estimate H̄k is O
( 1
bk

)
, see Lemma 7.7 below. We

require the MSE to vanish asymptotically in order to ensure convergence
of CR-SN to an ε-SOSP of the objective.

We consider CR-SN under two different settings. In the first setting,
the gradient and Hessian estimates are unbiased, whereas in the second
setting, these estimates are biased. In the next section, we establish
convergence of CR-SN to an approximate SOSP in the first setting, and
subsequently, extend the analyses to cover the second setting.

7.4.1 The case of unbiased gradient/Hessian information

In this setting, the gradient/Hessian estimates satisfy the following
assumption:

A7.4. Let Fk = σ(θi, i ≤ k). Recall Ek denotes the expectation
conditioned on Fk. For any k ≥ 1, we have

1. Ek
[
∇̂f(θk)

]
= ∇f (θk) , Ek

[
∇̂2f(θk)

]
= ∇2f (θk).

2. Ek
[∥∥∥∇̂f(θk)−∇f (θk)

∥∥∥2
]
≤ σ2

1,

Ek
[∥∥∥∇̂2f(θk)−∇2f (θk)

∥∥∥2
]
≤ σ2

2, for some σ1, σ2 ≥ 0.

The assumption above is satisfied in a risk-neutral RL setting, for in-
stance, see (Maniyar et al., 2024). On the other hand, in a risk-sensitive
RL application, obtaining unbiased gradient/Hessian information is not
feasible. Instead, one can use simultaneous perturbation-based gradi-
ent/Hessian estimators that are formed using function measurements.
Such a setting involves biased gradient/Hessian estimates, which we
shall analyze in the next section.

The result establishes convergence of Algorithm 5 to an ε-SOSP.
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Theorem 7.5. Suppose Assumptions A7.4 and A7.2 hold. Let
{θ1, . . . , θN} be computed by Algorithm 5 with the following pa-
rameters:

αk = 3L2, N = 12
√
L2(f(θ0)− f∗)

ε
3
2

, (7.20)

mk = 25σ2
1

4ε2 , bk = 36 3
√

30(1 + 2 log 2d)d
2
3σ2

2
L2ε

. (7.21)

Let θR be picked uniformly at random from {θ1, . . . , θN}. Then,

5
√
ε ≥ max

{√
E‖∇f(θR)‖, −5

6
√
L2

Eλmin
(
∇2f(θR)

)}
, (7.22)

where L1 and L2 are specified in Assumption A7.2.

As we reduce the parameter ε, the batch sizes mk, bk as well as the
number of iterations N can be seen to increase. Alternatively, the batch
sizes increase with N , and hence are not to be viewed as constants.

Proof of Theorem 7.5

The proof proceeds through a sequence of lemmas while following the
technique from (Balasubramanian and Ghadimi, 2022a) and (Maniyar
et al., 2024).

Lemma 7.6. Let θ̄ = arg min
x∈Rd

f̃(x, θ,H, g, α). Then, we have

g +H(θ̄ − θ) + α

2

∥∥∥θ̄ − θ∥∥∥ (θ̄ − θ) = 0, (7.23)

H+ α

2

∥∥∥θ̄ − θ∥∥∥ Id � 0. (7.24)

where Id is the identity matrix.

Proof. See (Nesterov and Polyak, 2006).

The result below provides error bounds for the gradient and Hessian
estimates, which are sample averages.
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Lemma 7.7. Let ḡk and H̄k be computed as in Algorithm 5, and assume
mk ≥ 1, bk ≥ 4(1 + 2 log 2d). Then,

E‖ḡk −∇f(θk−1)‖2 ≤ σ2
1

mk
, (7.25)

E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥3
≤ 4

√
15(1 + 2 log 2d)dσ3

2

b
3
2
k

. (7.26)

Proof. Using Assumption A7.4, we have

E‖ḡk −∇f(θk−1)‖2

= E
∥∥∥∥∥ 1
mk

mk∑
l=1

(
∇̂f(θk−1, l)−∇f(θk−1)

)∥∥∥∥∥
2

≤ σ2
1

mk
.

This establishes the first bound in (7.25). Now we turn to proving the
second bound in (7.25). By Theorem 1 in (Tropp, 2016), we have

E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥2
≤ 2C(d)

b2k

∥∥∥∥∥∥
bk∑
l=1

E∆2
k,l

∥∥∥∥∥∥+ C(d)E max
l=1,...,bk

‖∆k,l‖2
 ,

(7.27)

where ∆k,l = ∇̂2f(θk−1, l)−∇2f(θk−1) and C(d) = 4(1 + 2 log 2d). It
is easy to see that

E‖∆k,l‖2 ≤ E
∥∥∥∇̂2f(θk−1, l)

∥∥∥2
≤ σ2

2, and (7.28)∥∥∥∥∥∥
bk∑
l=1

E∆2
k,l

∥∥∥∥∥∥ ≤
bk∑
l=1

∥∥∥E∆2
k,l

∥∥∥ ≤ bk∑
l=1

E‖∆k,l‖2. (7.29)

Using (7.28) and (7.29) in (7.27), we obtain

E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥2
≤ 2C(d)

b2k

(
bkσ

2
2 + C(d)σ2

2

)
≤ 4C(d)

bk
σ2

2,

where in the last inequality we use the assumption that bk ≥ C(d). Let
‖·‖F denote the Frobenius norm. Using Holder’s inequality, we obtain

E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥3

≤ E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥ · ∥∥∥H̄k −∇2f(θk−1)
∥∥∥2

F
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≤
(
E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥2
· E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥4

F

) 1
2
. (7.30)

Note that H̄k −∇2f(θk−1) = 1
bk

bk∑
l=1

∆k,l. Hence, we have

E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥4

F
= E

∥∥∥∥∥∥ 1
bk

bk∑
l=1

∆k,l

∥∥∥∥∥∥
4

F

= 1
b4k

E

∥∥∥∥∥∥
bk∑
l=1

∆k,l

∥∥∥∥∥∥
4

F

≤
3E‖∆k,l‖4F

b2k
,

where the final inequality comes from Rosenthal’s inequality (cf. Lemma
16 in (Maniyar et al., 2024)).

For a random matrix Z ∈ Rd×d, it can be shown that (see Lemma
15 in (Maniyar et al., 2024))

E‖Z − EZ‖4 ≤ 5E‖Z‖4.

Using the inequality above in conjunction with the fact that ‖·‖F ≤√
d ‖·‖, we obtain the following for any l ∈ {1, . . . , bk}:

E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥4

F
≤ 3d2E‖∆k,l‖4

b2k
≤

15d2E
∥∥∥∇̂2f(θk−1, l)

∥∥∥4

b2k

≤ 15d2σ4
2

b2k
,

which when combined with (7.30) leads to the second bound in (7.25).

We next state a result that will be used in a subsequent lemma.

Lemma 7.8. If for any two matrices A and B, and a scalar c, we have2

A � B + cI, (7.31)

where I is the identity matrix of appropriate dimension, then the
following holds:

c ≥ λmax(A)− ‖B‖ . (7.32)
2Here, A � B denotes a matrix inequality in the positive semi-definite (p.s.d)

sense, i.e., indicating A−B is p.s.d.
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Proof. See Appendix F of (Maniyar et al., 2024).

Lemma 7.9. Let {θk} be computed by Algorithm 5. Then, we have

√
E‖θk − θk−1‖2 ≥ max


√

E‖∇f(θk)‖ − δgk − δHk
L2 + αK

,

−2
αk + 2L2

[
Eλmin

(
∇2f(θk)

)
+
√

2(αk + L2)δHk
]}

,

where δgk, δ
H
k > 0 are chosen such that

E‖∇f(θk−1)− ḡk‖2 ≤
(
δgk
)2
, and

E
∥∥∥∇2f(θk−1)− H̄k

∥∥∥3
≤
(
2(L2 + αk)δHk

) 3
2 .

(7.33)

Proof. Notice that

‖∇f(θk)‖

≤
∥∥∥∇f(θk)−∇f(θk−1)−∇2f(θk−1)(θk − θk−1)

∥∥∥+ ‖∇f(θk−1)− ḡk‖

+
∥∥∥∇2f(θk−1)− H̄k

∥∥∥ ‖θk − θk−1‖+ αk
2 ‖θk − θk−1‖2

≤ (L2 + αk)
2 ‖θk − θk−1‖2 + ‖∇f(θk−1)− ḡk‖

+
∥∥∥∇2f(θk−1)− H̄k

∥∥∥ ‖θk − θk−1‖

≤ (L2 + αk) ‖θk − θk−1‖2 + ‖∇f(θk−1)− ḡk‖+

∥∥∥∇2f(θk−1)− H̄k
∥∥∥2

2(L2 + αk)
,

where we used Young’s inequality in the last step. Taking expectations
and using (7.33), we have

(E‖∇f(θk)‖ − δgk − δHk )
L2 + αk

≤ E‖θk − θk−1‖2. (7.34)

By the inequality in Lemma 7.23, and the fact that f is smooth by
Assumption A7.2, we have

∇2f(θk) � ∇2f(θk−1)− L2 ‖θk − θk−1‖ Id
= ∇2f(θk−1)− H̄k + H̄k − L2 ‖θk − θk−1‖ Id



220 Escaping saddle points

� ∇2f(θk−1)− H̄k −
(αk + 2L2) ‖θk − θk−1‖

2 Id,

implying

(αk + 2L2) ‖θk − θk−1‖
2 ≥ λmin(∇2f(θk−1)− H̄k)− λmin

(
∇2f(θk)

)
.

(7.35)

Taking expectations on both sides, and using the definition of δHk in
(7.33), we have√

E‖θk − θk−1‖2 ≥ E‖θk − θk−1‖ (7.36)

≥ −2
αk + 2L2

[
Eλmin

(
∇2f(θk)

)
+
√

2(αk + L2)δHk
]
.

(7.37)

The main claim follows by combining the above inequality with (7.34).

Lemma 7.10. Let {θk} be computed by Algorithm 5 for a given iteration
limit N ≥ 1. Then,

E‖θR − θR−1‖3 ≤
36∑N
k=1 αk

×

f(θ0)− f∗ +
N∑
k=1

4
(
δgk
) 3

2
√

3αk
+

N∑
k=1

(
18 4√2
αk

)2 (
(L2 + αk)δHk

) 3
2

 ,
(7.38)

where R is a random variable whose probability distribution PR(·) is
supported on {1, . . . , N} and given by

PR(R = k) = αk∑N
k=1 αk

, k = 1, . . . , N, (7.39)

and δgk, δ
H
k > 0 are defined as before in (7.33).

Proof. Using Assumption A7.2, (7.19) and the fact that αk ≥ L2, we
have

f(θk) ≤ f(θk−1) + f̃k(θk) + ‖∇f(θk−1)− ḡk‖ ‖θk − θk−1‖

+ 1
2

∥∥∥∇2f(θk−1)− H̄k
∥∥∥ ‖θk − θk−1‖2 . (7.40)
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Further,

f̃k(θk) = −1
2
〈
H̄k(θk − θk−1), (θk − θk−1)

〉
− αk

3 ‖θk − θk−1‖3

≤ −αk12 ‖θk − θk−1‖3 . (7.41)

Combining (7.40) and (7.41), we obtain

αk
12 ‖θk−1 − θk‖3 ≤ f(θk−1)− f(θk) + ‖∇f(θk−1)− ḡk‖ ‖θk − θk−1‖

+ 1
2

∥∥∥∇2f(θk−1)− H̄k
∥∥∥ ‖θk − θk−1‖2

≤ f(θk−1)− f(θk) + 4√
3αk
‖∇f(θk−1)− ḡk‖

3
2

+
(

9
√

2
αk

)2 ∥∥∥∇2f(θk−1)− H̄k
∥∥∥3

+ αk
18 ‖θk − θk−1‖3 ,

(7.42)

where the last inequality follows from the fact ab ≤ ap

λpp
+ λqbq

q
for p, q

satisfying 1
p

+ 1
q

= 1 and λ > 0.

We now take expectation on both sides of (7.42) and use (7.33) to
obtain
αk
36E‖θk − θk−1‖3

≤ f(θk−1)− f(θk) + 4
(
δgk
) 3

2
√

3αk
+
(

18 4√2
αk

)2 (
(L2 + αk)δHk

) 3
2 . (7.43)

Summing over k = 1, . . . , N , dividing both sides by
N∑
k=1

αk and noting

(7.39), we obtain the bound in (7.38).

Proof of Theorem 7.5

Proof. First, note that by (7.20), Lemma 7.25, we can ensure that (7.33)
is satisfied by δgk = 2ε/5 and δHk = ε/144. Moreover, by Lemma 7.10, we
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have

E‖θR − θR−1‖3 ≤
12
L2

f(θ0)− f∗

N
+ 4 (2/5)

3
2

3
√
L2

ε
3
2 + 182√2

9 · 63√L2
ε

3
2


(7.44)

≤ 1

L
3
2
2

[
12
√
L2(f(θ0)− f∗)

N
+ 6.88ε

3
2

]

≤ 8ε
3
2

L
3
2
2

. (7.45)

The inequality in (7.45) follows by substituting the value of N specified
in the theorem statement. Furthermore, from Lemma 7.9 and using
Lyapunov inequality i.e.,[

E‖θR − θR−1‖2
]1/2
≤
[
E‖θR − θR−1‖3

]1/3
≤ 2ε

1
2

L
1
2
2

.

Using the bound above in conjunction with (7.34) and (7.36), we obtain√
E‖∇f(θk)‖ ≤

√(
16 + 2

5 + 1
144

)
ε ≤ 5

√
ε,

and
E
[
−λmin

(
∇2f(θk)

)]
√
L2

≤
(

5 + 1
3
√

2

)√
ε ≤ 6

√
ε.

The main result in (7.22) follows from the two inequalities above.
Finally, note that the total number of required samples to obtain

such a solution is bounded by
N∑
k=1

mk = O

( 1
ε

7
2

)
,

N∑
k=1

bk = O

(
d

2
3

ε
5
2

)
.

7.4.2 The case of biased gradient/Hessian information

We now consider the case where Assumption A7.4 does not hold. Instead,
an algorithm has access to zeroth-order observations.
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For simplicity, we consider the setting where f(θ) = E [F (θ, ξ)], and
the sample performance F is smooth, as specified in Assumption A5.4.
For this setting, we employ the Gaussian smoothing approach to form
the gradient and Hessian estimates in Algorithm 5. Let

∇̂f(θ) = ∆
[
F (θ + δ∆, ξ)− F (θ, ξ)

δ

]
, (7.46)

∇̂2f(θ) = ∆
[
F (θ + δ∆, ξ) + F (θ − δ∆, ξ)− 2F (θ, ξ)

2δ2 (∆∆T − I)
]
.

(7.47)

In the above, we have used common random noise to form the gradi-
ent estimate ∇̂f(θ) and Hessian estimate ∇̂2f(θ). In Algorithm 5, we
require sample averages of these quantities. Let ∇̂f(θ, l), l = 1, . . . ,m,
and ∇̂2f(θ, l), l = 1, . . . , b, denote m and b independent samples of
the quantities defined in (7.46) and (7.47), respectively. Then, as in
Algorithm 5, we form the following sample average estimates, but with
the difference that the individual gradient/Hessian estimates are biased:

ḡk = 1
mk

mk∑
l=1
∇̂f(θk, l), H̄k = 1

bk

bk∑
l=1
∇̂2f(θk, l). (7.48)

It can be shown that the averaged gradient estimate ḡk and Hessian
estimate H̄k satisfy the following bounds:

E‖ḡk −∇f(θk−1)‖2 ≤ 2(d+ 5)(B2 + σ2)
mk

+ δ2L2(d+ 3)3

2mk
,

E
∥∥∥H̄k −∇2f(θk−1)

∥∥∥2
≤ 240

√
15(1 + 2 log 2d)(d+ 16)3L3

b
3
2
k

+ 3L2
2(d+ 16)5δ2.

(7.49)

The reader is referred to Lemmas 1 and 8 of (Balasubramanian and
Ghadimi, 2022a) for the proof.

Next, by using completely parallel arguments to the proof of Theo-
rem 7.5, with the bounds in (7.49) replacing those in Lemma 7.7, one
can establish convergence to ε-SOSP guarantee within O

( 1
ε

3
2

)
number

of iterations, which in turn translates to O
( 1
ε

7
2

)
gradient evaluations
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and O
(
d

2
3

ε
5
2

)
Hessian evaluations.

7.5 Bibliographic remarks

7.1 First-order stationary points are standard in optimization liter-
ature and have been the topic of analysis in several papers in-
volving stochastic gradient algorithms, cf. (Ghadimi and Lan,
2013; Bhavsar and Prashanth, 2022). The SOSP notion is based
on (Nesterov and Polyak, 2007), and this notion has been used
extensively in ML literature over the last decade, cf. (Jin et al.,
2017).

7.2 Avoidance of traps for a general stochastic approximation algo-
rithm has received a lot of research attention, cf. (Pemantle, 1990;
Brandiere and Duflo, 1996; Borkar, 2003; Barakat et al., 2021;
Gadat and Gavra, 2022). In (Borkar, 2003), an estimate for the
lock-in probability, i.e., probability of convergence to an attractor
given that the iterate-sequence is in its domain of attraction after
a sufficiently long time is obtained and this is then used to argue
an avoidance of traps result. In the case when the iterate-sequence
has Markov noise in addition, (Karmakar and Bhatnagar, 2021)
derive a lock-in probability lower bound while such bounds in
the case of stochastic recursive inclusions (involving set-valued
maps) are obtained in (Yaji and Bhatnagar, 2019). Our treatment
in Section 7.2 leading to the traps avoidance claim in Theorem
7.1 for a SG algorithm with the unified gradient estimate is an
adaptation of the corresponding result in (Mondal et al., 2024).
In relation to the algorithm (7.6), an interesting early work is
(Gelfand and Mitter, 1991) that builds on ideas from simulated
annealing (Kirkpatrick et al., 1983). In the context of our setting,
the following recursion is considered:

θn+1 = θn − a(n)∇̂f(θn) + b(n)ζn,

where f is in general a C2 and non-convex function satisfying
certain additional conditions. Further, a(n) = A/n and b(n) =
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√
B/
√
n log logn, n ≥ 1, with A,B > 0, are two step-size sched-

ules and {ζn} is a sequence of independent Gaussian vectors with
zero mean and covariance matrix as the identity matrix. By ana-
lyzing an underlying stochastic differential equation, it is shown
under some conditions in (Gelfand and Mitter, 1991), that the
parameter sequence {θn} converges in probability to the set of
global minima of the function f by avoiding convergence to local
minima. This approach is thus a powerful technique to obtain
asymptotic convergence to global minima though it can be slow in
practice. Finally, in (Maryak and Chin, 2001), two-measurement
SPSA estimates have also been used for ∇̂f(θ) and convergence
to global minima claimed using the result in (Gelfand and Mitter,
1991). For a sub-class of non-convex objective functions, it is
possible to obtain global convergence guarantees, without addi-
tion of extraneous noise. As an example, the reader is referred
to (Karandikar and Vidyasagar, 2024), where the authors estab-
lish global convergence guarantees for “invex” functions, whose
stationary points are global minimizers.

7.3 The two part algorithm in Section 7.3.1 is based on Section 3.6
of (Wright and Recht, 2022). The perturbed GD algorithm in
Section 7.3.2 is based on (Jin et al., 2017).

7.4 Cubic-regularized Newton algorithm was first proposed in (Nesterov
and Polyak, 2007) in the context of deterministic optimization.
Subsequently, it was analyzed in the stochastic optimization set-
ting with unbiased gradient/Hessian information in (Tripuraneni
et al., 2018). Extension of stochastic cubic-regularized Newton to a
zeroth-order setting was done in (Balasubramanian and Ghadimi,
2022a). A more recent RL application of the cubic-regularized
Newton approach in the context of policy gradient methods is
(Maniyar et al., 2024).

The auxiliary problem (7.19) can be solved efficiently using gra-
dient descent, see (Carmon et al., 2016; Tripuraneni et al., 2018;
Maniyar et al., 2024) for the details. Moreover, computationally ef-
ficient extensions to a setting where the objective is approximated
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using a neural network is feasible with Hessian-vector products,
see (Maniyar et al., 2024).



8
Applications to reinforcement learning

Reinforcement learning (RL) refers to a class of model-free algorithms
that have become widely popular for problems of decision making
under uncertainty. In most real-life situations, it is hard to have precise
knowledge of the system model, and this is where RL algorithms are
immensely useful as these are largely data-driven algorithms.

In this chapter, we consider specifically two settings of reinforce-
ment learning algorithms, both involving policy gradient (PG) based
approaches (Sutton et al., 1999) for reinforcement learning. These algo-
rithms typically assume that the decision making policy is parameterized
and have traditionally involved obtaining unbiased gradient estimators
of the performance objective, many times the value function, w.r.t the
aforementioned policy parameters. However, recent work suggests that
zeroth order gradient estimators can result in improved performance, see
for instance, (Salimans et al., 2017; Mania et al., 2018). In many other
situations, such as in the case of actor-critic algorithms that also involve
policy gradient algorithms but where the algorithm’s parameters are
updated as soon as a data sample becomes available, using zeroth order
methods prove to be particularly effective, see for instance, (Bhatnagar
and Kumar, 2004; Abdulla and Bhatnagar, 2007).

227
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8.1 REINFORCE with an SPSA Gradient Estimate

REINFORCE is one of the popular algorithms in reinforcement learning
that is based on Monte-Carlo or trajectory-based estimates of the
value function. It has been first presented in (Williams, 1992), see also
(Sutton and Barto, 2018, Chapter 13). We however study an application
of zeroth-order gradient estimation in this setting. The work that we
present in this section is based on (Bhatnagar, 2023).

8.1.1 The Basic Setting

By a Markov decision process, we mean a controlled stochastic process
{Xn} whose evolution is governed by an associated control-valued
sequence {Zn}. It is assumed that the random variables Xn, n ≥ 0
take values in a set S called the state-space. Let A(s) denote the
set of all feasible actions in state s ∈ S and A

4= ∪s∈SA(s) denote
the set of all actions. When the state (Xn) is say s and a feasible
action a is chosen, the next state (Xn+1) seen is s′ with a probability
p(s′|s, a) 4= P (Xn+1 = s′ | Xn = s, Zn = a), ∀n. We assume these
probabilities do not depend on n. Such a process satisfies the controlled
Markov property, i.e.,

P (Xn+1 = s′ | Xn, Zn, . . . , X0, Z0) = p(s′ | Xn, Zn) a.s.

By an admissible policy or simply a policy, we mean a sequence of
functions π = {µ0, µ1, µ2, . . .}, with each µi : S → A, i ≥ 0, such that
µi(s) ∈ A(s), ∀s ∈ S. The policy π is a decision rule which specifies
that if at instant k, the state is i, then the action chosen under π
would be µk(i). A stationary policy π is one for which µk = µl

4= µ,
∀k, l = 0, 1, . . .. In other words, under a stationary policy, the function
that decides the action-choice in a given state does not depend on time
instant n. Many times, instead of calling π = {µ, µ, µ, . . .} a stationary
policy, we simply refer to the function µ itself as the stationary policy.

Associated with any transition to a state s′ from a state s under
action a, is a ‘single-stage’ cost g(s, a, s′) where g : S × A × S → R
is called the cost function. The goal of the decision maker is to select
actions ak, k ≥ 0, in response to the system states sk, k ≥ 0, so as to
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minimize a long-term cost objective. We assume here that the number
of states and actions is finite. In particular, we let 1, . . . , p denote the set
of non-terminal or regular states and t be the terminal or goal state. We
let S = {1, 2, . . . , p} denote the set of all non-terminal states. Further,
let S+ = {1, . . . , p, t} = S ∪ {t}.

In this section, we are concerned with the stochastic shortest path
problem, see (Bertsekas, 2012; Bertsekas, 2019), where we assume that
under any policy, there is a positive probability of hitting the terminal
state in at most p steps starting from any initial state, that would
in turn signify that the problem would terminate in a finite though
random amount of time. Such policies are called proper policies (see
Definition 8.1 and Assumption A8.1).

Under a given policy π, define

Vπ(s) = Eπ

[
T∑
k=0

g(Xk, µk(Xk), Xk+1) | X0 = s

]
, s ∈ S,

where 0 < T <∞ is a finite random time at which the process enters the
terminal state. Here Eπ[·] indicates that all actions are chosen according
to policy π depending on the system state. We assume that there is no
action that is feasible in the terminal state t and thus once the process
reaches t, it terminates.

Let Π denote the set of all admissible policies. The goal here is to
find the optimal value function V ∗(i), i ∈ S, defined by

V ∗(i) = min
π∈Π

Vπ(i) = Vπ∗(i), i ∈ S,

where π∗ denotes the optimal policy, i.e., the one that minimizes Vπ(i),
i ∈ S, over all policies π. A related goal here would be to find the policy
π∗. It turns out that in these problems, there exist stationary policies
that are optimal. Thus, it is sufficient to search for an optimal policy
within the class of stationary policies.

Definition 8.1. A stationary policy µ is called a proper policy if

p̂µ
4= max
s=1,...,p

P (Xp 6= t | X0 = s, µ) < 1.
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In other words, regardless of the initial state s (assumed non-terminal
for obvious reasons), there is a positive probability of termination after
at most p stages when using a proper policy.

Assuming that all stationary policies are proper, the optimal value
function satisfies the Bellman equation

V ∗(s) = min
a∈A(s)

∑
j∈S+

p(j | s, a)(g(s, a, j) + V ∗(j)), s ∈ S, (8.1)

where by convention V ∗(t) = 0. It can be shown, see (Bertsekas, 2012),
that an optimal stationary proper policy exists.

An admissible policy (and so also a stationary policy) can be ran-
domized as well. A randomized admissible policy or simply a randomized
policy is a sequence of distributions ψ = {φ0, φ1, . . .} with each φi :
S → P (A). Even though A is the set of all actions, for any s ∈ S, a ran-
domized policy would provide a distribution φi(s) = (φi(s, a), a ∈ A(s))
with φi(s, a) ≥ 0, ∀a ∈ A(s), and

∑
a∈A(s)

φi(s, a) = 1. This also implies

that φi(s, a) = 0, ∀a 6∈ A(s). A stationary randomized policy is one for
which φj = φk

4= φ, ∀j, k = 0, 1, . . .. In this case, we simply call φ to
be a stationary randomized policy. By the foregoing, since an optimal
stationary proper policy exists, an optimal stationary randomized policy
that is also proper would exist as well.

8.1.2 The Reinforcement Learning Problem

We consider now the RL setting where we do not assume any knowledge
of the system model, i.e., the transition probabilities p(s′ | s, a), and
in their place, we assume that we have access to data (either real or
simulated). The data that is available is over trajectories of states,
actions, single-stage costs and next states until termination.

We assume that trajectories of states and actions are available either
as real data or from a simulation device. Let Gk denote the sum of
costs until termination on a trajectory starting from instant k. In other

words, Gk =
T−1∑
j=k

gj where gj ≡ g(sj , aj , sj+1), where sj , sj+1 are the

states visited on this trajectory at time instants j, j + 1, and aj is the
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action chosen at instant j in the trajectory. Note that if all actions are
chosen according to a policy φ, then the value function (under φ) would
be obtained as

Vφ(s) = Eφ[Gk | Xk = s], s ∈ S. (8.2)

Further, by convention (cf. Bertsekas, 2019; Sutton and Barto, 2018),
we let Vφ(t) = 0, for any policy φ.

We consider here a class of stationary randomized policies that are
parameterized by a parameter θ = (θ1, . . . , θd)T ∈ C ⊂ Rd where C
is a compact and convex subset of Rd. We shall denote such a policy
φθ
4= (φθ(s), s ∈ S), where for any s ∈ S, φθ(s) = (φθ(s, a), a ∈ A(s)) is

a distribution over A(s) when θ is the given parameter. We make the
following assumption:

A8.1. All stationary randomized policies φθ parameterized by θ ∈ C
are proper.

The REINFORCE algorithm of (Sutton and Barto, 2018) is a Monte-
Carlo procedure based on the policy gradient method. The original
algorithm uses a procedure for estimating the performance gradient
that is based on an interchange of the gradient and expectation operators.
We apply here a two-simulation but one-sided SPSA-based procedure
for estimating the performance gradient that does not require the
aforementioned interchange of operators. As mentioned, this procedure
will however require two system simulations. We explain the algorithm
in more detail below.

Let Γ : Rd → C denote a projection operator that projects any
x = (x1, . . . , xd)T ∈ Rd to its nearest point in C. Thus, if x ∈ C, then
Γ(x) ∈ C as well. For ease of exposition, let’s assume that C is a

d-dimensional rectangle having the form C =
d∏
i=1

[ai,min, ai,max], where

−∞ < ai,min < ai,max <∞, ∀i = 1, . . . , d. A convenient way to identify
Γ(x) is as follows: Note that Γ(x) = (Γ1(x1), . . . ,ΓN (xN ))T, where
the ith component operator Γi : R → [ai,min, ai,max] is specified by
Γi(xi) = min(ai,max,max(ai,min, xi)), i = 1, . . . , d. Also, let C(C) denote
the space of all continuous functions from C to Rd.
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Let θ(n) and (θ(n) + δ∆(n)), n ≥ 0 be two parameter sequences
where θ(n) = (θ1(n), . . . , θd(n))T ∈ Rd, δ > 0 is a small constant and
∆(n) = (∆1(n), . . . ,∆d(n))T, n ≥ 0, with ∆i(n), i = 1, . . . , d, n ≥ 0
being independent random variables distributed according to ∆i(n) =
±1 w.p. 1/2. The updates θ(n) of the parameter θ are obtained using
an algorithm that will be explained below.

Algorithm (8.3) below is used to update the parameter θ ∈ C ⊂ Rd.
For a given n ≥ 0, let χn and χn+ respectively denote the state-
action trajectories χn = {sn0 , an0 , sn1 , an1 , . . . , snT−1, a

n
T−1, s

n
T } and χn+ =

{sn+
0 , an+

0 , sn+
1 , an+

1 , . . . , sn+
T+−1, a

n+
T+−1, s

n+
T+}, respectively, where χn is

governed by the parameter θ(n) and χn+ is governed by θ(n) + δ∆(n).
The instant T (resp. T+) denotes the termination instant in the tra-
jectory χn (resp. χn+). Thus, in both χn, χn+, snT = sn+

T+ = t, i.e.,
each episode ends once the terminal or goal state is reached. Note that
the various actions in the trajectory χn are chosen according to the
policy φθ(n) (depending on the states visited in the trajectory). Sim-
ilarly, the actions in the trajectory χn+ are chosen according to the
policy φθ(n)+δ∆(n). The initial states in the two trajectories are kept
the same, i.e., sn0 = sn+

0 , and sampled from a given initial distribution
ν = (ν(i), i ∈ S) over states.

Let Gn =
T−1∑
k=0

gnk and Gn+ =
T+−1∑
k=0

gn+
k denote the sums of costs until

termination on the two trajectories that are governed with parameters
θ(n) and θ(n) + δ∆(n), respectively, where gnk ≡ g(snk , ank , snk+1) and
gn+
k ≡ g(sn+

k , an+
k , sn+

k+1).
The update rule that we consider here is the following:

For n ≥ 0, i = 1, . . . , d,

θi(n+ 1) = Γi

(
θi(n)− a(n)

(
Gn+ −Gn

δ∆i(n)

))
. (8.3)

We assume here that {a(n)} satisfy the following assumption:

A8.2. The step-size sequence {a(n)} satisfies a(n) > 0, ∀n. Further,∑
n

a(n) =∞,
∑
n

a(n)2 <∞.
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A8.3. The stationary randomized policy φθ, ∀θ ∈ C is twice continu-
ously differentiable in θ and has a bounded third derivative.

While A8.2 is a standard requirement on the step-sizes, see the
previous chapters, A8.3 is a requirement on the smoothness of the
parameterized stationary randomized policies that can be seen to be
satisfied by many classes of policies. For instance, the popularly used
parameterized Gibbs or Boltzmann policy given by

φθ(s, a) = exp(θTψs,a)∑
b∈A(s) exp(θTψs,b)

,

with prescribed state-action features ψs,a ∈ Rd, s ∈ S, a ∈ A(s), can be
seen to satisfy this requirement.

As soon as a parameter update is available, two trajectories – gov-
erned by the nominal and perturbed parameters, respectively, are gener-
ated with the initial state in the perturbed trajectory the same as that
in the nominal trajectory and with the initial state sampled according
to a given distribution ν.

8.1.3 Convergence Analysis

We begin by rewriting the algorithm (8.3) as follows:

θi(n+ 1) = Γi

(
θi(n)− a(n)E

[
Gn+ −Gn

δ∆i(n) | Fn

]
+M i

n+1

)
, (8.4)

where
M i
n+1 = Gn+ −Gn

δ∆i(n) − E
[
Gn+ −Gn

δ∆i(n) | Fn

]
.

Here, we let Fn
4= σ(θ(m),m ≤ n,∆(m), χm, χm+,m < n), n ≥ 1

be a sequence of increasing sigma fields and with F0 = σ(θ(0)). Let
Mn = (M1

n, . . . ,M
d
n)T, n ≥ 0. Here we let ‖·‖ denote the Euclidean

norm.

Lemma 8.1. (Mn,Fn), n ≥ 0 is a martingale difference sequence.

Proof. Notice that

Mn = G(n−1)+ −G(n−1)

δ∆i(n− 1) − E
[
G(n−1)+ −G(n−1)

δ∆i(n) | Fn−1

]
.
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The first term on the RHS above is clearly measurable Fn while the
second term is measurable Fn−1 and hence measurable Fn as well.
Further, from Assumption A8.1, each Mn is integrable. Finally, it is
easy to verify that

E[Mn+1 | Fn] = 0.
The claim follows.

In the following, for simplicity, we denote Vφθ(s) as Vθ(s) itself for
any θ ∈ C. If φθ is a twice continuously differentiable function of θ,
it can be shown that Vθ(s) is also a twice continuously differentiable
function of θ for any state s.

Proposition 8.1. We have

E

[
Gn+ −Gn

δ∆i(n) | Fn

]
=
∑
s∈S

ν(s)∇iVθ(n)(s) + o(δ) a.s.

Proof. Note that

E

[
Gn+ −Gn

δ∆i(n) | Fn

]
= E

[
E

[
Gn+ −Gn

δ∆i(n) | Gn

]
| Fn

]
,

where Gn
4= σ(θ(m),∆(m),m ≤ n, χm, χm+,m < n), n ≥ 1 be a se-

quence of increasing sigma fields with G0 = σ(θ(0),∆(0)). It is clear
that Fn ⊂ Gn, ∀n ≥ 0. Now,

E

[
Gn+ −Gn

δ∆i(n) | Gn

]
= 1
δ∆i(n)

(
E[Gn+ | Gn]− E[Gn | Gn]

)
.

Let sn0 = sn+
0 = s denote the initial state in both the trajectories χn

and χn+, respectively. Recall that the initial state s is chosen randomly
from the distribution ν. Thus,

E[Gn | Gn] =
∑
s

ν(s)E[Gn | sn0 = s, φθ(n)]

=
∑
s

ν(s)Vθ(n)(s).

Similarly,

E[Gn+ | Gn] =
∑
s

ν(s)E[Gn+ | sn+
0 = s, φθ(n)+δ∆(n)]
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=
∑
s

ν(s)Vθ(n)+δ∆(n)(s).

Thus,

E

[
Gn+ −Gn

δ∆i(n) | Gn

]
=
∑
s

ν(s)
(
Vθ(n)+δ∆(n)(s)− Vθ(n)(s)

δ∆i(n)

)
a.s.

Thus,

E

[
Gn+ −Gn

δ∆i(n) | Fn

]
=
∑
s

ν(s)E
[
Vθ(n)+δ∆(n)(s)− Vθ(n)(s)

δ∆i(n) | Fn

]
.

Using a Taylor’s expansion of Vθ(n)+δ∆(n)(s) around θ(n) gives us

Vθ(n)+δ∆(n)(sn) = Vθ(n)(sn) + δ∆(n)T∇Vθ(n)(sn)

+δ2

2 ∆(n)T∇2Vθ(n)(sn)∆(n) + o(δ2).

Thus,

Vθ(n)+δ∆(n)(sn)− Vθ(n)(sn)
δ∆i(n) = ∇iVθ(n)(sn) +

∑
k 6=i

∆k(n)
∆i(n)∇kVθ(n)(sn)

+δ

2

d∑
j,k=1

∆j(n)∇2
j,kVθ(n)(sn)∆k(n)

∆i(n) + o(δ). (8.5)

Now,

E

[(
Vθ(n)+δ∆(n)(sn)− Vθ(n)(sn)

δ∆i(n)

)
| Fn

]
= ∇iVθ(n)(sn) + o(δ). (8.6)

This follows from the following two observations:

1. The second term on the RHS of (8.5) gives us

E

∑
k 6=i

∆k(n)
∆i(n)∇kVθ(n)(sn) | Fn

 = E

∑
k 6=i

∆k(n)
∆i(n)

∇kVθ(n)(sn) = 0,

from the properties of the sequence ∆l(n), l = 1, . . . , d.
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2. The third term on the RHS of (8.5) gives us

δ

2E

 d∑
j,k=1

∆j(n)∇2
j,kVθ(n)∆k(n)
∆i(n) | Fn


= δ

2

d∑
j,k=1

E

[∆j(n)∆k(n)
∆i(n)

]
∇2
j,kVθ(n)(sn) = 0.

This can be seen by analysing all the cases in the summation: (i)
j 6= k 6= i, (ii) j 6= k = i, (iii) j = i 6= k, (iv) j = k 6= i, and (v)
j = k = i, respectively, using again the properties of the sequence
∆l(n), l = 1, . . . , d.

The claim follows.

In the light of (8.6), we can rewrite (8.3) as follows:

θ(n+ 1) = Γ(θ(n)− a(n)(
∑
s

∇Vθ(n)(s) + η(n) + β(n))), (8.7)

where
η(n) =

(
G+
n −Gn
δ∆i(n)

)
− E

[(
G+
n −Gn
δ∆i(n)

)
| Fn

]
and β(n) = (β1(n), . . . , βd(n)) with

βi(n) = E

[(
G+
n −Gn
δ∆i(n)

)
| Fn

]
−
∑
s

ν(s)∇iVθ(n)(s).

From Proposition 8.1, it can be seen that β(n) = o(δ). It is now easy to
see that (8.7) has the same form as (4.2).

Lemma 8.2. The function ∇vθ(s) is Lipschitz continuous in θ. Further,
∃ a constant K1 > 0 such that ‖∇vθ(s)‖ ≤ K1(1 + ‖θ‖).

Proof. It can be shown under A8.3 (see for instance Chapter 13 of
(Sutton and Barto, 2018) that vθ(s) is continuously differentiable in θ
and satisfies

∇vθ(s) =
∑
y∈S

∞∑
k=0

P kθ (s, y)
∑

a∈A(y)
∇φθ(a | y)qθ(y, a),
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where P kθ (s, y) is the probability of going from state s to state y in k
steps under policy φθ and qθ(y, a) = Eθ[Gn | Xn = y, Zn = a] is the
value of the state-action tuple (y, a) when actions in states subsequent
to state y follow the policy φθ. It can also be shown as in Theorem 3
of (Furmston et al., 2016) that ∇2vθ(s) exists and is continuous. Since
θ takes values in C, a compact set, it follows that ∇2vθ(s) is bounded
and thus ∇vθ(s) is Lipschitz continuous.

Finally, let Ls1 > 0 denote the Lipschitz constant for the function
∇vθ(s). Then, for a given θ0 ∈ C,

‖∇vθ(s)‖ − ‖∇vθ0(s)‖ ≤ ‖∇vθ(s)−∇vθ0(s)‖

≤ Ls1 ‖θ − θ0‖
≤ Ls1 ‖θ‖+ Ls1 ‖θ0‖ .

Thus,
‖∇vθ(s)‖ ≤ ‖∇vθ0(s)‖+ Ls1 ‖θ0‖+ Ls1 ‖θ‖ .

Let Ks
4= ‖∇vθ0(s)‖ + Ls1 ‖θ0‖ and K1

4= max(Ks, L
s
1, s ∈ S). Since

|S| <∞, K1 <∞. Thus, ‖∇vθ(s)‖ ≤ K1(1 + ‖θ‖).

Lemma 8.3. The martingale sequence (Mn,Fn), n ≥ 0) satisfies

E[‖Mn+1‖2 | Fn] ≤ L̂(1 + ‖θ(n)‖2),

for some constant L̂ > 0.

Proof. Note that

‖Mn+1‖2 =
d∑
i=1

(M i
n+1)2

= (Gn+ −Gn)2

δ2 + 1
δ2

(
E

[
Gn+ −Gn

∆i(n) | Fn

])2

− 2G
n+ −Gn

δ∆i(n) E

[
Gn+ −Gn

δ∆i(n) | Fn

]
.

Thus,

E[‖Mn+1‖2 | Fn] = E

[
(Gn+ −Gn)2

δ2 | Fn

]
−
(
E

[
Gn+ −Gn

δ∆i(n) | Fn

])2

.



238 Applications to reinforcement learning

It now follows from Assumption A8.1 and the fact that all single-stage
costs are bounded, that E[‖Mn+1‖2 | Fn] ≤ Ǩ almost surely. In fact
from Proposition 8.1 and Lemma 8.2, it follows that(

E

[
Gn+ −Gn

δ∆i(n) | Fn

])2

=
(∑
s∈S

ν(s)∇iVθ(n)(s)
)2

+ o(δ) ≤ Kδ,

for some Kδ <∞. It will thus follow that

E[‖Mn+1‖2 | Fn] ≤ Ǩ(1 + ‖θ(n)‖2 .

Define now a sequence Zn, n ≥ 0 according to

Zn =
n−1∑
m=0

a(m)Mm+1,

n ≥ 1 with Z0 = 0.

Lemma 8.4. (Zn,Fn), n ≥ 0 is an almost surely convergent martingale
sequence.

Proof. It is easy to see that Zn is Fn-measurable ∀n. Further, it is inte-
grable for each n and moreover E[Zn+1 | Fn] = Zn almost surely since
(Mn+1,Fn), n ≥ 0 is a martingale difference sequence by Lemma 8.1.
It is also square integrable from Lemma 8.3. The quadratic variation
process of this martingale will be convergent almost surely if

∞∑
n=0

E[‖Zn+1 − Zn‖2 | Fn] <∞ a.s.

Note that

E[‖Zn+1 − Zn‖2 | Fn] = a(n)2E[‖Mn+1‖2 | Fn].

Thus,
∞∑
n=0

E[‖Zn+1 − Zn‖2 | Fn] =
∞∑
n=0

a(n)2E[‖Mn+1‖2 | Fn]

≤ Ǩ
∞∑
n=0

a(n)2(1 + ‖θ(n)‖2),
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by Lemma 8.3. The claim now follows from Assumption A8.2 and the
fact that θ(n) ∈ C,∀n, a compact set. Now (Zn,Fn), n ≥ 0 can be seen
to be convergent from the martingale convergence theorem for square
integrable martingales (see Theorem B.7).

Consider now the following ODE:

θ̇(t) = Γ̄
(
−
∑
s

ν(s)∇Vθ(s)
)
, (8.8)

where Γ̄ : C(C)→ C(Rd) is as defined in (2.32).

Let H 4= {θ | Γ̄
(
−
∑
s

ν(s)∇Vθ(s)
)
} denote the set of asymptot-

ically stable attractors of (8.8). Let Hε 4= N ε(H) ∩ C denote the ε-
neighborhood of H within the set C. Here, N ε(H) = {θ | ‖θ − θ0‖ < ε,
θ0 ∈ H}.

The following is the main result of this section.

Theorem 8.5. Given ε > 0, ∃δ0 > 0 such that ∀δ ∈ [0, δ0), the
stochastic sequence {θ(n)} obtained from (8.3) converges with
probability one to Hε.

Proof. We shall proceed by verifying Assumptions A2.9-A2.12. Note
that Assumption A2.9 has been shown in Lemma 8.2. Assumption A2.10
is an assumption on the step-size sequence {a(n)} that has also been
made for the iterates (8.3), see A8.2. Now from Lemma 8.2, it follows
that

∑
s

ν(s)∇vθ(s) is uniformly bounded since θ ∈ C, a compact

set. Assumption A2.11 is now verified from Proposition 8.1. Assump-
tion A2.12 is easy to see as a consequence of Lemma 8.4. Now note
that for the ODE (8.8), F (θ) =

∑
s

ν(s)Vθ(s) serves as an associated

Lyapunov function and in fact

∇F (θ)TΓ̄
(
−
∑
s

ν(s)∇Vθ(s)
)

=
(∑

s

ν(s)∇θVθ(s)
)T

Γ̄
(
−
∑
s

ν(s)∇Vθ(s)
)
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≤ 0.

For θ ∈ Co (the interior of C), it is easy to see that Γ̄(
∑
s

ν(s)∇Vθ(s))

=
∑
s

ν(s)∇Vθ(s), and

∇F (θ)TΓ̄(−
∑
s

ν(s)∇Vθ(s)) < 0 if θ ∈ Hc ∩ C

= 0 otherwise.

For θ ∈ δC (the boundary of C), there can be spurious attractors on the
boundary of C, see (Kushner and Yin, 2003), that are also contained in
H. The claim now follows from Theorem 2.5.

8.2 Simultaneous perturbation-based risk-sensitive policy gradient

We again consider a stochastic shortest path (SSP) problem, with a
special cost-free absorbing state, say 0. We restrict our attention to
proper policies (see Definition 8.1), which ensure state 0 is recurrent, and
the remaining states are transient in the Markov chain underlying the
policy considered. We define an episode as a sample path {x0, . . . , xτ},
where xτ = 0, and τ is the first passage time to state 0.

Consider a smoothly parameterized class of policies {πθ | θ ∈ Rd}.
Suppose that the policy πθ is a continuously differentiable function of
the parameter θ: a standard assumption in policy gradient literature. Let
Kθ(x0) denote the total discounted cost r.v. under policy x starting in

state x0, i.e., Kθ(x0) =
τ−1∑
t=0

γtk(xt, at), where 0 < γ < 1 is the discount

factor and k(xt, at) is the single-stage cost incurred at time instant t in
state xt on choosing action at. Here actions at are chosen according to
policy πθ, which is parameterized by θ.

The classic objective in RL is to find a policy that minimizes, in
expectation, the total discounted cost. We consider a risk-sensitive RL
setting, where the goal is to find a policy that optimizes a certain risk
measure, i.e., the following problem:

min
θ∈Rd
{ρ(Kθ(x0))} , (8.9)
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where θ ∈ Rd parameterizes the policy πθ, and ρ is a risk measure. As
examples, we define three risk measures below for a random variable X
with CDF F .

CVaR: Recall that the VaR and CVaR at level α ∈ (0, 1) are defined
as

VaRα(X) = inf {ξ | P (X ≤ ξ) ≥ α} , (8.10)

CVaRα(X) = inf
ξ

{
ξ + 1

(1− α)E (X − ξ)+

}
. (8.11)

As mentioned earlier in Section 2.2.6, VaR is not a coherent risk
measure, while CVaR is. Coherency includes properties, namely
monotonicity, sub-additivity, positive homogeneity and translation
invariance. These properties are desirable for any risk measures,
esp. in the context of finance, and VaR is not sub-additive. In
financial context, sub-additivity relates to diversification, which
is performed to reduce the risk, e.g., a financial portfolio.

Spectral risk measure (SRM): This risk measure, proposed in (Acerbi,
2002), is defined as

Mφ(X) =
∫ 1

0
φ(β)F−1(β)dβ, (8.12)

where φ : [0, 1]→ [0,∞) is the risk spectrum. SRM is a coherent
risk measure, when the risk spectrum is positive, increasing and in-
tegrates to one. Moreover, SRM generalizes CVaR after observing
the following equivalent form, known as Acerbi’s formula:

CVaRα(X) = 1
1− α

∫ 1

α
VaRβ(X) dβ. (8.13)

In particular, CVaR is an SRM with ϕ(β) = 1
1− αI {β > α} , α ∈

(0, 1). As an example, one could consider φ(β) = κ e−κ(1−β)

1− e−κ , β ∈
[0, 1] for some κ > 0. From an attitude towards risk viewpoint,
assuming X models the loss associated with a financial position,
SRM with an exponential risk spectrum defined above, is prefer-
able over CVaR as it assigns a higher weight to larger losses,
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whereas CVaR the same weight for all losses beyond a certain
quantile.

Utility-based shortfall risk (UBSR): UBSR, proposed in (Föllmer
and Schied, 2002), for a given loss function l and threshold pa-
rameter λ, is defined as

Sα(X) = inf {ξ ∈ R | E (l(−X − ξ)) ≤ α} . (8.14)

UBSR belongs to the class of convex risk measures, which sub-
sumes coherent risk measures, since sub-additivity and positive
homogeneity imply convexity. As examples of loss functions in
the definition of UBSR above, one could consider the following:
(i) l(x) = exp(βx); and (ii) l(x) = x2. For the first candidate loss,
UBSR turns out to be the entropic risk measure. For the second
candidate loss, i.e., the square loss, UBSR can be related to CVaR,
see (Giesecke et al., 2008).

Notice that the optimization problem in (8.9) is non-convex in
nature. For solving the problem defined above using gradient-based
methods, one requires (i) an estimate of the risk measure for any given
policy πθ; and (ii) an estimate of the gradient of the risk measure w.r.t.
the policy parameter θ. We elaborate on these two parts below.

We simulate m episodes simulated using the policy πθ, and col-
lect samples of the total cost Kθ(x0). Let {K1, . . . ,Km} denote the
i.i.d. samples from the distribution of Kθ(x0). We define the empirical
distribution function (EDF) Fm of Kθ(x0) as follows:

Fm(θ) = 1
m

m∑
i=1

I {Ki ≤ x} , ∀x ∈ R.

Using the EDF, we form the estimate ρm of ρ(Kθ(x0)) as follows:

ρm = ρ(Fm). (8.15)

Such an estimation scheme for an abstract risk measure has been
considered earlier in (Prashanth and Bhat, 2022).

Next, we present a bound in expectation for the estimation error
associated with (8.15).
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Proposition 8.2. Suppose the risk measure ρ satisfies the following
continuity requirement for any two distributions F,G for some L > 0:

|ρ(F )− ρ(G)| ≤ LW1(F,G), (8.16)

where W1(F,G) is the Wasserstein distance1 between distributions F
and G. Suppose the r.v. Kθ(x0) satisfies E[Kθ(x0)2] ≤ B <∞, for any
x ∈ Rd. Then,

E |ρm − ρ(Kθ(x0))| ≤ c√
m
,

for some constant c that depends on B.

Proof. Let F denote the distribution of Kθ(x0). Then, we have

E |ρm − ρ(Kθ(x0))| = E |ρ(Fm)− ρ(F )| ≤ LW1(Fm, F ) ≤ c1LB√
m

,

where the final inequality follows by using Theorem 3.1 of Lei, 2020.

The continuity requirement in (8.16) is satisfied by the three popular
risk measures CVaR, UBSR and SRM, and the reader is referred to
(Prashanth and Bhat, 2022) for details.

To construct an estimate of the gradient of the risk measure ρ(Kθ(x0)),
one could employ the simultaneous perturbation method, e.g., the es-
timate in (3.15). Using this gradient estimate, and the template of
RSG-BGO algorithm, we arrive at the following update iteration for
the risk-sensitive policy gradient (risk-PG) algorithm:

θk+1 = θk − a(k)∇̂ρ(θk), (8.17)

where γk is the stepsize, and ∇̂ρ(θk) is an estimate of the gradient of the
risk measure ρ(Kθk(x0)). To elaborate on the gradient estimation aspect
of the algorithm above, we first simulate mk trajectories of the underly-
ing MDP with policy parameters θk + δk∆k and θk − δk∆k, respectively.
Here δk is the perturbation constant, and ∆k is a standard Gaussian

1Given two cumulative distribution functions (CDFs) F and G on R, let Γ(F,G)
denote the set of all joint distributions on R2 having F and G as marginals.
Then the Wasserstein distance between F and G is defined by W1 (F,G) =[

inf
C∈Γ(F,G)

∫
R2
|x− y|dC(x, y)

]
.
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vector. Other random perturbations are feasible, see Chapter 3. Using
(8.15), we estimate the risk measures ρ(Kθk±δk∆k

(x0)) corresponding
to the aforementioned policy parameters, and then, use (3.15) to form
∇̂ρ(θk).

For a non-asymptotic analysis of (8.17), we require smoothness of
ρ as a funciton of θ. We verify this assumption for the special case of
CVaR below. Let Cα(Kθ(x0)) denote the CVaR associated with a policy
π that is parameterized by θ. Then, using the likelihood ratio method,
we arrive at the following variant of the policy gradient theorem under
the CVaR objective (cf. Tamar et al., 2015):

∇θCα(Kθ(x0)) = E
[
[Kθ(x0)−VaRα(Kθ(x0))]

×
τ−1∑
m=0
∇ log πθ(am|xm)︸ ︷︷ ︸

(I)

∣∣∣∣Kθ(x0) ≥ VaRα(Kθ(x0))
]
.

In the above, Kθ(x0) and term (I) on the RHS are Lipschitz functions
due to the policy gradient assumption mentioned above. In addition,
if we assume that the distribution, say Fθ, of Kθ(x0) is a Lipschitz
function in θ, then we can infer that ∇θCα(Kθ(x0)) is sum of product
of Lipschitz functions, implying smoothness of CVaR as a function of θ.
One could generalize this argument to the case when ρ is a coherent risk
measure, and the reader is referred to (Tamar et al., 2015) for details.

Using the non-asymptotic bounds for a RSG algorithm, see Section
5.5, we can infer that the iteration complexity for the risk-sensitive
policy gradient algorithm (8.17) is O

( 1
ε3

)
.

8.3 Bibliographic remarks

Reinforcement learning has been found to be extremely useful in prob-
lems of dynamic decision making under uncertainly when the decision
maker has access to data (either from a real system or alternatively a
simulation) but not the transition model. Textbook treatments of RL
are available in (Sutton and Barto, 2018; Bertsekas and Tsitsiklis, 1996;
Bertsekas, 2019; Meyn, 2022). We considered two different RL settings
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in this chapter: (i) finding optimal policies for stochastic shortest path
problems and (ii) finding optimal policies for risk sensitive control, again
in the stochastic shortest path case. Both the algorithms that we pre-
sented fall under the broad category of policy gradient algorithms. For
(i), we specifically considered the REINFORCE algorithm developed
originally in (Williams, 1992), see also (Sutton and Barto, 2018, Chapter
13), (Sutton et al., 1999) for a detailed treatment. Whereas the original
algorithm required a single simulation and involved unbiased function
gradients, we presented in this chapter a zeroth-order algorithm based
on two-simulation SPSA gradient estimates. This algorithm has been
presented and analysed in (Bhatnagar, 2023). An alternative to using
trajectory-based Reinforce type policy gradient algorithms for finding
the optimal policy is to use two-timescale actor-critic algorithms, where
on the faster timescale, the critic recursion estimates the value function
corresponding to the most recent policy parameter update most often
using a temporal difference (TD) learning procedure, while along the
slower recursion, the policy parameter is updated using policy gradients.

Zeroth-order stochastic gradient estimation based procedures have
been found to be efficient and are not new to the literature, see for
instance, (Bhatnagar and Kumar, 2004; Abdulla and Bhatnagar, 2007)
in the context of actor-critic algorithms. In the context of trajectory-
based policy gradient algorithms (like REINFORCE), (Salimans et al.,
2017; Mania et al., 2018) have proposed generating multiple trajecto-
ries of data for a given parameter update and then selecting the best
candidate directions over which an additional layer of sample averaging
is performed which then is used as an increment for the parameter
update. Even though the latter can be computationally tedious, it is
found to improve the performance of the algorithm. In (Choromanski
et al., 2018), zeroth order algorithms based on evolutionary strategies
for policy optimization again for reinforcement learning are presented.
They make use of random orthogonal matrices and study specifically
two constructions for the random perturbations - one based on Gaussian
perturbations and another on random Hadamard Rademacher matrices.

Zeroth-order gradient-based methods have been employed for solv-
ing risk-sensitive RL problems through the policy gradient solution
approach. A variety of risk measures have been tackled using zeroth-
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order policy gradients, and we list a few representative works in the
following: (i) SPSA for mean-variance optimization in a discounted
MDP in (Prashanth and Ghavamzadeh, 2016); (ii) SF for distortion
risk measures in (Vijayan and Prashanth, 2023); (iii) A simultane-
ous perturbation-based oracle for optimizing smooth risk measures in
(Bhavsar and Prashanth, 2022). Our presentation in Section 8.2 is based
the contributions from the aforementioned reference.



Appendices



A
ODEs and differential inclusions

In this appendix, we review some of the key concepts from ordinary
differential equations and differential inclusions. This background mate-
rial is useful for the asymptotic analysis of stochastic approximation
algorithms and stochastic recursive inclusions.

A.1 Ordinary differential equations

We consider the following ODE, that is the same as (2.2). We shall
describe limit sets and notions of stability for such an ODE.

θ̇(t) = h(θ(t)). (A.1)

We recall first the Gronwall inequality, a fundamental result useful
for showing stability properties of ODEs, see Lemma B.1 of (Borkar,
2022), for a proof.

Lemma A.1 (Gronwall Inequality). Suppose that for continuous

248
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u, v : [0, T ]→ [0,∞), for T > 0 and scalars C,K ≥ 0:

u(t) ≤ C +K

∫ t

0
u(s)v(s)ds, ∀t ∈ [0, T ].

Then it follows that for all t ∈ [0, T ],

u(t) ≤ C exp
(
K

∫ T

0
v(s)ds

)
.

A.1.1 Limit sets of ODE

We present first some basic definitions on the limit sets of ODEs.
Consider the ODE (A.1) with the function h : Rd → Rd being Lipschitz
continuous. In other words, ∃L > 0 (a constant) such that

‖h(η)− h(β)‖ ≤ L‖η − β‖, ∀η, β ∈ Rd.

Definition A.1. We say that the ODE (A.1) is well-posed if for any
initial condition θ0 ∈ Rd, there is a unique solution θ(·) ∈ C([0,∞);Rd)
that is also continuous as a function of θ0.

In the above, C([0,∞);Rd) denotes the space of all continuous
functions from [0,∞) to Rd. The integral solution to the ODE (A.1) is
obtained as

θ(t) = θ0 +
∫ t

0
h(θ(s))ds, t ≥ 0. (A.2)

If an ODE is well-posed, it has unique integral curves. The following
theorem says that a sufficient condition for well-posedness of (A.1) is
that the function h be Lipschitz continuous, see Theorem B.1 of (Borkar,
2022) for a proof based on the Gronwall inequality (Lemma A.1).

Theorem A.2. Suppose the function h : Rd → Rd is Lipschitz continu-
ous. Then the ODE (A.1) is well-posed.

For the ODE (A.1), let Φ : R × Rd → Rd be defined as the map
Φ(t, x) 4= Φt(x) that takes θ(0) to θ(t) via the ODE (A.1). Thus,

θ(t) = Φt(θ(0)) = θ(0) +
∫ t

τ=0
h(Φτ (θ(0)))dτ.
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Assuming h is Lipschitz continuous, it follows from Theorem A.2 that
the map Φ is continuous. It is easy to verify that {Φt, t ∈ R} forms a
group since Φt ◦ Φs = Φt+s, ∀t, s ∈ R and Φ0 = I (the identity map).
Thus, {Φt, t ∈ R} is a flow of h, see (Benaïm, 1996), for a more general
discussion.

Definition A.2 (Invariant sets and Periodic Points). 1. We say that
A ⊂ Rd is invariant for the ODE (A.1) if Φt(A) ⊂ A for all
t ∈ R.

2. We say that A ⊂ Rd is positively (resp. negatively) invariant for
the ODE (A.1) if Φt(A) ⊂ A for all t ≥ 0 (resp. t ≤ 0).

3. A point θ is a periodic point for the ODE (A.1) if ∃T > 0 such
that ΦT (θ) = θ.

Note that since the flow Φ is induced by the vector field h, equilibria
of (A.1) coincide with the zeros of the function h(·). Further, both
periodic points and equilibria can be viewed as recurrent points.

Definition A.3 (Limit Sets of an ODE). 1. Given a trajectory θ(·) of
(A.1) with θ(0) = θ0 ∈ Rd, the orbit through θ0 is the set

O(θ0) = {θ(t) ∈ Rd|t ∈ R}.

2. Given a trajectory θ(·) of (A.1), the set L 4= ∩t≥0θ([t,∞)) that
comprises of the set of limit points of (A.1) is called the ω-limit
set of (A.1).

3. Given δ, T > 0, a (δ, T )-pseudo-orbit from λ ∈ Rd to η ∈ Rd is de-
fined as a set of k trajectories of (A.1) (for some k <∞): {Φt(ηi) :
t ∈ [0, ti], ti ≥ T}, i = 0, 1, . . . , k − 1, where η0, η1, . . . , ηk ∈ Rd

and such that (i) ‖η0 − λ‖ < δ, (ii) ‖Φtj (ηj) − ηj+1‖ < δ, ∀j =
0, 1, . . . , k − 1, and (iii) ηk = η.

4. If a (δ, T )-pseudo-orbit exists between any λ, η ∈ Rd, for every
δ, T > 0, we say that the flow Φ of (A.1) is chain transitive.

5. The flow Φ as above restricted to η = λ, for all λ ∈ Rd is called
chain recurrent.
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6. A compact invariant set A ⊂ Rd on which the flow Φ of the
ODE (A.1) is chain recurrent (resp. chain transitive) is called an
internally chain recurrent (resp. internally chain transitive) set
for (A.1).

We now recall the following result, see (Benaïm, 1999, Proposition
5.3):

Lemma A.3. Let A ⊂ Rd be a compact invariant set for the ODE (A.1).
The following are equivalent:

1. A is internally chain transitive.

2. A is connected and internally chain recurrent.

Definition A.4 (Equilibria and Attractors of an ODE). 1. A point θ ∈
Rd is an equilibrium of the ODE (A.1) if Φt(θ) = θ, ∀t. In other
words, h(θ) = 0.

2. An equilibrium θ ∈ Rd of (A.1) is said to be isolated, if there
exists an open set U ⊂ Rd such that θ ∈ U and there does not
exist any other equilibrium θ̌ ∈ U .

3. A compact invariant set A ⊂ Rd is said to be Lyapunov stable or
simply stable for the ODE (A.1) if given any ε > 0, ∃δ > 0 such
that d(θ0, A) < δ implies that d(Φt(θ(0)), A) < ε for all t > 0.
Here for any given x ∈ Rd, d(x,A) = min

η∈A
‖x− η‖ is the distance

between x and the set A.

4. A set A ⊂ Rd is an attractor for (A.1) if A is nonempty, compact
and invariant. Further, A has a positively invariant open neigh-
borhood M ⊂ Rd such that d(Φt(θ), A)→ 0 as t→∞ uniformly
in θ ∈M .

5. The largest open neighborhood M for an attractor A above is
called the domain of attraction of A.

6. A compact invariant A ⊂ Rd is asymptotically stable for the ODE
(A.1) if it is both Lyapunov stable and an attractor.
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We now mention the following important results in Lemmas A.4–A.6,
see for instance, (Nandakumaran et al., 2017) for a detailed treatment.

Lemma A.4. Suppose θ(·) is a solution of (A.1). Then θl(t) = θ(t+ l)
is also a solution to (A.1) for any fixed l and for all t.

Lemma A.5. Let θ(·) be a solution to the ODE (A.1) and lim
t→∞

θ(t) = θ̄

for some θ̄ ∈ Rd. Then θ̄ is an equilibrium of (A.1).

Proof. From Lemma A.4, for any l > 0, θ(t+ l), t ≥ 0, is also a solution
to (A.1) and lim

t→∞
θ(t+ l) = θ̄. By the mean value theorem,

θ(t+ l)− θ(t) = lθ̇(t̄) = lh(θ(t̄)),

for some t̄ ∈ [t, t+ l]. Thus, as t → ∞, t̄ → ∞ as well, and θ(t+ l) −
θ(t) → 0 as t → ∞. By continuity, this implies that lh(θ̄) = 0, hence
h(θ̄) = 0.

Linearized System

Consider the ODE (A.1) and assume that the function h : Rd → Rd is
twice continuously differentiable. Let θ̄ ∈ Rd be an equilibrium of (A.1).
Then by a Taylor’s expansion, we get

h(θ̄ + θ) = h(θ̄) +Dh(θ̄)θ +O(‖θ‖2),

where

Dh(θ̄) =


∇1h1(θ̄) ∇1h2(θ̄) · · · ∇1hd(θ̄)
∇2h1(θ̄) ∇2h2(θ̄) · · · ∇2hd(θ̄)
· · · · · · · · · · · ·

∇dh1(θ̄) ∇dh2(θ̄) · · · ∇dhd(θ̄)


is the Jacobian of the function h = (h1, h2, . . . , hd) evaluated at θ̄. Now
note that h(θ̄) = 0. If we ignore the higher order terms O(‖θ‖2), we get
the linearized ODE:

θ̇(t) = Dh(θ̄)θ(t).

Lemma A.6. If all the eigenvalues of Dh(θ̄) have negative real parts,
then θ̄ is asymptotically stable for the ODE (A.1).
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Sufficient Condition for Asymptotic Stability

Before proceeding further, we give a sufficient condition for verifying
asymptotic stability of an attractor A ⊂ Rd of the ODE (A.1). Let
V : M ⊂ Rd → R be a non-negative, continuously differentiable function.
Suppose it satisfies the following condition:

〈∇V (θ), h(θ)〉
{

< 0 if θ ∈M ∩Ac

= 0 if θ ∈ A.

The function h(·) above is the driving vector field of the ODE (A.1).
The asymptotic stability of A follows since d

dt
V (θ(t) ≤ 0 with equality

only for θ(t) ∈ A.
We now recall the Lasalle Invariance Principle, see Theorem 2 of

(J. P. Lasalle and S. Lefschetz, 1961).

Theorem A.7 (Lasalle Invariance Principle). Let V (·) as above be
a Lyapunov function for the ODE (A.1). Then any trajectory θ(·)
of (A.1) must converge to the largest invariant set contained in
{θ | 〈∇V (θ), h(θ)〉 = 0}.

Gradient Systems

Suppose the underlying system is a gradient scheme with the corre-
sponding ODE being

θ̇(t) = −∇f(θ(t)), θ(0) = θ0. (A.3)

Thus, here h(θ) = −∇f(θ). Note that

df(θ(t))
dt

= −∇f(θ(t))T∇f(θ(t))

= −‖∇f(θ(t))‖2

< 0 if ∇f(θ) 6= 0
= 0 otherwise.

Assuming f ≥ 0, the function f itself serves as a Lyapunov function
with the set H = {θ|∇f(θ) = 0} as the set of equilibrium points of
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(A.3). If f is not non-negative but bounded below, i.e., ∃C < 0 such
that min

x
f(x) = C. Then, one may let V (x) = f(x) + |C|, which will

ensure that V ≥ 0 and the above continues to hold.
We recall now Lemma 11.1 of (Borkar, 2022).

Lemma A.8. The only invariant sets that can occur as w-limit sets for
the ODE (A.3) are the subsets of H 4= {θ ∈ Rd|∇f(θ) = 0}.

Lasalle Invariance Principle, see Theorem A.7, in the case of gradient
systems, would say something similar as below.

Lemma A.9. Any trajectory θ(·) of the ODE (A.3) with f as above must
converge to the largest invariant set contained in H 4= {θ | ∇f(θ) = 0}.

A.2 Set-valued maps and differential inclusions

In many real life situations, one often encounters problems that are ill-
posed, the solution is not unique, or there are uncertainties and imprecise
modeling errors. Such problems arise often in stochastic control and
optimization, reinforcement learning, viability theory and stochastic
games. In such scenarios, one may not encounter single-valued maps at
all and more general analytical techniques are needed. In this section, we
present a brief background on set-valued maps and differential inclusions
for which we refer primarily to the books (Aubin and Frankowska, 1990)
and (Aubin and Cellina, 1984).

A.2.1 Set-valued maps

A set-valued map x 7→ h(x) is one where for any x ∈ Rn, h : Rn →
{subsets of Rm} and is specified via it’s graph, i.e., Graph(J) = {(x, y) |
y ∈ h(x)}. The domain (Dom(h)) and image (Im(h)) are respectively
given by Dom(h) = {x ∈ Rn | h(x) 6= φ} and Im(h) = ∪x∈Rnh(x), re-
spectively. The inverse h−1 of the set-valued map h (above) is also
a set-valued map such that x ∈ h−1(y) if and only if y ∈ h(x), viz.,
(x, y) ∈ Graph(h).

The open ball of radius ε around the origin is denoted Bε(0), while
the closed ball is denoted Bε(0). Thus, Bε(0) = {x ∈ Rn | ‖x‖ < ε} and
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Bε(0) = {x ∈ Rn | ‖x‖ ≤ ε}. For any set A ⊂ Rn, for any δ > 0, we call
Nδ(A) = {x ∈ Rn | ‖x − y‖ < δ, y ∈ A} the δ-open neighborhood or
simply the neighborhood of the set A. The δ-closed neighborhood of A
is likewise the set N δ(A) = {x | ‖x− y‖ ≤ δ, y ∈ A}.

We now have the following definitions pertaining to set-valued maps.
Let h : Rn → {subsets of Rm} be a set-valued map.

Definition A.5 (Continuity of Set-Valued Maps). (i) h is said to be
upper semi-continuous at a point x ∈ Dom(J) if given sequences
{xk}k≥1 (in Rn) and {yk}k≥1 (in Rm) with xk → x, yk → y and
yk ∈ h(xk), ∀k ≥ 1, we have y ∈ h(x). We say that h is upper semi-
continuous if it is upper semi-continuous at every x ∈ Dom(h). In
other words, Graph(h) is closed.

(ii) h is said to be lower semi-continuous at a point x ∈ Dom(h) if for
any y ∈ h(x), and any sequence of points xk ∈ Dom(h) converging
to x, there exists a sequence of elements yk ∈ h(xk)→ y ∈ h(x).
We say that h is lower semi-continuous if it is lower semi-continuous
at every x ∈ Dom(h).

(iii) h is continuous at x ∈ Dom(h) if it is both upper semi-continuous
and lower semi-continuous at x. It is said to be continuous if and
only if it is continuous at every x ∈ Dom(h).

(iv) h is Lipschitz at z ∈ Rn if there exists L > 0 and ε > 0 such that
for all x, y ∈ Nε({z}), we have that h(x) ⊂ h(y) + L‖x− y‖B1(0)
where B1(0) = {w ∈ Rm | ‖w‖ < 1} is a unit ball around the
origin in Rm or more compactly h(x) ⊂ NL‖x−y‖(h(y)).

It is important to note here that there exist set-valued maps that are
upper semi-continuous but not lower semi-continuous and vice versa.

Definition A.6 (Peano or Marchaud Map). A set-valued map h : Rn →
{subsets of Rm} is called a Peano or Marchaud map if it satisfies the
following properties:

(i) For every x ∈ Rn, h(x) is convex and compact.

(ii) h is pointwise bounded for every x ∈ Rn, i.e., for some K > 0 we
have, sup

w∈h(x)
‖w‖ ≤ K(1 + ‖x‖).
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(iii) h is upper semi-continuous, see Definition A.5(i).
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Figure A.1: A set-valued map h : Rn → {subsets of Rm} is called a Peano or
marchaud map if (i) h(x) is compact and convex for every x, (ii) h(x) is pointwise
bounded and (iii) h is upper semi-continuous.

The distance of a point x ∈ Rd to a set A ⊂ Rd (for any d ≥ 1) is
defined as d(x,A) = inf{‖x− y‖ | y ∈ A}. Notice that a point x0 ∈ Rd

is a boundary point of A if and only if d(x,A) = d(x,Ac) = 0.

Definition A.7 (Limsup and Liminf of Set-Valued Maps). Given a set-
valued map h : Rn → {subsets of Rm}, we define the upper limit
(Limsup) and lower limit (Liminf) of the sequence of sets h(xk) as
follows:

(i) Limsupxk→xh(xk) = {y ∈ Rm | lim inf
xk→x

d(y, h(xk)) = 0}.

(ii) Liminfxk→xh(xk) = {y ∈ Rm | lim
xk→x

d(y, h(xk)) = 0}.

Note that both Liminf and Limsup are closed sets. Liminf collects the
limit points of {h(xk)} while Limsup collects its accumulation points.
Further, Liminfxk→xh(xk) ⊂ h(x) ⊂ Limsupxk→xh(xk).

A.2.2 Differential inclusions

A differential inclusion (DI) can be viewed as a generalization of an
ODE in the sense that it involves set-valued maps as opposed to the
usual point-to-point maps and in general has the form

ẋ(t) ∈ h(t, x(t)), (A.4)
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where h : R×Rd → {subsets of Rd}. We shall mainly be interested with
the case where h(t, x) 4= h(x), i.e., there is no explicit time dependence
of the set-valued map h. In such a case, h(x) ⊂ Rd, for any x ∈ Rd.
Thus, the DI in this case takes the form

ẋ(t) ∈ h(x(t)), (A.5)

with h : Rd → {subsets of Rd}. Any solution to (A.5) is viewed in the
Caratheodory sense, i.e., as an absolutely continuous function satisfying
(A.5) almost everywhere.

Definition A.8. (i) Let K ⊂ Dom(h). A function x : [0, T ] → Rd is
said to be viable in K if x(t) ∈ K, ∀t ∈ [0, T ].

(ii) A solution x(·) to (A.5) is said to be viable if for some closed
subset K of Dom(h), we have that x(t) ∈ K, ∀t.

(iii) For K ⊂ Rd, given x ∈ K̄ (the closure of K), the contingent cone
is defined by

C(x,K) 4=
{
y ∈ Rd | lim inf

k→0+

d(x+ ky,K)
k

= 0
}
.

(iv) We say that a set K ⊂ Dom(h) is a viability domain of the
set-valued map h if and only if for all x ∈ K, h(x) ∩C(x,K) 6= φ.

Consider the case where K = {x}. Then the contingent cone to {x}

is given by C(x, {x}) =
{
y | lim inf

k→0+

d(x+ ky, {x})
k

= 0
}

= {0}. Then,
from Definition A.8(iv), it follows that K = {x} is a viability domain
of h if and only if h(x) ∩ {0} 6= φ or x is a stationary solution to the
inclusion 0 ∈ h(x) implying that x is an equilibrium of h. Thus, the
minimal viability domains are equilibria of set-valued maps. We now
recall the following results from (Aubin and Frankowska, 1990) (see
Theorems 10.1.12-10.1.13 there).

Theorem A.10. Consider a Peano or Marchaud map h : Rd → {subsets
of Rd}. Then the limit sets of the solutions to the DI (A.5) are closed
viability domains. Further, the limit of a solution x(t) to the DI (A.5)
(if it exists), as t→∞, is an equilibrium of h.
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Theorem A.11. Let h : Rd → {subsets of Rd} be a Peano or Marchaud
map. If K ⊂ Dom(h) is a compact viability domain and if h(K) is
convex, then there exists an equilibrium of h in K.

A.2.3 Limit Sets of Differential Inclusions

Recall that a solution to the DI (A.5) is an absolutely continuous
mapping x : R→ Rd such that x(0) = x and ẋ(t) ∈ h(x(t)) for almost
every t ∈ R. The ω-limit set of a given solution x of the DI (A.5) with
x(0) = x is given by L(x) =

⋂
t≥0

x([t,+∞)).

Consider {Φt}t∈R defined by Φt(x) = {x(t) | x is a solution to
the DI (A.5) with x(0) = x}. Then {Φt} is the set-valued semi-
flow associated with the DI (A.5). For B × M ⊂ R × Rd, we let
ΦB(M) =

⋃
t∈B,x∈M

Φt(x). For M ⊂ Rd, the ω-limit set for the DI

(A.5) is specified by (cf. Benaïm et al., 2005) ωΦ(M) =
⋂
t≥0

Φ[t,+∞)(M).

Definition A.9 (Invariance of Sets). Let M ⊂ Rd. We say that

(i) M is strongly invariant if M = Φt(M) for every t ∈ R.

(ii) M is quasi-invariant if M ⊂ Φt(M), ∀t ∈ R.

(iii) M is semi-invariant if Φt(M) ⊂M , ∀t ∈ R.

(iv) M is strongly positively invariant if Φt(M) ⊂M , ∀t > 0.

(v) M is invariant (for the set-valued map h) if ∀x ∈M , ∃ a solution
x to the DI (A.5) with x(0) = x0 and with x(R) ⊂M .

Definition A.10 ((ε, T )-Chain). Given a set M ⊂ Rd, and x, y ∈M , by
an (ε, T )-chain from x to y, we mean a sequence {x1, . . . ,xn}, for some
integer n ≥ 1, of solutions to the DI (A.5) together with real numbers
t1, . . . , tn > T , such that

(i) xi(s) ∈M , ∀0 ≤ s ≤ ti and i = 1, . . . , n,

(ii) ‖xi(ti)− xi+1(0)‖ ≤ ε, for all i = 1, . . . , n− 1,



A.2. Set-valued maps and differential inclusions 259

(iii) ‖x1(0)− x‖ ≤ ε and ‖xn(tn)− y‖ ≤ ε.

Definition A.11 (Internally Chain Transitive and Chain Recurrent Sets).
We define these sets as follows:

(i) The set M ⊂ Rd is said to be internally chain transitive for the
DI (A.5) if M is compact and for any x, y ∈ M , there exists an
(ε, T )-chain for any ε, T > 0.

(ii) If the property in part (i) above holds only for all x = y ∈ M ,
then the set M is said to be chain recurrent.

Definition A.12 (Perturbed Solution to a DI). A function z : [0,∞)→ Rd

is said to be a perturbed solution to (A.5) if the following hold:

(i) z is absolutely continuous.

(ii) There exists a locally integrable function U : [0,∞) → Rd such
that

(a) lim
t→∞

sup
0≤v≤T

‖
∫ t+v

t
U(s)ds‖ = 0 for all T > 0.

(b) dy(t)
dt
− U(t) ∈ hδ(t)(y(t)) for almost every t > 0, for some

δ : [0,∞)→ R such that δ(t)→ 0 as t→∞. Here hδ(y) =
{x ∈ Rd | ∃z s.t. ‖z − x‖ < δ, d(x, h(z)) < δ}.

We now state a couple of important results, see (Benaïm et al., 2005,
Lemma 3.5 and Theorem 3.6).

Lemma A.12. Any internally chain transitive set for the DI (A.5) is
invariant.

Theorem A.13. Let z be a bounded perturbed solution to the DI (A.5)
with z(0) = z. Then the limit set of z given by L(z) =

⋂
t≥0
{z[t,+∞)}

is internally chain transitive for (A.5).

Definition A.13 (Attracting/Attractor and Lyapunov Stable Sets for a
DI). In relation to the DI (A.5), we have the following definitions:
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(i) A ⊆ Rd is said to be an attracting set if it is compact and there
exists a neighborhood U such that for any ε > 0, ∃ T (ε) ≥ 0
with Φ[T (ε),+∞)(U) ⊂ N ε(A). In other words, any DI trajectory
initiated in U reaches the ε-neighborhood of A, T (ε) instants later
and stays there forever subsequently.

(ii) The set U above is called the fundamental neighborhood of A.

(iii) An attracting set A that is also invariant is called an attractor
set.

(iv) The basin of attraction of A is the set B(A) = {x ∈ Rd | wΦ(x) ⊂
A}. In other words, this is the largest subset of Rd such that the
DI initiated anywhere within this set has its ω-limit set contained
in A.

(v) The set A is said to be Lyapunov stable if for all δ > 0, ∃ ε > 0
such that Φ[0,+∞)(N ε(A)) ⊆ N δ(A).

A

U

A

U

N
ε

(A )

T(ε)

Figure A.2: The set A is attracting if (a) it is compact and (b) there is a neigh-
borhood U of A such that given any ε > 0, there exists T (ε) > 0 so that any
trajectory of the DI (A.5) starting in U arrives and stays within an ε-neighborhood
of A beyond an amount of time T (ε) and subsequently stays in that neighborhood.
Thus, Φt(U) ∈ N ε(A), ∀t ∈ [T (ε),∞). The set A is an attractor if in addition it is
also invariant.
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A.3 Bibliographic Remarks

Differential equations have been well studied over many centuries with
starting work primarily in the areas of physical and mechanical systems.
Both Isaac Newton and Gottfried Leibniz are credited to have done
early work in differential equations in the late 17th century. Early
textbook treatments of ODEs include (Ince, 1956; Coddington et al.,
1956). Excellent, more recent, texts include (Arnold, 1992; Hirsch et al.,
2013; Nandakumaran et al., 2017). An excellent treatment on differential
equations with discontinuous right hand sides is given in (Filippov, 2013).
Applications of such equations in many engineering domains have been
well studied, for instance, see (Andronov et al., 2013) for a recent English
translation of a Russian text of the 1950’s by these authors. Differential
inclusions is a more general framework for dynamical systems that
have differential equations with non-unique solutions resulting from
lack of Lipschitz continuity and possibly even discontinuity of the right
hand sides. Excellent texts on differential inclusions include (Aubin and
Frankowska, 1990; Aubin and Cellina, 1984). We finally remark that a
set-valued map h as in Definition A.6 has been referred to as Peano map
in (Aubin and Frankowska, 1990) and as Marchaud map in (Benaïm
et al., 2005).

A.4 Exercises

Exercise 1. A function V (θ) satisfying V (0) = 0 and V (θ) > 0 for θ 6= 0
is said to be positive-definite. For V (θ) = aθ2

1 +2θ1θ3 +aθ2
2 +4θ2θ3 +aθ2

3,
identify the range of a that ensures positive-definiteness of V .

Exercise 2. Consider the ODE θ̇(t) = Aθ(t), where A =
[
0 −1
1 −1

]
.

Answer the following:

(a) Is this system asymptotically stable?

(b) Suppose V (θ) = θTPθ for some matrix symmetric, positive-definite
P that ensures PA+ATP is negative-definite. Show that V is a
Lyapunov function for the linear system given above.
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(c) Exhibit a Lyapunov function for the system given above through
an appropriate choice of P .

Exercise 3. Consider the ODE (A.1) with a Lipschitz continuous func-
tion h : Rd → Rd with Lipschitz constant L > 0. Assume the ODE
evolves over the time interval [0, T ] for some T > 0.

(i) Writing the integral form (A.2) of the ODE with two differ-
ent initial conditions θ1, θ2 ∈ Rd, obtain trajectories θ1(t) and
θ2(t), t ∈ [0, T ], respectively.

(ii) Write down an inequality (upper bound) for ‖θ1(t)− θ2(t)‖, t ∈
[0, T ], using Lipschitz continuity of the function h.

(iii) Apply Gronwall’s inequality (cf. Lemma A.1) on the inequality
above using the functions u, v : [0, T ] → [0,∞), where u(t) =
‖θ1(t) − θ2(t)‖ and v(t) = 1, ∀t ∈ [0, T ], to show that u(t) is
Lipschitz continuous as a function of the initial condition u(0).

Exercise 4. Find the equilibria of the ODE system

θ̇1 = θ2, θ̇2 = −K sin(θ1),

for some K > 0. Are these equilibria isolated?

Exercise 5. Consider the following ODE:

θ̇(t) = Aθ(t) + b,

where A is a d × d negative definite matrix, b ∈ Rd is a given vector
and θ(t) ∈ Rd, ∀t ≥ 0.

(i) Identify equilibria for this ODE?

(ii) Does this ODE have any attractors? If so, identify them?

(iii) Show that the following serves as a Lyapunov function for the
above ODE:

W (θ) = 1
2(Aθ + b)T (Aθ + b).
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Exercise 6. Consider the following ODE in Rd:

θ̇(t) = −P (∇2J(θ(t)))−1∇J(θ(t)), θ(0) ∈ Rd.

Here, J : Rd → R is a twice continuously differentiable function. Further,
P is an operator that uniquely maps all symmetric matrices to the
space of positive definite and symmetric matrices. Let θ(t), t ≥ 0 denote
a trajectory of the above ODE. Giving precise arguments, describe the
behaviour of θ(t) as t→∞? List down any assumptions that you may
make.

Exercise 7. Consider the following set-valued map:

F (x) =
{
x if x < 0
1 if x > 0.

Further, for x = 0, F (x) = [0, 1]. Giving precise arguments, show
whether or not

(i) F is a Peano or Marchaud map?

(ii) F is lower semicontinuous?

(iii) {0} is strongly positively invariant for F?

(iv) {0} is invariant for F?

Exercise 8. Let F be the set-valued map on R given by F (x) = −sgn(x)
for x 6= 0 and F (0) = [−1, 1]. Here sgn(x) = +1 if x > 0 and equals −1
otherwise.

(i) Show that {0} is strongly positively invariant as well as invariant
for the differential inclusion ẋ(t) ∈ F (x(t))?

(ii) Identify Φt(0), show whether or not {0} is an attractor for the
inclusion ẋ(t) ∈ F (x(t)) and if so, also identify the attracting set?

(iii) Show that F (·) is a Peano or Marchaud map?



B
Conditional expectations and martingales

In this appendix, we provide an introduction to conditional expectation,
various notions of convergence of random variables, and martingales.

B.1 Conditional expectation

We first handle the case of a discrete r.v.

Definition B.1. The conditional probability mass function of a r.v. Y
given X = x is pY |X(y | x) = P [Y = y | X = x]. Given {X = x}, the
distribution of Y has a probability mass function pY |X(y | x) and the
expected value of this distribution, denoted as E [Y | X = x], is given
by

E [Y | X = x] =
∑
y

ypY |X(y | x).

We shall use the notation E [Y | X] to denote the conditional expectation
of Y given X.

Next, we extend the notion of conditional expectation to a continuous
r.v.

Definition B.2. Suppose X,Y are continuous r.v.s with joint density f .
Then, the conditional probability density function, denoted by fY |X(y |

264
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x), is defined as follows:

fY |X(y | x) = f(x, y)
fX(x) , for x s.t. fX(x) > 0.

In the above, fX denotes the marginal density of X.
The conditional expectation of Y given {X = x}, denoted as

E [Y | X = x], is given by

E [Y | X = x] =
∫ ∞
−∞

yfY |X(y | x)dy.

As before, E [Y | X] denotes the conditional expectation of Y given X.

In the above definitions, we have followed a simpler definition that
covers discrete and continuous r.v.s, along the lines of (Grimmett and
Stirzaker, 2020). A more general definition of the conditional expectation
of Y given a sigma field F , denoted by E [Y | F ], is any random variable
Z that is F-measurable and satisfies

E [Y IA] = E [ZIA] ,∀A ∈ F ,

where IA is the indicator function that takes value 1 on the set A and 0
otherwise.

Such a Z is unique almost surely, and this definition is more general
in the sense that it does not rely on the existence of a conditional
distribution, see (Durrett, 2019) for a detailed exposition. In the rest
of this appendix, if not explicitly mentioned, equality between random
variables should be interpreted in the almost sure sense.

We list some useful properties of conditional expectation.

Proposition B.1. The conditional expectation E [Y | X] satisfies the
following properties:

1. E [E [Y | X]] = EY .

2. E [E [Y | X] g(X)] = E [Y g(X)] for any g such that both expecta-
tions exist.

3. E [aY + bZ | X] = aE [Y | X] + bE [Z | X].

4. E [Y | X] = EY if X and Y are independent.
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5. E [Y g(X) | X] = g(X)E [Y | X] for g such that the expectations
exist.

6. E [E [Y | X,Z] | X] = E [E [Y | X] | X,Z] = E [Y | X].

B.2 Notions of convergence of random variables

Definition B.3 (Almost sure or with probability 1 convergence). Let
Xm,m ≥ 0 and X be random variables defined on a common probability
space (Ω,F , P ). Then, Xm → X almost surely or Xm → X with
probability 1 as m→∞ if P

[
w| lim

m→∞
Xm(w) = X(w)

]
= 1.

A well-known example of almost sure convergence is the strong law
of large numbers, which states that the sample mean converges almost
surely to the true mean, under a bounded moment assumption.

Definition B.4 (Convergence in probability). Let Xm,m ≥ 0 and X be
random variables defined on a common probability space (Ω,F , P ).
Then, Xm

p−→X if lim
m→∞

P [w|Xm(w)−X(w)| > ε] = 0 ∀ ε > 0, where
P [w|Xm(w)−X(w)| > ε] is usually written as P [|Xm −X| > ε].

The weak law of large numbers is an example of convergence in
probability for the sample mean of i.i.d. r.v.s.

Definition B.5 (L2 or mean-squared convergence). Let Xm,m ≥ 0
and X be random variables defined on a common probability space
(Ω,F , P ). Then Xm

L2
−→X if E[|Xm(w)−X(w)|]2 → 0 as m→∞, where

E[|Xm(w)−X(w)|]2 is the mean squared error.

Definition B.6 (Convergence in distribution). Let Xm,m ≥ 0 and X

be random variables (not necessarily defined on a common probability
space). We say that Xm

d−→X if FXm(x) −→ FX(x) at all points of con-
tinuity of FX . Here FY (·) denotes the cumulative distribution function
(CDF) of the random variable Y .

The reader is referred to (Borkar, 1995; Billingsley, 2013) for equiv-
alent definitions of convergence in distribution.

It can be shown that
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1. Almost sure convergence =⇒ convergence in probability =⇒
convergence in distribution.

2. Mean-squared convergence =⇒ convergence in probability =⇒
convergence in distribution.

For counterexamples that show that the converses of the above implica-
tions do not hold, the reader is referred to (Billingsley, 2017).

In this book, we provide almost sure convergence guarantees for the
well-known gradient-based zeroth-order optimization algorithms.

B.3 Martingales

A filtration Fn is an increasing sequence of sigma fields. A sequence of
random variables Yn is said to be adapted to Fn if Yn is Fn-measurable,
for all n.

A martingale is a stochastic process that is defined below.

Definition B.7. A sequence {Yn, n ≥ 1} is a martingale with re-
spect to the sequence {Xn, n ≥ 1} if, for all n ≥ 1,

• E[|Yn|] <∞;

• Yn is adapted to Fn = σ(X1, . . . , Xn); and

• E[Yn+1|X1, . . . , Xn] = Yn.

In particular, if E[Yn+1|X1, . . . , Xn] = 0, then {Yn, n ≥ 1} is a
martingale difference sequence.

The sequence {Xn} can be the same as the {Yn} sequence for the
conditions listed above to be valid.

Notice that

E[Yn+2|Y1, Y2, . . . , Yn] = E[E[Yn+2|Y1, Y2, . . . , Yn+1]|Y1, Y2, . . . , Yn]
= E[Yn+1|Y1, Y2, . . . , Yn] = Yn.

Extending the argument, we have E[Yn+m|Y1, Y2, . . . , Yn] = Yn, for any
m > 0.
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A few examples of martingales are given below.

Example B.1. Let {Xi} be a sequence of random variables satisfying

E[Xi+1|X1, X2, . . . , Xi] = 0, ∀i. Define Sn =
n∑
i=1

Xi. Then,

E[Sn+1|S1, S2, . . . , Sn]
= E[Xn+1|S1, S2, . . . , Sn] + E[Sn|S1, S2, . . . , Sn]
= E[Xn+1|X1, X2, . . . , Xn] + Sn = Sn.

Thus, {Sn} is a martingale sequence.

Example B.2. Let {Xi} be a sequence of i.i.d. random variables with

mean one. Let Sn =
n∏
i=1

Xi. Then, {Sn} is a martingale since

E[Sn+1|S1, S2, . . . , Sn] = E[Xn+1Sn|S1, S2, . . . , Sn] = E[Xn+1]Sn = Sn.

Definition B.8. Let Fn be a filtration. A sequence {Yn} is a mar-
tingale w.r.t. the filtration Fn if, for all n ≥ 1,

1. E[|Yn|] <∞;

2. Yn is adapted to Fn; and

3. E[Yn+1|Fn] = Yn.

If the equality in the last condition above is replaced by a ≤ (resp. ≥),
then the resulting sequence is a super (resp. sub) martingale.

Definition B.7 is retrieved by choosing Fn to be σ(X0, X1, . . . , Xn),
which is the smallest σ-field with respect to which X1, . . . , Xn are
measurable. If Y is a martingale with respect to F , then it is also a
martingale with respect to G where Gn = σ(Y1, . . . , Yn). This is because
Gn is the smallest sigma algebra w.r.t which Yn is measurable for every
n, and thus, Gn ⊂ Fn, ∀n. Hence,

E[Yn+1|Gn] = E[E[Yn+1|Fn]|Gn] = E[Yn|Gn] = Yn a.s.
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Example B.3. Let {Xi} be i.i.d. and let Sn =
n∑
i=1

Xi. Then,

(a) {Sn} is a submartingale if E[Xi] ≥ 0; and

(b) {Sn} is a supermartingale if E[Xi] ≤ 0.

Example B.4. Let {Zn} be a martingale sequence, and Sn = Zn−Zn−1.
Then,

E[Sn|S1, . . . , Sn−1] = E[Zn|S1, . . . , Sn−1]− E[Zn−1|S1, . . . , Sn−1]
= Zn−1 − Zn−1 = 0.

Further, E[|Sn|] ≤ E[|Zn|] + E[|Zn−1|] <∞. Thus, the sequence {Sn} is
a martingale difference.

B.3.1 Applications

Mean Estimation

Consider a r.v. Y with mean µ and variance σ2. Suppose we are given
i.i.d samples Y1, Y2 . . . Yn from the distribution of Y . Let xn denote the
sample mean, i.e.,

xn = 1
n

n∑
k=1

Yk.

We have

xn+1 = 1
n+ 1

n+1∑
k=1

Yk+1 = n

n+ 1

(
1
n

n∑
k=1

Yk

)
+ 1
n+ 1Yn+1.

Hence, sample mean can be iteratively computed as follows:

xn+1 = xn + 1
n+ 1(Yn+1 − xn)

Instead of 1
n+ 1, one can employ a more general step-size αn satisfying

standard stochastic approximation conditions, to arrive at the following
update rule:

xn+1 = xn + αn(Yn+1 − xn). (B.1)
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Rewriting the equation above, we obtain

xn+1 = xn + αn(Yn+1 − xn) (B.2)
= xn + αn[(µ− xn) + (Yn+1 − µ)] (B.3)
= xn + αn[(µ− xn) + wn+1], (B.4)

where wn+1 = Yn+1 − µ is the noise term. Notice that

E[wn+1|x1, . . . xn] = E[wn+1|Y1, . . . Yn]
= E[Yn+1|Y1, . . . Yn]− µ
= E[Yn+1]− µ = 0.

Hence, {wn} is a martingale difference sequence.

Urn model

Suppose we have an empty urn to which we randomly add a red or a
blue ball (one at a time) iteratively. Let us define

Yn+1 =

1, if (n+ 1)th ball is red
0, otherwise

Sn =
n∑
k=1

Yk denotes the total number of red balls. Then xn = Sn
n

denotes the fraction of red balls. We have

xn+1 = 1
n+ 1

n+1∑
k=1

Yk

= (1− 1
n+ 1)xn + 1

n+ 1Yn+1

= xn + αn(Yn+1 − xn),

where αn = 1
n+ 1, n ≥ 0. Suppose the conditional probability that the

next ball added at iterate (n+ 1) is red, given the past, depends only
on xn, i.e.,

P [Yn+1 = 1|x1 . . . xn] = p(xn).
Then,

xn+1 = xn + αn(p(xn)− xn) + wn+1,
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where wn+1 = Yn+1 − p(xn). Notice that

E(wn+1|x1, . . . xn) = E(Yn+1 − p(xn)|x1, . . . xn)
= P [Yn+1 = 1|x1, . . . xn]− p(xn)
= p(xn)− p(xn) = 0.

Therefore, {wn} is a martingale difference sequence.
In the next section, we state and prove the well-known maximal

inequality for martingales. This inequality will be used subsequently in
the proof of the martingale convergence theorem. The latter claim helps
in establishing asymptotic convergence of stochastic approximation
algorithms with noise factors that are martingale differences.

B.3.2 Maximal inequality

We state and prove the Doob-Kolmogorov Inequality below.

Theorem B.1. If {Sn} is a martingale with respect to {Xn} then

P
(

max
1≤i≤n

|Si| ≥ ε
)
≤ 1
ε2
E[S2

n] for any ε > 0.

Proof. For the given ε > 0, we define a partition of Ω as follows:

Ak ∪
(

k⋃
i=1

Bi

)
= Ω,

where A0 = Ω, Ak = {|Si| < ε,∀i ≤ k}, and Bk = Ak−1 ∩ {|Sk| ≥ ε}.
Here Bk denotes the even when |Si| ≥ ε for the first time with i = k.

The sets B1, . . . , Bk, Ak form a partition of Ω, which implies

E[S2
n] =

n∑
i=1

E[S2
nIBi ] + E[S2

nIAn ] ≥
n∑
i=1

E[S2
nIBi ].

Notice that

E[S2
nIBi ] = E[(Sn − Si + Si)2IBi ]

= E[(Sn − Si)2IBi ]︸ ︷︷ ︸
(I)

+ 2E[(Sn − Si)SiIBi ]︸ ︷︷ ︸
(II)

+E[S2
i IBi ]︸ ︷︷ ︸

(III)

.
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Note that (I) ≥ 0 and (III) ≥ ε2P (Bi), because |Si| ≥ ε if Bi occurs.
To deal with term (II), note that

E[(Sn − Si)SiIBi ] = E [SiIBiE[(Sn − Si)|X1, . . . , Xi]]
= 0,

since Bi concerns X1, . . . , Xi only, the inequality presented above be-
comes

E[S2
n] ≥

n∑
i=1

ε2P (Bi) = ε2P
[

max
1≤i≤n

|Si| ≥ ε
]
.

B.3.3 Martingale convergence theorem

Theorem B.2. Suppose {Sn} is a martingale sequence satisfying
E[S2

n] < M <∞ for some M and ∀ n. Then, there exists a r.v. S
such that

1. Sn
a.s−−→ S as n→∞;

2. Sn
L2
−→ S as n→∞ (mean-squared sense).

Proof. We begin with the proof of the first claim, i.e., almost sure
convergence. Notice that Sm and Sm+n−Sm are uncorrelated ∀m,n ≥ 1
since E[Sm(Sm+n − Sm)] = 0. Further,

E[S2
m+n] = E[S2

m] + E[(Sm+n − Sm)2] ≥ E[S2
m].

Thus, {E[S2
n]} is a non-decreasing sequence that is bounded above (by

assumption). Choose M such that E[S2
n] ↑ M as n → ∞. Now, it is

enough to show that {Sn(ω)}n=1 is Cauchy convergent as it would imply
almost sure convergence.
Let C = {ω | Sn(ω) is Cauchy convergent}, i.e.,

C = {ω | ∀ε > 0, ∃m such that |Sm+i(ω)− Sm+j(ω)| < ε ∀ i, j ≥ 1}.

If |Sm+i − Sm| < ε and |Sm+j − Sm| < ε then |Sm+i − Sm+j | < 2ε by
triangle inequality. So,

C = {ω|∀ (rational) ε > 0,∃ m s.t. |Sm+i(ω)− Sm(ω)| < ε, ∀ i ≥ 1}
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=
⋂
ε>0

⋃
m≥1
{|Sm+i − Sm| < ε,∀i ≥ 1}

Cc =
⋃
ε>0

⋂
m≥1
{|Sm+i − Sm| ≥ ε, for some i ≥ 1}.

LetAm(ε) = {|Sm+i−Sm| ≥ ε for some i ≥ 1} then, Cc =
⋃
ε>0

⋂
m≥1

Am(ε).

If ε ≥ ε′, Am(ε) ⊆ Am(ε′).

We want P(Cc) = 0. Notice that

0 ≤ lim
ε↓0

P
(⋂
m

Am(ε)
)
≤ lim

ε↓0
lim
m→∞

P(Am(ε)).

If lim
m→∞

P(Am(ε)) = 0 for any ε > 0, then P(Cc) = 0.
Let Yn = Sm+n − Sm, for a fixed m. Then, {Yn} is a martingale since
E[Yn+1|Y1, . . . , Yn] = Yn.
Applying the Doob-Kolmogorov inequality for Yi, we obtain

P(|Yi| ≥ ε for some 1 ≤ i ≤ n) ≤ 1
ε2
E
[
Y 2
n

]
,

P(|Sm+i − Sm| ≥ ε, for some 1 ≤ i ≤ n) ≤
E
[
(Sm+n − Sm)2

]
ε2

,

0 ≤ P(Am(ε)) ≤ E(Sm+n − Sm)2

ε2
=

E[S2
m+n] + E[S2

m]− 2E[Sm+nSm]
ε2

.

Notice that

E[Sm+nSm] = E[E[Sm+nSm|S1, . . . , Sm]]
= E[SmE[Sm+n|S1, . . . , Sm]] = E[S2

m].

Thus,

0 ≤ P [Am(ε)] ≤
E[S2

m+n]− E[S2
m]

ε2

≤ lim
n→∞

E[S2
m+n]− E[S2

m]
ε2

= M − E[S2
m]

ε2

P[Am(ε)] ≤ M − E[S2
m]

ε2
.

As m→∞, E[S2
m] ↑M . Hence, lim

m→∞
P[Am(ε)] = 0, implying P(Cc) = 0

(or) P(C) = 1, i.e., the sequence {Sn} is Cauchy convergent. Thus,
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∃ S such that Sn
a.s→ S as n→∞.

We now turn to proving convergence in mean-squared sense. For
this claim, we need Fatou’s Lemma, which is stated as follows:
If {Xn} is such that Xn ≥ 0, ∀n, then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn]

Notice that

E[(Sn − S)2] = E[lim inf
m→∞

(Sn − Sm)2] (B.5)

≤ lim inf
m→∞

E[(Sn − Sm)2] (Fatou’s Lemma)

= M − E[S2
n] n→∞−→ 0. (B.6)

=⇒ E[(Sn − S)2] n→∞−→ 0 or Sn
L2
→ S.

To arrive at the equality in (B.5), we used the following fact for a
fixed n:

E
[

lim
m→∞

(S2
n + S2

m − 2SmSn)
]

=E[Sn2 + S2 − 2SnS]

=E[(Sn − S)2].

Further, (B.6) is justified as follows:

lim
m→∞

E[(Sn − Sm)2] = lim
m→∞

(E[S2
n] + E[S2

m]− 2E[SnSm])

= lim
m→∞

(E[S2
m]− E[S2

n])

= M − E[S2
n].

Hence proved.

B.3.4 More general martingale convergence results

We state here a few general martingale convergence theorems that are
popular in the literature, see for instance, (Borkar, 1995, Chapter 3).
As before, for a random variable X, let X+ 4= max(X, 0).

Theorem B.3. Let (Sn,Fn), n ≥ 0, be a submartingale satisfying
sup
n
E[S+

n ] <∞. Then Sn → S a.s.
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Theorem B.4. Let (Sn,Fn), n ≥ 0, be a martingale or a non-negative
submartingale satisfying sup

n
E[|Sn|p] <∞, for some p ∈ (1,∞). Then

there exists a random variable S such that

(i) Sn → S a.s.,

(ii) Sn
Lp→ S.

Definition B.9. 1. A sequence of random variables {Sn} is said to
be uniformly integrable (U.I.) if it is integrable and

lim
a→∞

sup
n
E[|Sn|I{|Sn| ≥ a}] = 0.

2. A martingale (Sn,Fn), n ≥ 0, is said to be regular if there exists
a random variable Y with E[|Y ] <∞, such that Sn = E[Y |Fn],
∀n.

Lemma B.5. {Sn} is U.I. if and only if sup
n
E[|Sn|] <∞ and

lim
P (A)→0

sup
n

∫
A
|Sn|dP = 0.

Theorem B.6. Let (Sn,Fn), n ≥ 0 be a martingale. Then the following
are equivalent:

(i) (Sn,Fn), n ≥ 0, is regular.

(ii) {Sn} is U.I.

(iii) There exists a random variable S with E[|S|] <∞ and Sn
L1
→ S.

(iv) sup
n
E[|Sn|] <∞ and S := lim

n→∞
Sn satisfies Sn = E[S|Fn], ∀n.

Note that the existence of the limiting random variable S in Theo-
rem B.6(iv) follows from Theorem B.4.

We shall now consider the class of square integrable martingales
(Sn,Fn), n ≥ 0, i.e., those for which E[S2

n] < ∞, ∀n. Note that if
(Sn,Fn), n ≥ 0, is a martingale, then

E[S2
n+1|Fn] ≥ (E[Sn+1|Fn])2
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= S2
n a.s.

The inequality above follows from the conditional Jensen’s inequality,
while the equality results from the martingale property. Thus, (S2

n,Fn),
n ≥ 0, is a submartingale and by the Doob decomposition theorem,

S2
n = Xn + Zn, n ≥ 0,

where (Xn,Fn), n ≥ 0, is a zero-mean martingale and {Zn} is the
quadratic variation process where Zn is obtained as

Zn =
n∑

m=1
(E[S2

m|Fm−1]− S2
m−1) + E[S2

0 ],

and is seen to be measurable w.r.t. Fn−1, ∀n ≥ 0, where F−1 = {Ω, φ}.
Note also that because (S2

n,Fn), n ≥ 0, is a submartingale, Zn+1 ≥ Zn
a.s., ∀n.

Theorem B.7. Let (Sn,Fn), n ≥ 0, be a square integrable martingale
and let {Zn} be its associated quadratic variation process such that
each Zn is measurable w.r.t. Fn−1. Let Z∞ = lim

n→∞
Zn a.s. Then {Sn}

converges almost surely on the set {Z∞ <∞}. Also, Sn = o(f(Zn)) on
{Z∞ =∞} for every increasing f : R+ ∪ {0} → R+ ∪ {0} satisfying∫ ∞

0
(1 + f(t))−2dt <∞.

Remark B.1. Even though the above theorems are given for scalar
valued martingales, they continue to hold even with vector-valued
martingales. In most of the asymptotic convergence analyses that we
cover for our algorithms, Theorem B.7 is seen to be useful. Consider, for
instance, the following stochastic approximation algorithm as in (2.1):

xn+1 = xn + a(n)(h(xn) +Mn+1),

under the assumptions (A1)-(A4) of (Borkar, 2022, Chapter 2). We list
these below for ease of reference.

(A1) The function h : Rd → Rd is Lipschitz continuous.

(A2) The step-size sequence {a(n)} is a sequence of positive real num-
bers satisfying ∑

n

a(n) =∞,
∑
n

a(n)2 <∞.
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(A3) The sequence {Mn} forms a martingale difference sequence w.r.t. the
filtration Fn ≡ σ(xm,Mm,m ≤ n), n ≥ 0. In addition,

E[‖Mn+1‖2|Fn] ≤ Ǔ(1 + ‖xn‖2).

(A4) sup
n
‖x(n)‖ <∞ a.s.

Define now

Sn
4=

n−1∑
m=0

a(m)Mm+1, n ≥ 1.

Then (Sn,Fn), n ≥ 1 forms a martingale sequence. Using the Euclidean
norm, we obtain

E[‖Sn‖2] = E[STn Sn] =
n−1∑
m=0

a(m)2‖Mm+1‖2] <∞,

as the cross terms of the form a(i)a(j)E[MT
i+1Mj+1] = 0, for all

i 6= j. Further, the quadratic variation process {Zn} associated with
(Sn,Fn), n ≥ 1 is the following:

Zn =
n∑

m=1
(E[‖Sm‖2|Fm−1]− ‖Sm−1‖2) + E[‖S0‖2]

=
n∑

m=1
E[‖(Sm − Sm−1)‖2|Fm−1] + E[‖S0‖2]

=
n∑

m=1
a(m− 1)2E[‖Mm‖2|Fm−1] + E[‖S0‖2]

≤ Ǔ
n∑

m=1
a(m− 1)2(1 + ‖xm−1‖2) + E[‖S0‖2],

from (A3). Thus,

Zn ≤ Ǔ
n∑

m=1
a(m− 1)2(1 + sup

m
‖xm−1‖2) + E[‖S0‖2].

It now follows from (A2) (the square summability of step-size condition)
and (A4) (stability of the iterates) that

Zn → Z∞ ≤ Ǔ
∞∑
m=1

a(m− 1)2(1 + sup
m
‖xm−1‖2) + E[‖S0‖2] <∞ a.s.,

from (A2) and (A4). From Theorem B.7, it will then follow that the
martingale sequence {Sm} converges almost surely.
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B.4 Bibliographic remarks

The background material presented in this appendix is based on (Grim-
mett and Stirzaker, 2020; Borkar, 1995; Billingsley, 2017).

B.5 Exercises

Exercise 1. Suppose Xn
d→X and Yn

p→ c for some constant c. Show
that XnYn

d→ cX.

Exercise 2. Suppose Xn
p→X and Yn

p→Y . Show that XnYn
p→XY .

Exercise 3. Suppose Xn
L1→X and Yn

L1→Y . Disprove the following claim:
XnYn

L1→XY .

Exercise 4. Suppose Xn
L2→X as n→∞. Show that

Variance(Xn)→ Variance(X) as n→∞.

Exercise 5. Answer the following questions to understand the relation
between convergence in probability and in distribution.

(a) Prove that convergence in probability implies convergence in
distribution, and give a counterexample to show that the converse
need not hold.

(b) Show that convergence in distribution to a constant random
variable implies convergence in probability to that constant.

Exercise 6. Let {Xn} and {Yn} be martingale sequences on a common
probability space, i.e., for all n,

E [|Xn|+ |Yn|] <∞,E [Xn+1 | Z1, . . . , Zn] = Xn, and
E [Yn+1 | Z1, . . . , Zn] = Yn.

Show that, for m ≤ n,

E [XnYm | Z1, . . . , Zm] = XmYm.



B.5. Exercises 279

Exercise 7. Let {Xn} be a martingale sequence.
Consider the following two statements:

I: For all n ≥ 1, E[Xn] = E[X1].
II: For all n ≥ 1, Variance(Xn) = Variance(X1).
III: For all n ≥ 1, Variance(Xn) ≥ Variance(X1).
IV: For all n ≥ 1, Variance(Xn) ≤ Variance(X1).

Which of the statements above are true?

Exercise 8. Let {Xi} be a i.i.d. sequence of random variables with mean
zero and variance σ2. Define Sn = X1 + . . .+Xn, and Yn = S2

n − nσ2.
Show that {Yn} is a martingale sequence.

Exercise 9. Let Xi, i = 1, 2, . . . be a sequence of independent random
variable with common mean µ and variance E

[
(Xi − µ)2

]
≤ k3/2. Let

Xn = 1
n

n∑
i=1

Xi be the sample mean. Does Xn converge in the mean-

squared sense to µ?

Exercise 10. Let {Xi} be a i.i.d. sequence of positive random variables

with mean one. Define Yn =
n∏
i=1

Xi.

Consider the following two statements:
I: {Yn} is a martingale sequence.
II: {

√
Yn} is a supermartingale sequence.

II: {
√
Yn} is a submartingale sequence.

Which of the statements above are true?

Exercise 11. Let {Xn} be a martingale sequence, with Xn ∈ [0, 1], ∀n.
Does Xn converges almost surely?

Exercise 12. Let {Xn}n≥1 be a sequence of independent random vari-
ables (r.v.s). Let f : R → R be a function such that E[|f(Xn)|] < ∞,
∀n. Let an = E(f(Xn))] 6= 0, ∀n. Define

Sn =
∏n
m=1 f(Xm)∏n
m=1 am

, ∀n ≥ 1.

Answer the following:
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(a) Is E[|Sn|] <∞, ∀n?

(b) Is {Sn} a martingale sequence?

Exercise 13. Suppose Xn, n ≥ 0 is a sequence of real-valued random
variables adapted to a filtration {Fn}. Let h : R → R be a given
function. Define a sequence {R(n)} of random variables according to

R(n) =
n∑

m=1
γ(m)(h(Xm)− E[h(Xm) | Fm−1]),

n ≥ 1, where γ(n), n ≥ 1 are some positive scalars. Give suitable
conditions on γ(n), n ≥ 1 and h(·) under which (R(n),Fn), n ≥ 1 is (i)
a martingale, (ii) a square integrable martingale, and (iii) an almost
surely convergent martingale sequence?

Exercise 14. Let (Xn,Fn), n ≥ 0 be a supermartingale, and define

Y0 = X0,

Yn = Yn−1 + (Xn − E[Xn | Fn−1]), n ≥ 1.

Also define

A0 = 0,
An = An−1 + (Xn−1 − E[Xn | Fn−1]), n ≥ 1.

(i) Express Xn in terms of Yn and An for general n ≥ 0.

(ii) What kind of a process is (Yn,Fn), n ≥ 0?

(iii) Is {An} an increasing or a decreasing sequence? Prove your claim.



C
Markov chains

In this appendix, we provide an introduction to discrete time Markov
chains (DTMCs), covering the main results concerning their transient
and limiting behavior. This background is essential for understand-
ing stochastic approximation algorithms, where the observation noise
originates from a Markov chain. This setting was covered earlier in
Section 2.6.

C.1 Introduction

Definition C.1. A stochastic process {Xn, n ≥ 0} with a countable
state space X is a DTMC if Xn ∈ X ,∀n ≥ 0, and ∀n ≥ 0, i, j ∈ X ,

P (Xn+1 = j | Xn = i,Xn−1 = in−1, ..X0 = i0) = P (Xn+1 = j|Xn = i).

The condition above is the well-known Markov property, which in
simple terms means the future is independent of the past, given the
present.

A DTMC with countable state space S is time-homogeneous if

P (Xn+1 = j|Xn = i) 4= Pi,j(n) = Pi,j ,∀n ≥ 0,∀i, j ∈ S.

281
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In other words, the transition probabilities are time invariant. This is
the case we consider in this book. Note that

Pi,j ≥ 0, ∀i, j ∈ X ;
∑
j∈X

Pi,j = 1.

When the state space is finite, we can write a transition probability
matrix M = [[Pi,j ]]i,j=1,...,|X |.

We shall use the following DTMC as a running example in this
appendix.

Example C.1. Consider the following two state DTMC for some 0 ≤

α, β ≤ 1: The transition probability matrix P =
[

α 1− α
1− β β

]
.

0 11-α

1-β
α β

A relevant question is if the transition probability matrix is enough
to derive the finite-dimensional distributions, i.e,

P (X0 = i0, X1 = i1, . . . , Xn = in), i0, i1, . . . , in ∈ X .

The answer is no. The additional information required is the initial
distribution, i.e., a |X |-vector a with entries ai = P (X0 = i),∀i ∈ X . In
such a case, it is easy to see from the Markov property that

P (X0 = i0, X1 = i1, . . . , Xn = in) = ai0Pi0,i1Pi1,i2 · · ·Pin−1,in .

C.2 Transient behavior

Let {Xn, n ≥ 0} be a DTMC with state space X = {0, 1, 2...}, initial
distribution a and transition probability matrix P . We now derive the
marginal distribution of Xn, i.e., a(n)

j , P (Xn = j), j ∈ X . Notice that

P (Xn = j) =
∑
i∈X

P (Xn = j|X0 = i)P (X0 = i)
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=
∑
i∈X

P (Xn = j|X0 = i)ai

=
∑
i∈X

aiP
(n)
i,j ,

where P (n)
i,j = P (Xn = j|X0 = i), ∀i, j ∈ X , n ≥ 0.

The n-step transition probabilities P (n)
i,j satisfy the following relation,

known as Chapman-Kolmogorov equations.

P
(n)
i,j =

∑
r∈X

P
(k)
i,r P

(n−k)
r,j ,∀i, j ∈ S, 0 ≤ k ≤ n. (C.1)

Letting P(r) be the r-step transition probability matrix with entries
P

(r)
i,j , for any r ≥ 0, the relation in (C.1) can be compactly re-written

as follows:

P(n) = P(k)P(n−k), 0 ≤ k ≤ n.

Example C.2. Consider a random walk with the following transition
probabilities:

Pi,i+1 = p, Pi,i−1 = q = 1− p,∀i,
where 0 < p < 1. To find P (n)

0,0 = P (Xn = 0|X0 = 0), note that for an
odd n, P (n)

0,0 = 0 as an even number of steps is necessary to return to the
starting position. On the other hand, if n is even, say n = 2k, then of
the 2k steps, k steps move forward and the remaining move backward,
so that at the end of 2k steps, the DTMC is in state 0. Therefore,

P
(2k)
0,0 = ((2k)!/k!k!)pkqk.

Example C.3. Consider a DTMC with state space X = {1, 2, 3, 4} and
initial distribution a = {0.25, 0.25, 0.25, 0.25}. The transition probability

matrix P =


0.1 0.2 0.3 0.4
0.25 0.25 0.5 0
0.5 0 0.1 0.4
0 0 0.4 0.6

.
The marginal distribution of X4, i.e.,

a(4) =
[
P (X4 = 1), P (X4 = 2), P (X4 = 3), P (X4 = 4)

]
,

can be found using the following relation:

a(4) = aP 4.
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Definition C.2 (First Passage times). Let {Xn, n ≥ 0} be a DTMC on
X = {0, 1, 2, ..}. The first passage time T to a state k is defined as

T = min{n ≥ 0|Xn = k}.

Two interesting quantities that are related to T are: (i) The comple-
mentary CDF P (T > n), n ≥ 0; and (ii) Probability of eventually hitting
state k: P (T <∞). The example below illustrates the aforementioned
quantities.

Example C.4. For the two state DTMC in Example C.1, let T =
min{n ≥ 0|Xn = 1}. Then, V2(n) = P (T > n|X0 = 2) = βn, and
P (T = n|X0 = 2) = V2(n− 1)− V2(n) = βn−1(1− β).

Definition C.3 (Occupancy times). Let {Xn, n ≥ 0} be a DTMC on
X = {0, 1, 2, ..}. Let V (n)

j denote the number of visits to state j up to
time n (including 0). Then, the occupancy time of j up to n starting in
state i is defined as

M
(n)
i,j = E(V (n)

j |X0 = i), i, j ∈ S, n ≥ 0.

Let the occupancy matrix be M (n) = [M (n)
i,j ]. Then, M (n) can be

calculated as follows:

M (n) =
n∑
r=0

P r, n ≥ 0.

Example C.5. Consider a DTMC with state space X = {A,B,C}, and

transition probability matrix P =

0.1 0.2 0.7
0.2 0.4 0.4
0.1 0.3 0.6

.
Then, the occupance matrix with n = 9 is given by

M (9) =
9∑
r=0

P r =

2.14 2.74 5.12
1.26 3.95 4.78
1.15 2.85 6

 .
So far, we have seen that marginal distributions and passage times

are useful in characterizing the transient behaviour of DTMCs. In the
next section, we turn our attention to the limiting behavior of DTMCs.
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C.3 Limiting behavior

To understand the limiting behavior of a DTMC, we pose the following
two questions:

(Q1) With P (n)
i,j denoting the probability of going from state

i to state j in n steps, does P (n) converge as n −→∞?

(Q2) Recall the occupancy Matrix M (n) =
n∑
r=0

P r, with

entriesM (n)
i,j denoting the number of visits to state j starting

from state i up to time n. Does
M

(n)
i,j

n+ 1 converge as n −→∞?

Example C.6. Consider the two state DTMC from Example C.1 with
α+ β < 2. By an induction argument, it can be shown that

Pn = 1
2− α− β

[
1− β 1− α
1− β 1− α

]
+ (α+ β − 1)n

2− α− β

[
1− α α− 1
β − 1 1− β

]
.

Taking limits, it is apparent that

lim
n→∞

Pn = 1
2− α− β

[
1− β 1− α
1− β 1− α

]
.

Similarly, by induction, one can obtain the following result:

Mn = n+ 1
2− α− β

[
1− β 1− α
1− β 1− α

]
+1− (α+ β − 1)n+1

(2− α− β)2

[
1− α α− 1
β − 1 1− β

]
.

It is easy to see that

lim
n→∞

Mn

n+ 1 = 1
2− α− β

[
1− β 1− α
1− β 1− α

]
.

In this example, Pn and Mn

n+ 1 converge to the same limit. This is not
in general true for all DTMCs, as the next example demonstrates.

Example C.7. Consider a three-state DTMC with transition probability

matrix P =

0 1 0
q 0 p

0 1 0

, for some 0 < p < 1 and q = 1 − p. It is easy
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to see that P 2n =

q 0 p

0 1 0
q 0 p

, and P 2n+1 = P . Thus, Pn does not

converge.
On the other hand, it can be shown that

M2n =

1 + nq 1 + n np
nq 1 + n np
nq n 1 + np

 andM2n+1 =

 1 + nq 1 + n np
(n+ 1)q 1 + n (n+ 1)p
nq n+ 1 1 + np

.

Thus, both M2n

2n+ 1 and M2n+1

2n+ 2 converge to


q

2
1
2

p

2
q

2
1
2

p

2
q

2
1
2

p

2

 as n→∞.

To understand the limiting behavior of DTMCs, we require the no-
tions of communicating classes, recurrence and transience. We introduce
these concepts next.

Definition C.4 (Accessibility and communication). A state j is said to
be accessible from state i if ∃n ≥ 0 such that P (n)

i,j > 0. If state j is
accessible from state i, we write i −→ j. Notice that i −→ j implies that
there exists a directed path from state i to state j in the transition
diagram.
States i and j communicate if i −→ j and j −→ i. We shall use i←→ j to
denote that state i communicates with state j.

Using the definition above, it can be inferred that communication is
an equivalence relation, i.e.,

1. i←→ i (reflexive);

2. if i←→ j then j ←→ i (symmetric);

3. if i←→ j and j ←→ k then i←→ k(transitive).

Definition C.5 (Communicating class). A set C is a communicating class
if the following properties hold:

1. i ∈ C, j ∈ C =⇒ i←→ j;

2. i ∈ C, i←→ j =⇒ j ∈ C - this makes C maximal
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In addition, if any i ∈ C and j /∈ C do not communicate, then the class
C is said to be closed.

Notice that if Xn ∈ C for some n, and C is a closed communicating
class, then Xm ∈ C, for all m ≥ n.

The state space of a DTMC can be partitioned as follows:

X = C1 ∪ C2 ∪ ... ∪ Ck ∪ T, (C.2)

for some k ≥ 1, where C1, C2..., Ck are closed communicating classes
and the remaining states form T . The latter set of states are transient
— a notion that we define below in Definition C.7.

Definition C.6 (Irreducibility). If the state space X is a single closed
communicating class then the DTMC is said to be irreducible.

Example C.8. For the two state DTMC from Example C.1, if 0 <=
α, β < 1, then {0, 1} is a closed communicating class and the DTMC
is irreducible. On the other hand, if α = 1, then we have the following
transition diagram: In this case, {1} is not a closed communicating

0 1

1-β
1 β

class, whereas {0} is closed. The state partition, see (C.2), would be
the union of closed class {0} and T = {1}.

Recurrence and transience

Let T̃i = min{n > 0|Xn = i}, i ∈ X denote the first time (after time
instant 0) when the chain hits state i, ũi = P (T̃i <∞|X0 = i) denote
the probability of returning back to state i, and m̃i = E(T̃i|X0 = i)
denote the expected number of steps to return to state i. Using these
quantities, we define the notion of recurrence/transience of a state
below.
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Definition C.7. A state i ∈ X is said to be recurrent if ũi = 1 and
transient if ũi < 1. Further, a recurrent state is said to be positive
recurrent if m̃i <∞ and null recurrent if m̃i =∞.

Note that m̃i =∞ for a transient state. The recurrence and tran-
sience properties carry over to all states within any communicating
class, i.e.,

(a) i is transient, i←→ j =⇒ j is transient; and

(b) i is recurrent , i←→ j =⇒ j is recurrent.

Similarly, positive and null recurrence are also class properties.
A communicating class is called

• transient if all its states are transient;

• positive recurrent if all its states are positive recurrent;

• null recurrent if all its states are null recurrent.

An irreducible DTMC is positive/null recurrent if all its states are
positive/null recurrent.

Example C.9. Consider the following random walk: P0,0 = PN,N = 1,
Pi,i+1 = p and Pi,i−1 = q, 0 < p, q < 1, p + q = 1. The transition
diagram is given below.

0 1 2
q

p

q

1

...
N-1 N

p
1

It is easy to see that 0 and N are recurrent states and the remaining
states are transient.

Stationary distribution

Definition C.8. For a DTMC with transition probability matrix P , the
vector π = (πi, i ∈ X ) is called a stationary distribution if
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1. πi ≥ 0, ∀i and
∑
i

πi = 1.

2. π = πP .

The first condition above implies π is a distribution, while the second
condition relates to stationarity. In particular, if the initial distribution
of the DTMC is X0 ∼ π, then the distribution of the state Xn (at
instant n) is:

πPn = πPPn−1 = πPn−1 = . . . = π.

The main result concerning the existence of stationary distribution
is given below.

Theorem C.1. Consider an irreducible DTMC {Xn}. Then,

1. There exists a stationary distribution if and only if some state in
the DTMC is positive recurrent.

2. If there exists a stationary distribution π, then every state is
positive recurrent, and

πi = 1
mi
, where mi = E[Ti | X0 = i],

and Ti = min{n ≥ 1 | Xn = i}.

3. π is unique.

Example C.10. For the two state DTMC in Example C.1 with α+β < 2,
the set of equations for finding the stationary distribution are as follows:

π0 = απ0 + (1− β)π1,

π1 = (1− α)π0 + βπ1,

π0 + π1 = 1.

Solving, we obtain π0 = 1− β
1− α− β , and π1 = 1− α

1− α− β . This coincides
with the limit of Pn as well as Mn/(n+1), as discussed in Example C.6.
We discuss convergence to stationary distribution next.



290 Markov chains

Periodicity

We require the notion of period associated with a recurrent state before
we understand convergence to stationary distribution. We define this
notion below.

Definition C.9. Let T̃i = min{n > 0 : Xn = i}, i ∈ X . Let i be a
recurrent state and d the largest positive integer such that

∞∑
k=1

P (T̃i = kd) = 1.

If d = 1, then state i is aperiodic. On the other hand, if d > 1, then
state i is said to be periodic with period d.

Equivalently, if i is a recurrent state with period d, then P (n)
i,i = 0

for all n that are not positive integer multiples of d.

Remark C.1. Periodicity is a class property, i.e., if i↔ j, then i, j have
the same period.

As an example, consider a symmetric random walk, i.e., Pi,i+1 =
Pi,i−1 = 1/2 for all i. In this case, it is easy to see that the period of
state 0 is two and by using the fact that the chain is irreducible, all
states have period 2.

Convergence to stationary distribution

In Example C.6, we observed that Pn and Mn

n+ 1 both converged,
whereas in Example C.7, Pn did not converge. The distinguishing
feature between these two examples is that one of the is aperiodic and
the other not. The result below formalizes convergence to stationary
distribution for aperiodic chains.

Theorem C.2. Let {Xn} be an irreducible, recurrent, aperiodic DTMC.
Then, for any i, j ∈ X , we have

P
(n)
i,j → πj as n→∞,

where π is the (unique) stationary distribution.
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A easy counterexample that emphasizes the need for aperiodicity to

ensure P (n) converges is a two state DTMC with P =
[
0 1
1 0

]
.

For periodic DTMCs, one can claim convergence to stationary dis-
tribution in the so-called “Cesaro sense”. We formalize this statement
next.

Let Ṽn(j) =
n∑

m=1
I {Xm = j} denote the occupancy measure for state

j. We are interested in knowing if the time-averaged occupancy, i.e.,
1
n
Ṽn(j), converges to the stationary distribution as n → ∞ for an

irreducible recurrent DTMC. Such a law of large numbers type result is
stated next.

Theorem C.3. Let {Xn} be an irreducible, recurrent DTMC. Then, for
any j ∈ X , we have the following for any start state:

1
n
Ṽn(j)→ I {Tj <∞}

mj
a.s. as n→∞. (C.3)

A few remarks are in order.

Remark C.2. From the result above, we have 1
n
Ṽn(j) converges to

πj = 1
mj

if j is positive recurrent, and to 0 otherwise. The latter case

includes null recurrent states, and a similar claim can be shown for
transient states as well.

Remark C.3. Notice that

E
[ 1
n
Ṽn(j) | X0 = i

]
= 1
n

n∑
m=1

E [I {Xm = j} | X0 = i] = 1
n

n∑
m=1

P (m)(i, j),

and
E
[
I {Tj <∞}

mj
| X0 = i

]
= P (Tj <∞ | X0 = i)

mj
.

Thus,

1
n

n∑
m=1

P (m)(i, j)→ P (Tj <∞ | X0 = i)
mj

a.s. as n→∞.

The limit on the RHS above is zero for null recurrent states j and
likewise positive for positive recurrent j.
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Remark C.4. For a transient state j,
∞∑
m=1

P (m)(i, j) <∞. Hence,

E
[ 1
n
Ṽn(j) | X0 = i

]
= 1
n

n∑
m=1

P (m)(i, j)

→ 0 a.s. as n→∞.

C.4 Bibliographic remarks

There are several excellent textbooks for Markov chains, for instance,
(Levin and Peres, 2017; Meyn and Tweedie, 2012; Grimmett and Stirza-
ker, 2020; Norris, 1998; Gallager, 2013; Kulkarni, 2016). Our treatment
is based on a combination of (Kulkarni, 2016) and (Grimmett and
Stirzaker, 2020).

C.5 Exercises

Exercise 1. Let {Xn, n ≥ 0} be a DTMC. Then,

P (X0 = i,X2 = k | X1 = j) = P (X0 = i | X1 = j)P (X2 = k | X1 = j) .

Exercise 2. Suppose {Xn, n ≥ 0} and {Yn, n ≥ 0} are two independent
DTMCs with state-space S = {0, 1, 2, . . .}. Prove or give a counterex-
ample to the following statements:

(a) {Xn + Yn, n ≥ 0} is a DTMC.

(b) {(Xn, Yn), n ≥ 0} is a DTMC.

Exercise 3. Consider a DTMC on state space {1, 2, 3, 4, 5}, with the
following transition probability matrix:

P =


0 0.5 0.5 0 0
0 0 0 0.5 0.5
0 0 0 0.5 0.5
1 0 0 0 0

0.5 0 0 0 0.5

 .

Answer the following:



C.5. Exercises 293

(a) Is the DTMC irreducible? Aperiodic?

(b) Let T = min{n ≥ 0 | Xn = 4}. Compute P (T <∞ | X0 = 1).

Exercise 4. Consider a random walk with p0,0 = pN,N = 1, and pi,i+1 =
p = 1 − pi,i−1 for 1 ≤ i ≤ N − 1. Let T be the first passage time to
either 0 or N , i.e., T = min{n ≥ 0 | Xn = 0 or N}.

Answer the following:

(a) In the case where p 6= 1
2, show that

E [T | X0 = i] = i

q − p
−
(

N

q − p

) 1−
(
q
p

)i
1−

(
q
p

)N
 .

(b) Compute E [T | X0 = i] when p = 1
2.

Exercise 5. For each of the following statements, either provide a proof
or disprove by exhibiting a counterexample.

(a) A finite DTMC has at least one closed communicating class.

(b) If a DTMC is periodic, then it is not positive recurrent.

(c) Every finite DTMC possesses a stationary distribution.

(d) Consider a finite DTMC with state space {0, 1, . . . ,K}. Let T =
sup{n ≥ 0 | Xn = 0}. Then, T is a stopping time.

(e) In a DTMC, a state i is transient only if there exists a state j
such that j is accessible from i, but i is not accessible from j.

(f) A finite irreducible DTMC is aperiodic if and only if ∃n > 0 such
that p(n)

i,j > 0, ∀i, j.

Exercise 6. Consider a DTMC space with state space {1, 2, . . . , N}
with the following N ×N transition probability matrix
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

q p 0 0 0 . . . . . 0 0 0
q 0 p 0 0 . . . . . 0 0 0
0 q 0 p 0 . . . . . 0 0 0
.

.

.

0 . . . 0 0 q 0 p 0 . . 0.
.

.

0 0 0 0 . . . . . 0 q 0 p

0 0 0 0 . . . . . 0 0 q p


Answer the following:

(a) Is the DTMC irreducible ?

(b) Is the DTMC periodic ?

(c) Does the DTMC have stationary distribution. If yes, provide the
same.

Exercise 7. Consider a DTMC on {0, 1, 2, . . .} with p0,0 = 1, and
pi,i−1 = q = 1− pi,i for i ≥ 1.

Answer the following:

(a) Find P (Xn = 0, Xm 6= 0, for 0 < m < n | X0 = i) for i ≥ 1.

(b) What is the expected value of the distribution from the part
above?

Exercise 8. Consider a random walk with pi,i+1 = p, and pi,i−1 = q, for
−∞ < i <∞. Here 0 < p < 1 and p+ q = 1.

Answer the following, assuming that the random walk starts at the
origin:

(a) Find the probability that the random walk hits state i before
hitting state −j, where (i, j > 0).

(b) Show that the expected number of visits to the state i before

hitting state 0 is
(
p

q

)i
, when p < q.
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(c) What would the expected value from the part above be when
p = q?

Exercise 9. For the DTMCs with transition probability matrices listed
below, identify the communicating classes, and determine their tran-
sience/recurrence. Further, for each i, j in the state space, find lim

n→∞
p

(n)
i,j .

(a) P =

 0 0.4 0.6
0.1 0 0.9
0.3 0.7 0

.

(b) P =


0 0 0 1
0 0 0 1

0.3 0.7 0 0
0 0 1 0

.
Exercise 10.
Suppose there are two urns, say 1 and 2. Each urn has r balls. Among
the 2r balls, b ≤ r balls are black, and the remaining 2r − b are white.
At each trial, one ball is picked uniformly at random from each urn,
and they are interchanged.

Answer the following:

(a) Model this problem as a DTMC with the state as the number
of white balls in urn 1. Specify the state space and transition
probabilities. Is the DTMC irreducible? Aperiodic?

(b) Compute the stationary distribution.



D
Smoothness and Convexity

In this appendix, we discuss foundations of algorithms for non-linear
smooth optimization problem. The topics covered include Taylor’s
theorem and its applications, convex sets and convex/strongly-convex
functions.

A general problem of interest here is to find a θ∗ such that
θ∗ ∈ arg min

x∈D
f(θ), (D.1)

where D ⊂ Rd. The problem (D.1) includes the case where D is the
whole of Rd as well.

The following definitions are relevant in the context of the optimiza-
tion problem (D.1).
Definition D.1 (local minima). A point θ∗ ∈ Rd is called a local min-
imum of f if there exists a neighborhood N (θ∗, ε) of θ∗ such that
f(θ) ≥ f(θ∗) for all θ ∈ N (θ∗, ε) ∩ D.
Definition D.2 (global minima). A point θ∗ ∈ D is called a global
minimum of f if f(θ) ≥ f(θ∗) for all θ ∈ D.
Definition D.3 (strict local minima). A point θ∗ ∈ D is called a strict
local minimum of f if there exists a neighbourhood N (θ∗, ε) of θ∗ such
that f(θ) > f(θ∗) for all θ ∈ N (θ∗, ε) ∩ D with θ 6= θ∗.

296
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D.1 Necessary conditions for local minima

Given a point θ∗ ∈ D, how does one determine whether it is a local min-
imum or not? The following results, which are standard in optimization
literature, provide an answer to this question.

Theorem D.1 (First and second-order necessary conditions). Let θ∗ be a
local minimum of f : D → R and f be continuously differentiable. Then
∇f(θ∗) = 0.
Further if f is twice continuously differentiable, then ∇2f(θ∗) is a
positive semi-definite matrix.

Proof. Fix s ∈ Rd. Recall that θ∗ is a local minimum. Then we have,

sT∇f(θ∗) = lim
δ→0

f(θ∗ + δs)− f(θ∗)
δ

≥ 0.

Similarly, we have,
−sT∇f(θ∗) ≥ 0.

Combining the two equations above, we have that ∇f(θ∗) = 0.
Further, if f is twice continuously differentiable, then by Taylor

series expansion, we have

f(θ∗ + δs)− f(θ∗) = δsT∇f(θ∗) + δ2

2 s
T∇2f(θ∗)s+ o(δ3).

Since ∇f(θ∗) = 0, we have

0 ≤ f(θ∗ + δs)− f(θ∗)
δ2 = 1

2s
T∇2f(θ∗)s+ o(δ).

Thus, as δ → 0, for all s ∈ Rd, we have sT∇2f(θ∗)s ≥ 0, implying
∇2f(θ∗) is positive semi-definite Hence proved.

Example D.1. Consider f(θ) = 1
2θ

TAθ − bTθ. From the first-order
necessary condition, we have that ∇f(θ∗) = 0 and ∇2f(θ∗) is positive
semi-definite, which is equivalent to Aθ∗ − b = 0 and A is positive
semi-definite.

We have the following cases in general:
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• If A is not positive semi-definite, then f has no local minima.

• If A is positive semi-definite, then f is convex and any θ∗ solving
Aθ∗ − b = 0 is a global minimum.

• if A is positive definite, then f has a unique global minimum given
by θ∗ = A−1b.

• The reader is encouraged to think about the case where A is
positive semi-definite and singular. In this case, it is relevant to
check if b is in the column space of A or not and reason accordingly.

D.2 Taylor’s theorem

Taylor’s theorem shows how a smooth function f can be approximated
locally by polynomials that depend on low-order derivatives of f .

Theorem D.2. Let f : Rd → R be a continuously differentiable function.
Given θ, p ∈ Rd, we have

f(θ + p) = f(θ) +
∫ 1

0
∇f(θ + αp)Tpdα, and (D.2)

f(θ + p) = f(θ) +∇f(θ + αp)Tp for some α ∈ (0, 1). (D.3)

If f is twice continuously differentiable, we have

∇f(θ + p) = ∇f(θ) +
∫ 1

0
∇2f(θ + αp)pdα, and

f(θ + p) = f(θ) +∇f(θ)Tp+ 1
2p

T∇2f(θ + αp)p, (D.4)

for some α ∈ (0, 1).

A consequence of (D.2) is that for a continuously differentiable f at
θ, we have

f(θ + p) = f(θ) +∇f(θ)Tp+ o(||p||).

Definition D.4 (smooth function). A function f : D(⊂ Rd) → R
is said to be L-smooth if for all x, y ∈ D, the following condition
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holds:
||∇f(x)−∇f(y)|| ≤ L||x− y||. (D.5)

The three results below provide useful characterizations of L-smooth
functions.

Lemma D.3. Let f : D(⊂ Rd)→ R be a L-smooth function. Then for
any x, y ∈ D, we have the following:

f(y) ≤ f(x) +∇f(x)T(y − x) + L

2 ||y − x||
2. (D.6)

Lemma D.4. Suppose f : D(⊂ Rd)→ R is twice continuously differen-
tiable function. Then, ∀θ ∈ D,
(I) f is L-smooth implies ∇2f(θ) � LI
(II) conversely, if −LI � ∇2f(θ) � LI, then f is L-smooth.

Lemma D.5. Suppose f is twice continuously differentiable on Rd. Then
if f is L-smooth, we have ∇2f(θ) � LI for all θ ∈ D.
Conversely, if −LI � ∇2f(θ) � LI, ∀θ ∈ D, then f is L-smooth.

D.3 Sufficient conditions for local minima

Theorem D.6 (Sufficient Conditions for Smooth Unconstrained Op-
timization). Suppose that f is twice continuously differentiable
and that, for some θ∗ ∈ Rd, we have ∇f(θ∗) = 0, and ∇2f(θ∗) is
positive definite. Then θ∗ is a strict local minimizer of min

θ∈Rd
f(θ).

Proof. See (Bertsekas, 1999).

D.4 Convex Sets and Functions

Definition D.5. A set C ⊂ Rd is a convex set if ∀x, y ∈ C and for
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all λ ∈ [0, 1], it satisfies:

λx+ (1− λ)y ∈ C. (D.7)

Example D.2. A set {x | vTx = b} with v ∈ Rd and b ∈ R, is a convex
set. Such a set is known as a hyperplane. With the same notation, a set
{x | vTx ≤ b}, which is known as a halfspace, is also a convex set.

Example D.3. Euclidean Balls: B = {θ | ‖x‖ ≤ 1} is a convex set.

Definition D.6. A function f : Ω → R is a convex function if its
domain Ω is convex and it satisfies the following condition for all
x, y ∈ Ω and λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (D.8)

Further, the function f is strictly convex if the inequality is strict
for x 6= y and 0 < λ < 1.

Note that a function f is concave/strictly concave if−f is convex/strictly
convex.

Lemma D.7. Suppose f is convex. Then,

1. Any local minimum is a global minimum.

2. The set of all global minima is convex.

Theorem D.8 (Necessary condition for optima). Suppose that f is con-
tinuously differentiable and convex. Then if ∇f(θ∗) = 0, then θ∗ is a
global minimizer.

Proof. By applying Taylor’s theorem,

f(x+ α(y − x)) = f(x) + α∇f(x)T(y − x) + o(α) ≤ (1− α)f(x) + αf(y).

f(y) ≥ f(x) +∇f(x)T(y − x) + o(1).
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when α ↓ 0, o(1) term vanishes, and we obtain

f(y) ≥ f(x) +∇f(x)T(y − x).

Setting x = θ∗ leads to

f(y) ≥ f(θ∗), ∀y.

Hence proved.

We now provide useful characterizations of convex functions through
the result below.

Theorem D.9. Suppose f : Rd → R is twice differentiable over an
open domain. Then the following are equivalent

i) f is convex;

ii) f(y) ≥ f(x) +∇f(x)T(y − x), ∀x, y ∈ D;

iii) ∇2f(x) � 0, for all x ∈ D.

Proof. We prove (i)⇔ (ii) then (ii)⇔ (iii).
(i)⇒ (ii) If f is convex, by definition

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x),∀λ ∈ [0, 1], x, y ∈ dom(f)

After rewriting, we have

f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x))

⇒f(y)− f(x) ≥ f(x+ λ(y − x))− f(x)
λ

, ∀λ ∈ (0, 1]

As λ ↓ 0, we get

f(y)− f(x) ≥ ∇fT (x)(y − x) (D.9)

(ii)⇒ (i) Suppose (D.9) holds ∀x, y ∈ dom(f). Take any x, y ∈ dom(f)
and let

z = λx+ (1− λ)y
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We have
f(x) ≥ f(z) +∇fT (z)(x− z) (D.10)
f(y) ≥ f(z) +∇fT (z)(y − z) (D.11)

Multiplying (D.10) by λ, (D.11) by (1− λ) and adding, we get
λf(x) + (1− λ)f(y) ≥ f(z) +∇fT (z)(λx+ (1− λ)y − z)

= f(z)
= f(λx+ (1− λ)y).

(ii)⇔ (iii) We prove both of these claims first in dimension 1 and
then generalize.

(ii)⇒ (iii)(uni-variate case) Let x, y ∈ dom(f), y > x. We have

f(y) ≥ f(x) + f ′(x)(y − x) (D.12)
and f(x) ≥ f(y) + f ′(y)(x− y) (D.13)

⇒ f ′(x)(y − x) ≤ f(y)− f(x) ≤ f ′(y)(y − x)
using (D.12) then (D.13). Dividing LHS and RHS by (y − x)2 gives

f ′(y)− f ′(x)
y − x

≥ 0,∀x, y, x 6= y

As we let y → x, we get
f ′′(x) ≥ 0,∀x ∈ dom(f)

(iii)⇒ (ii)(uni-variate case) Suppose f ′′(x) ≥ 0,∀x ∈ dom(f). By
the mean value version of Taylor’s theorem we have

f(y) = f(x) + f ′(x)(y − x) + 1
2f
′′(z)(y − x)2, for some z ∈ [x, y].

⇒ f(y) ≥ f(x) + f ′(x)(y − x).
Now to establish (ii) ⇔ (iii) in general dimension, we recall that
convexity is equivalent to convexity along all lines; i.e., f : Rn → R is
convex if g(α) = f (x0 + αv) is convex, ∀x0 ∈ dom(f) and ∀v ∈ Rn. We
just proved this happens if and only if

g′′(α) = vT∇2f (x0 + αv) v ≥ 0
∀x0 ∈ dom(f), ∀v ∈ Rn and ∀α s.t. x0 + αv ∈ dom(f). Hence, f is
convex if and only if ∇2f(x) � 0 for all x ∈ dom(f).
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D.5 Strongly Convex Functions

Definition D.7. A function f : Rd → R is said to be µ-strongly
convex (µ > 0) if for all x, y ∈ Rd, then

f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y)+m

2 (1−λ) ‖y − x‖22 (D.14)

Theorem D.10. Suppose f is continuously differentiable and µ-
strongly convex, then for any x, y ∈ Rd

f(y) ≥ f(x) +∇f(x)T(y − x) + µ

2 ‖y − x‖
2
2

Lemma D.11. Suppose that f is twice-continuously differentiable
on Rd. Then f has modulus of convexity µ if and only if ∇2f(x) �
µI for all x.

Proof. For any x, u ∈ Rd and α > 0, we have from Taylor’s theorem
that

f(x+ αu) = f(x) + α∇f(x)Tu+ 1
2α

2uT∇2f(x+ γαu)u,

for some γ ∈ (0, 1).
From the strong convexity property, we have

f(x+ αu) ≥ f(x) + α∇f(x)Tu+ µ

2α
2 ‖u‖2

By comparing the two equations above, we obtain

uT∇2f(x+ γαu)u ≥ µ ‖u‖2

By taking α ↓ 0, we obtain

uT∇2f(x)u ≥ µ ‖u‖2 .

Since the above is true for all u ∈ Rd, we have

∇2f(θ) � µI. (D.15)
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D.6 Bibliographic remarks

For an introduction to convex optimization, the reader is referred to
either classic textbooks such as (Boyd and Vandenberghe, 2004; Nocedal
and Wright, 1999; Bertsekas, 1999), or the more recent machine learning-
oriented optimization book (Wright and Recht, 2022). The material
presented in this appendix is based on (Wright and Recht, 2022) and
(Bertsekas, 1999).

D.7 Exercises

Exercise 1. The convex hull of a set C, denoted Conv(C) is defined as

Conv(C) = {α1x1 + . . .+ αkxk | |xi ∈ C,αi ≥ 0,∀i, α1 + . . .+ αk = 1}.

For each of the following sets in R2, provide a visual depiction of
their convex hulls by sketching:

1. C = {(0, 1), (0, 4), (−2,−1), (0, 0), (3,−2), (−1, 2)}.

2. Union of two unit circles, centered at (1, 1) and (−1,−1), respec-
tively.

Exercise 2. Let f : R→ R be a convex function. For any three points
x1, x2, x3 such that x1 < x2 < x3, show that

f(x2)− f(x1)
x2 − x1

≤ f(x3)− f(x2)
x3 − x2

.

Exercise 3. Consider the following two statements:
I: If log f is convex, then f is convex.
II: If f is convex, then log f is convex.
Which of the statements above are true?

Exercise 4. Give an example of a convex function f : R → R that is
bounded above.

Exercise 5. Let x ∈ Rd, with xi denoting the ith coordinate. Are the
functions defined below convex? Justify your answer.

(a) f(x) = log (exp(x1) + . . .+ exp(xd)).
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(b) f(x) = exp(xTAx), where A is a positive semi-definite matrix.

Exercise 6. Answer the following questions concerning necessary condi-
tions for local minima:

(a) Let f : R→ R. Recall that f ′(x∗) = 0 and f ′′(x∗) ≥ 0 are the first
and second-order necessary conditions for a local minimizer. In a
similar spirit, derive a third-order necessary condition, assuming
f is three-times continuously differentiable.

(b) Show an example function f and a point x∗ that satisfies the first,
second and third-order necessary conditions, but x∗ is not a local
minimizer of the function f .

Exercise 7. Suppose we want to minimize the function f : R2 → R
defined by

f(x1, x2) = (x1 − x2)4 + x2
1 − x2

2 − 2x1 + 2x2 + 1.

Find points where the first-order necessary condition for a minimum is
satisfied. For each of these points, characterize whether the second-order
necessary condition is satisfied.

Exercise 8. Let f1, f2 : R→ R and let α1, α2 be two positive scalars.

(a) Prove or disprove: If f1, f2 are convex, then max(α1f1, α2f2) is
convex.

(b) Prove or disprove: If f1, f2 are concave, then max(α1f1, α2f2) is
concave.

Exercise 9. Suppose a function f : R→ R is L-Lipschitz and differen-
tiable. Show that sup

x
|f ′(x)| ≤ L.

Exercise 10. Exhibit a real-valued function f that is L-smooth but not
L-Lipschitz.

Exercise 11. Exhibit a real-valued function f that is Lipschitz and
differentiable, but not smooth.
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Exercise 12. Suppose f1 : Rd → R is L1-smooth and f2 : Rd → R is
L2-smooth. Show that f1 + f2 is (L1 + L2)-smooth.

Exercise 13. Consider the function f : R2 → R defined by

f(x1, x2) = ax2
1 + 2bx1x2 + cx2

2.

Answer the following:

(a) Prove or disprove: f is strongly convex if a > 0 and c > 0.

(b) Derive a necessary and sufficient condition for strong convexity of
f . This condition should be in terms of a, b, c.

(c) Under the condition from the part above, characterize the mini-
mizer, say x∗ of f .

Exercise 14. Suppose that f : Rd → R is a m-strongly convex function
with a L-Lipschitz gradient. Let x∗ be the minimizer with corresponding
function value f∗ = f(x∗).

(a) Let g(x) = f(x)−m2 ‖x‖
2. Show that g(x) is convex with (L−m)

Lipschitz continuous gradients.

(b) Using the fact that g, defined in the part above, is convex, prove
the following property: For any x, y ∈ Rd,

(∇f(x)−∇f(y))T (x− y)

≥ mL

m+ L
‖x− y‖2 + 1

m+ L
‖∇f(x)−∇f(y)‖2 .



E
Information theory

In this appendix, we briefly cover the necessary information theory
concepts that are useful in understanding the derivation of the minimax
lower bound in Section 5.6.

In the following, we assume that the underlying random variables
are discrete and leave it to the reader to fill in the necessary details for
the continuous extension.

E.1 Entropy

Definition E.1. Consider a discrete r.v. X taking values in the set X
with p.m.f. p. Then, the entropy H(X) is defined as

H(X) = −
∑
x∈X

p(x) log p(x),

where the log is to base 2.

It is easy to see that H(X) ≥ 0 for any X, since log p(x) ≤ 0 for
p(x) ∈ [0, 1]. As an example, the entropy of a Bernoulli r.v. X with
parameter p is H(X) = −p log p− (1− p) log(1− p). Plotting H(X) as
a function of p, it is easy to infer that H(X) is maximized at p = 1/2,
H(X) = 0 at p = 0 and p = 1.

307
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The notion of entropy has roots in information theory, as it gives
the expected number of bits necessary to encode a random signal (= a
random variable). We illustrate this interpretation through the following
r.v.:

X =


a w.p. 1/2,
b w.p. 1/4,
c w.p. 1/8,
d w.p. 1/8.

If one were to design a sequence of binary questions to infer the value
of the r.v. X and ask the minimum number of questions in expectation,
then it would serve him/her to start with “Is X = a?” rather than start
with “Is X = d?”. Now using the pmf of X given above, the expected
number of questions asked is 1× 1

2 + 2× 1
4 + 3× 1

8 + 3× 1
8 = 7

4. It is

not a coincidence that H(X) turns out to be 7
4 for this r.v.

An equivalent interpretation is the following: Suppose that the value
a is represented by the code “1”, b by “01”, c by “001” and d by “000”.
Assuming that the values a, b, c, d occur with probabilities given above,
the average code length turns out to be the same as H(X).

Definition E.2. The joint entropy H(X,Y ) of r.v. pair (X,Y ) with
joint pmf p(x, y) is defined as

H(X,Y ) = −
∑
x

∑
y

p(x, y) log p(x, y).

Definition E.3. The conditional entropy H(Y | X), assuming the r.v.
pair (X,Y ) has joint pmf p(x, y), is defined as

H(Y | X) =
∑
x

p(x)H(Y | X = x)

= −
∑
x

p(x)
∑
y

p(y | x) log p(y | x)

= −
∑
x

∑
y

p(x, y) log p(y | x).
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Theorem E.1. H(X,Y ) = H(X) +H(Y | X).

Proof. Follows by using the definition of H(X,Y ) followed by a sep-
aration of terms using p(x, y) = p(x)p(y | x) to obtain H(X) and
H(Y | X).

We are now ready to define the concept of KL-divergence, also
known as relative entropy, between two probability distributions.

E.2 KL-divergence

Definition E.4. The KL-divergence Dkl (p||q) between two pmfs p and
q is defined as

Dkl (p||q) =
∑
x

p(x) log
(
p(x)
q(x)

)
,

where, 0 log 0
q

= 0 and p log p0 =∞.

Definition E.5. The total variation distance ‖P −Q‖TV between two
distributions P and Q on a common sigma field X is defined as

‖P −Q‖TV = sup
A⊂X

|P (A)−Q(A)| .

We shall prove later that ‖P −Q‖2TV ≤
1
2Dkl (P ||Q) – a fact well-

known as Pinsker’s inequality.

Example E.1. Let p and q be the probability mass functions (PMFs)
of Bernoulli r.v.s with parameters α and β, respectively. Then,

Dkl (p||q) = α log α
β

+ (1− α) log 1− α
1− β .

Plugging in values 1/4 and 1/2 for α and β, it is easy to see that
Dkl (p||q) is not equal to Dkl (q||p).

KL-divergence is not a metric because it is not symmetric, as shown
in the above example. Moreover, KL-divergence does not satisfy the
triangle inequality. However, KL-divergence is non-negative and zero if
and only if the probability distributions are the same – a claim made
precise below.
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Lemma E.2. The KL-divergence Dkl (p||q) between two PMFs p and q
is non-negative and equals zero if and only if p(x) = q(x),∀x.

Proof. Let A = {x | p(x) > 0} be the support of p. Then, using Jensen’s
inequality for the concave log function, we have

−Dkl (p||q) = −
∑
x∈A

p(x) log
(
p(x)
q(x)

)

=
∑
x∈A

p(x) log
(
q(x)
p(x)

)

≤ log
(∑
x∈A

p(x)q(x)
p(x)

)

= log
(∑
x∈A

q(x)
)
≤ log

(∑
x

q(x)
)

= log 1 = 0,

which proves the first part of the claim. For the second part, observe
that log is stricly concave and hence, equality holds in Jensen’s if and
only if p(x)

q(x) = 1, ∀x.

Definition E.6. The conditional KL-divergence between two PMFs p
and q is defined as

Dkl (p(y | x)||q(y | x))) =
∑
x

p(x)
∑
y

p(y | x) log p(y | x)
q(y | x) .

Lemma E.3. (Chain rule)

Dkl (p(x, y)||q(x, y)) = Dkl (p(x)||q(x)) +Dkl (p(y | x)||q(y | x))) .

In addition, if x and y are independent, then

Dkl (p(x, y)||q(x, y)) = Dkl (p(x)||q(x)) +Dkl (p(y)||q(y)) .

Proof. Notice that

Dkl (p(x, y)||q(x, y))
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=
∑
x

∑
y

p(x, y) log p(x, y)
q(x, y)

=
∑
x

∑
y

p(x, y) log p(x)
q(x) +

∑
x

∑
y

p(x, y) log p(y | x)
q(y | x)

= Dkl (p(x)||q(x)) +Dkl (p(y | x)||q(y | x))) .

This proves the first claim in the lemma statement. The second claim
can be easily inferred from the first.

E.3 Pinsker’s inequality

Lemma E.4. (Pinsker’s inequality) Given two PMFs p and q, for any
event A, we have

2(p(A)− q(A))2 ≤ Dkl (p||q) .

Proof. Fix an event A. Then, we have∑
x∈A

p(x) log p(x)
q(x) ≥ p(A) log p(A)

q(A) . (E.1)

The proof of the claim above is as follows: Letting pA(x) = p(x)
p(A) and

qA(x) = q(x)
q(A) , we have

∑
x∈A

p(x) log p(x)
q(x) = p(A)

∑
x∈A

pA(x) log p(A)pA(x)
q(A)qA(x)

= p(A) log p(A)
q(A)

∑
x∈A

pA(x) + p(A)
∑
x∈A

pA(x) log pA(x)
qA(x)

≥ p(A) log p(A)
q(A) ,

where the last inequality follows from the fact that∑
x

pA(x) log pA(x)
qA(x) = Dkl (pA||qA) ≥ 0 and

∑
x

pA(x) = 1.

Letting α = p(A) and β = q(A) and using (E.1), we have

Dkl (p||q) ≥ α log α
β

+ (1− α) log 1− α
1− β
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=
∫ β

α

(−α
x

+ 1− α
1− x

)
dx

=
∫ β

α

(
x− α
x(1− x)

)
dx ≥

∫ β

α

x− α
1/4 dx (since x(1− x) ≤ 1/4)

= 2(α− β)2.

Hence proved.

The following result is now immediate from the bound in the lemma
above.

Corollary E.5. Given two PMFs p and q, we have

‖p− q‖2TV ≤
1
2Dkl (p||q) .

Lemma E.6. (Pinsker’s inequality: a variant)
Given two PMFs p and q, for any event A, we have

P (A) +Q(Ac) ≥ 1
2 exp(−Dkl (p||q)),

where P (A) (resp. Q(Ac)) is shorthand for
∑
x∈A

p(x) (resp.
∑
x∈Ac

q(x)).

Proof. Notice that∑
x

min(p(x), q(x)) =
∑
x∈A

min(p(x), q(x)) +
∑
x∈Ac

min(p(x), q(x))

≤
∑
x∈A

p(x) +
∑
x∈Ac

q(x) = P (A) +Q(Ac).

So, it is enough to prove a lower bound on
∑
x∈A

min(p(x), q(x)). We

claim that

∑
x

min(p(x), q(x)) ≥ 1
2

(∑
x

√
p(x)q(x)

)2

.

The inequality above holds because(∑
x

√
p(x)q(x)

)2

=
(∑

x

√
min(p(x), q(x)) max(p(x), q(x))

)2
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≤
(∑

x

min(p(x), q(x))
)(∑

x

max(p(x), q(x))
)

≤ 2
∑
x

min(p(x), q(x)),

where the last inequality holds because∑
x

max(p(x), q(x)) =
∑
x

(p(x) + q(x)−min(p(x), q(x)))

≤ 2−
∑
x

min(p(x), q(x)) ≤ 2.

Now, we have(∑
x

√
p(x)q(x)

)2

= exp
(

2 log
(∑

x

√
p(x)q(x)

))

= exp
(

2 log
(∑

x

p(x)
√
q(x)
p(x)

))

≥ exp
(

2
(∑

x

p(x) log
√
q(x)
p(x)

))
(Jensen’s inequality)

= exp
(∑

x

p(x) log q(x)
p(x)

)
= exp (−Dkl (p||q)) .

E.4 Bibliographic remarks

The information theory background covered here is based on the classic
text book by Cover and Thomas, 2012.

E.5 Exercises

Exercise 1. For some 0 < ∆ < 1/2, let p, q and r correspond to

the PMFs of Bernoulli r.v.s with parameters 1
2,

1 + ∆
2 and 1−∆

2 ,
respectively. Then,

Dkl (p||q) ≤ ∆2, Dkl (q||p) ≤ 2∆2, Dkl (p||r) ≤ ∆2 and Dkl (r||q) ≤ 4∆2.



314 Information theory

Exercise 2. For distributions P and Q of a continuous random variable,
the KL-divergence is defined to be the integral:

Dkl (P ||Q) =
∫
p(x) log

(
p(x)
q(x)

)
dx,

where p and q denote the densities of P and Q, respectively.
Answer the following:

(a) Prove Pinsker’s inequality, i.e., given distributions P,Q of contin-
uous r.v.s,

‖P −Q‖2TV ≤
1
2Dkl (P ||Q) .

(b) Suppose that P and Q correspond to univariate Gaussian distribu-
tions with means µ1, µ2, and variances σ2

1, σ
2
2, respectively. Show

that

Dkl (P ||Q) = 1
2

(
log σ

2
2
σ2

1
+ σ2

1
σ2

2
− 1

)
+ (µ1 − µ2)2

2σ2
2

.

(c) Suppose that P and Q correspond to bivariate Gaussian distri-

butions with zero mean and covariance matrices
[

1 ρ

ρ 1

]
and[

1 ρ2

ρ2 1

]
, where ρ ∈ (0, 1). Calculate Dkl (P ||Q), upper bound

it using the simplest possible function of ρ.

Exercise 3.
Suppose there are two coins. The first is a fair coin, while the second
one is biased (i.e., it falls heads with probability 3

4). Suppose n sample
outcomes X1, . . . , Xn are generated using one of the two coins and an
algorithm, say A, uses these samples to identify the source coin. Let În
denote the index that the algorithm A returns as its estimate of the
source coin. Let Pv (resp. Pv′) denote the law of the observed samples
(X1, . . . , Xn), when the underlying source is the fair (resp. biased) coin.

If n < 4 log 2, then show that no algorithm can ensure

max(Pv(În = 2), Pv′(În = 1)) ≤ 0.22.

Hint: Use Pinsker’s inequality.
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