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1 Introduction 

1.1 The Language and its Purpose 

Green-Marl
1
 is a domain specific language (DSL) designed for easy development of graph-

data processing programs. The language is also specially intended to exploit modern parallel 

computing environments such as multi-core and heterogeneous computers. The main idea is 

that let the user describe his/her algorithm concisely with the high-level language constructs 

of Green-Marl but let a compiler transform it into the equivalent, efficient low-level source 

codes for the target execution environment; for instance, CUDA code for GPU execution. In 

this approach, the final executable can be obtained by compiling the generated low-level 

source codes with an existing low-level compiler. The following figure illustrates this idea: 

 

Figure 1 Suggested Usage of Green-Marl DSL 

 

The above approach provides the following benefits: 

 Green-Marl enables the users to describe their own algorithm in an intuitive and 

concise way without considering low-level details of programming language or 

machine architecture. However, the language is designed such that a Green-Marl 

compiler can still generate equivalent but high-performing low-level code out of such 

                                                 

1
 Green-Marl is a transliteration of two Korean words: (depicted language) 
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high-level algorithmic description.  

 A Green-Marl compiler can translate a single Green-Marl program description into 

the equivalents of various low-level programming languages, each targeting different 

(parallel or heterogeneous) computing environment. Green-Marl is designed in a way  

that such translation can be easily done.   

 During the translation, Green-Marl compiler can apply high-level optimizations 

which may not be possible by conventional low-level language compilers. This is 

because the Green-Marl compiler has precise knowledge about the semantic of user’s 

algorithm, due to the power of high-level language constructs in Green-Marl. 
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1.2 A Glimpse of Green-Marl  

The next example shows a Green-Marl program for ‘betweenness centrality’ computation 

algorithm [1].  

Procedure compute_bc(G: Graph,    // G is an (Directed) Graph 

   bc: Node_Property<Float>(G))   // bc is Float value associated with each node of G 

{ 

 G.bc = 0;                            // Initialize bc for every node in G 

 Foreach(r: G.Nodes) {                // Outer loop: iterate every node in G 

   Node_Property<Float>(G) delta;     // Declare new node properties,   

   Node_Property<Float>(G) sigma;     // sigma and delta       

   G.delta = 0;                       // Initialize sigma/delta for all nodes 

   G.sigma = 0; 

   r.sigma = 1;                       // Set sigma value for node r.  

   InBFS (k: G.Nodes From r) {        // Traverse nodes in BFS order from r,  

       k.s = Sum (t: k.UpNbrs) {      // and compute each node’s sigma from its  

                 t.sigma };           // BFS predecessors 

    }                                                   

    InReverse(k!=r) {                       // Now traverse in reverse-BFS order 

         k.delta = Sum (t: k.DownNbrs) {    // and compute delta from its  

             k.sigma / t.sigma * (1 + t.delta) }; // BFS children 

         k.bc += k.delta @ r; // delta is accumulated into BC over r-loop. 

    } 

  }  

}  

Code 1 Betweenness Centrality computation in Green-Marl 

 

Note that the original paper [1] described same algorithm in a very different manner; the 

original version explicitly uses queues and lists in the description. However, it is not clear 

how to parallelize the algorithm or how to port the algorithm for GPU from such description. 

To the contrary, the Green-Marl equivalent as shown in the previous code example uses high-

level constructs which make the algorithm description very concise. For example, the Green-

Marl description uses InBFS construct of which the semantic is to visit every node in 

breadth-first search order but to visit all the nodes having same BFS level in parallel. 

Consequently, the above Green-Marl description suggests a clear way to the compiler as well 

as to the readers about how the algorithm would be executed in parallel.  

 

Section 8  provides more examples of graph algorithms written in Green-Marl. 
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1.3 What Green-Marl is not 

Green-Marl does not intend to convert a naturally sequential algorithm into a parallel one in 

any automatic way. To the quite contrary, Green-Marl expects that the users are well aware of 

the parallel execution regions in their algorithms and those regions are accurately described 

with the language constructs. Nevertheless, the Green-Marl language constructs make it very 

intuitive for the user to describe the algorithm with exposing parallel regions, while the 

compiler can still exploit such parallelism efficiently out of the description. 

 

Green-Marl is not a general-purpose language. It is a domain-specific language specifically 

tailored for graph data analysis. Therefore, it has a limited set of syntax, data structures and 

expressions which are suitable for graph data analysis but may not be so for other purposes. 

For example, Green-Marl would not be very convenient for, say, dynamic HTML page 

generation. 

 

Nevertheless, a Green-Marl program can still interact with other programs that are written in 

other languages. Note that a Green-Marl program is expected to be compiled into another 

programming language, i.e. source-to-source translation. Therefore a user can isolate codes 

for graph analysis into the modules in his/her application, (re-)write only such modules in 

Green-Marl and compile into the target language, such as C++. The generated target 

language code can be linked with the rest of the application as if it is a normal hand-written 

target language code. 
2
 The following figure illustrates this idea. Please refer Section 7 for 

details about how Green-Marl program can interact with other part of the application.  

 

                                                 

2
 A Green-Marl compiler is recommended to make its output fairly human-readable.  
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Figure 2 Interaction of Green-Marl program with user application 
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1.4 Key Features of Green-Marl Language 

1.4.1 Features for Graph Data Processing 

Since it is a DSL designed for graph data processing, Green-Marl has several language-level 

constructs for that purpose.  

 

 Built-in Data Types: It contains built-in data types for graphs such as Graph, Node, 

and Edge. Therefore the Green-Marl compiler has precise knowledge about the 

semantic of operations on those structures, and exploits such knowledge in compiler 

optimization. In the following code, for example, the compiler can freely transform 

the code from the upper form into the lower form and vice versa. Note that depending 

on the parallelization strategy, one code can perform better than the other.
3
 

  

Foreach (t: G.Nodes) {       // for every node t 

  // Send t to every out-neighbor and reduce at there 

  Foreach (s: t.OutNbrs) {          

    s.bar += t.foo;          

}  } 

Foreach (t: G.Nodes) {        // for every node t 

   // Read foo from its in-neighbors and reduce at t 

   Foreach (s: t.InNbrs) {   

      t.bar += s.foo; 

}  } 

     Code 2 Example compiler optimization in Green-Marl 

 

 Graph Iteration Methods: Green-Marl provides several iteration methods that visit 

the whole nodes/edges of the graph in natural ways. All of these methods have similar 

syntactic form but different well-defined semantics. Examples are Foreach and 

InBFS syntax shown in Code 1. See Section 6.3 for more about graph iteration 

methods 

 

 Node / Edge Property: In Green-Marl, the nodes and edges of a graph can be 

                                                 

3
 Suppose that the compiler has chosen to parallelize only the outer loop. Then, the reduction in the 

lower code can be implemented with normal read-and-write, instead of expensive atomic add 

instructions. 
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associated with arbitrary data: e.g., cost of a node or capacity of an edge. Such an 

associated data is referred as a node (edge) property. Green-Marl allows the user to 

declare and use properties dynamically just like normal variables, instead of defining 

them as fields of a class. See Section 4.5 for more about the properties. 

 

 

1.4.2 Features for Parallel and Heterogeneous Execution 

In addition, Green-Marl provides several language constructs for the purpose of parallel and 

heterogeneous execution.  

 

 Parallel Constructs: Green-Marl provides two kinds of parallel constructs; parallel 

iterations and reduction operation. Each parallel-iteration defines a parallel execution 

region, which can be nested in any depth. However, the compiler has freedom to 

apply parallelism on those iterations selectively. See Section 5 for detailed discussion. 

 

 Consistency Model: Green-Marl features a weaker consistency model (Section 5.2.2) 

for the purpose of efficient parallelization and heterogeneous execution. Specifically, 

it does not assume sequential consistency inside parallel execution region at all – any 

writes inside a parallel execution is not guaranteed to be visible (or not visible) to the 

concurrent parallel executions. However, reductions (Section 5.3.1) can be used to 

enforce deterministic result under this consistency model. Also the language supports 

bulk-synchronous consistency model (Section 5.2.3).  

 

1.4.3 Other features 

 Statically Typed: Green-Marl is a statically typed language. In other words, every 

type is identified by the compiler at the compile time.  
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2 Syntax and Lexemes 

The basic syntactic form of Green-Marl resembles that of C. The whole syntax rules can be 

found in the box at the end of this section. The semantic details of the syntax can be found in 

Section 6 , while this section focuses on lexical rules.  

 

The source code of Green-Marl uses the ASCII character set only. (A future extension may 

support Unicode, at least for string literals) 

 

2.1 Lexemes 

All lexemes of Green-Marl are composed of printable ASCII characters.  

 

2.1.1 Identifier (user-defined name) 

A valid identifier is a sequence of alphanumeric characters or underscores, except reserved 

words. An identifier cannot begin with number or underscore. Uppercase and lowercase 

letters are differentiated.  

 

2.1.2  Literals 

 

 Integer literals: Green-Marl only uses decimal integer literals, i.e., there is no Hex or 

Oct numbers. A valid integer literal is either a decimal value in the valid integer value 

range, +INF or –INF. (See discussion about Integer Type in Section XX for the valid 

integer value range). Also note that +INF and –INF is a single lexeme, i.e., there is no 

space between +/- and INF.  

 

 Floating Point Literals: floating point literals are <numbers>.<numbers> which can 

be optionally preceded by (+/-). In other words, it is like C but no exponential 

notation, nor trailing precision character.  All the floating point literals are assumed to 

be typed as Double but it may be automatically coerced into Float or Int. (See 

discussion about Coercion) 
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 String Literals: string literals are ASCII characters inside double quotation marks. C 

escape character rules are applied as same. Unicode string is not (yet) supported in 

Green-Marl. 

 

 Boolean Literals: a Boolean literal is either True or False. 

 

2.1.3 Comments 

Comment rules are like C: Any characters inside (/* */) are considered as block comments.  

Double slash (//) makes any following characters into single line comments.  
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2.2 Green-Marl Syntax  

Detailed explanations about syntactic elements can be found in Section 6. 

 Bold means literals or reserved words 

 {}+ means 1 or more repetition, {}* means 0 or more repetition 

  [] means optional  

  [ a | b | c ] means a choice among a, b, or c. 

 

unit          => {toplevel}+ 

toplevel     => proc_def 

proc_def     => proc_header sent_block 

 

proc_header  => [ Procedure | Proc | Local ] name ( [arg_list] [; outarg_list] ) [: 

return_type]  

arg_list    => arg_name : type_prop {, name : arg_type_prop }+ 

outarg_list => arg_list 

 

type_prop     => type | property 

type          => prim_type  | graph_type | nodeedge_type |  

                 graph_collection_type | collection_of_collection_type | map_type 

return_type  => prim_type | nodedge_type | graph_collection_type | property 

prim_type    => Int | Long | Float | Double | String | Boolean 

graph_type   => Graph | DGraph | UGraph  

                <Todo: subgraph types> 

nodeedge_type => Node ( graph_name ) 

                 Edge ( graph_name ) 

graph_collection_type =>  

            [Node_Set | N_S] ( graph_name )  

            [Edge_Set | E_S] ( graph_name )  

            [Node_Order | N_O] ( graph_name )  

            [Edge_Order | E_O] ( graph_name )  

            [Node_Seq | N_Q] ( graph_name )  

            [Edge_Seq | E_Q] ( graph_name )  

collection_of_collection_type => Collection < graph_collection_type > ( graph_name ) 

map_type. => Map < prim_type , prim_type >  
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property   => 

             [Node_Property | Node_Prop | N_P]< prim_type > ( graph_name )  

             [Edge_Property | Edge_Prop | E_P]< prim_type > ( graph_name )  

             [Edge_Property | Edge_Prop | E_P]< graph_collection_type >( graph_name ) 

             [Edge_Property | Edge_Prop | E_P]< graph_collection_type >( graph_name ) 

 

graph_name => name 

arg_name   => name 

var_name   => name 

node_name  => name 

node_edge_name => name 

iter_name  => name 

property_name => name 

collection_name => name 

name       => identifier  

name_comma_list  => name {, name}* 

 

sentence       => sent_block 

                | decl_sentence 

                | normal_assignment  

                | defer_or_reduce_assignment 

                | reduction_assignment 

                | for_iteration 

                | foreach_iteration  

                | bfs_iteration 

                | dfs_iteration 

                | if_then_else 

                | while_sent 

                | do_while_sent 

                | built_in_call_sent 

                | proc_call  // red: to be implemented in next versions 

                | print_sent 

                | error_sent 

 

sent_block   => { {sentence}* } 

 

decl_sentence   => type_prop name_comma_list ; 

   

normal_assignment  => lhs = rhs ; 

defer_or_reduce_assignment  => lhs <= rhs [@ iter_name]; 

             |  lhs reduce_assign rhs [@ iter_name]; 
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             |  lhs_opt_list reduce_assign2 rhs_opt_list [@ iter_name]; 

reduce_assign => += | *= | &&= | ||=  

reduce_assgin2 => max= | min=  

lhs_opt_list => lhs  

              | lhs < {, lhs}+ > 

rhs_opt_list => rhs  

              | rhs < {, lhs}+ > 

 

lhs           => var_name | var_name . property_name | map_access 

rhs           => expr | bool_exp 

 

literal => integer_literal | floating_literal | string_literal 

expr           => literal 

                | var_name | var_name.property_name 

  | built_in_call 

  |  ( expr ) 

                |  | expr | 

                |  ( prim_type ) expr 

                |  - expr 

                |  reduc_epxr  

                |  expr biop expr 

                |  bool_exp ? exp : exp 

                |  map_access 

biop          =>  * | / | % | + | - 

bool_exp      => boolean_literal 

                | var_name | var_name.property_name 

  | built_in_call 

                | (bool_exp) 

                |  ! bool_exp 

                |  bool_exp && bool_exp  

                |  bool_exp ||  bool_exp 

                |  expr comp_op expr 

                |  bool_exp bool_comp bool_exp 

comp_op     => == | > | < | >= | <= | != 

bool_comp   => && | || | == | !=  

 

map_access  => var_name [ expr ] 

 

reduc_expr    => reduc_type iterator_bound [filter] { expr }  

reduc_type    => Sum | Product | Max | Min | Any | All 
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iterator_bound   => ( iter_name : graph_name . range_word1 )  

                 |  ( iter_name : node_edge_name . range_word2 )  

                 |  ( iter_name : collection_name . Items )  

filter        => ( bool_expr )  

range_word1    => Nodes | Edges  

range_word2    => Nbrs | InNbrs | OutNbrs | UpNbrs | DownNbrs 

              NbrEdges | InEdges | OutEdges | UpEdges | DownEdges 

 

for_iteration => for iterator_bound [filter] sentence 

foreach_iteration => foreach iterator_bound [filter] sentence 

 

bfs_iteration => InBFS iterator_bound2 [filter] [navigator] sentence 

                 [ reverse_iteration ] 

dfs_iteration => InDFS iterator_bound2 [filter] [navigator] sentence 

                 [ reverse_iteration ] 

reverse_iteration => InReverse [filter] sentence 

navigator => [ bool_expr ] 

iterator_bound2  => ( iter_name : graph_name [^] . Nodes [From | ;] node_name )  

 

if_then_else => If (bool_exp) sentence 

              | If (bool_exp) sentence Else sentence 

while_sent => While (expr) sentence 

do_while_sent => Do sentence While (expr) ;  

 

built_in_call_sent => built_in_call ; 

built_in_call => built_in_name ( [rhs_comma_list] ) 

              |  graph_name . built_in_name ( [rhs_comma_list] ) 

              |  node_dege_name . built_in_name ( [rhs_comma_list] ) 

              |  collection_name . built_in_name ( [rhs_comma_list] ) 

 

rhs_comma_list => rhs {, rhs}* 

proc_call   => call_name ( [rhs_comma_list] [; lhs_comma_list] ) 

lhs_comma_list => (lhs|#) {, (lhs|#)}* 

 

print_sent => Print expr; 

error_sent => Error expr; 
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3 Language Entities  

3.1 Procedures 

3.1.1 Entry Procedures and Local Procedures 

The top-level entities of Green-Marl are procedure definitions. There are two types of 

procedures in Green-Marl: entry procedures and local procedures. An entry procedure begins 

with the keyword Procedure or Proc, while a local procedure with Local. 

 

An entry procedure is the entry point of Green-Marl program, branched from the user 

application. In other words, this is what is called by the application. (See Section 7 for the 

interaction between user-application and Green-Marl program). Entry procedure should be 

called only in virtually sequential context. That is, at the time when the procedure is invoked 

by the application, there should be no other concurrent execution context which may 

potentially modify any values that are reachable through the arguments of the procedure. 

However, a Green-Marl compiler may further require true sequential context; i.e., there is 

actually no other concurrent execution and therefore the compiler can safely assume that all 

the hardware resource (e.g. GPU) are wholly available.  

 

On the other hand, a local procedure is what other Green-Marl procedures can call upon. 

Local procedure can be called inside a parallel region (Section 5.1) as well. A compiler must 

do inter-procedural analysis including such local procedure calls, when it validates parallel 

consistency semantics (Section 5.2.2). 

 

Currently, Green-Marl only allows calling of local procedures that are defined in the same 

file. However, the user application, which is written in a different file (in a different 

language), can make calls to any Green-Marl entry functions -- these functions can be 

defined in separate Green-Marl source files.  

 

A Green-Marl procedure can make a call to another entry procedure, as long as virtually 

sequential context is guaranteed at the call-site; however, a compiler may require true 

sequential context in this case as well.  
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In current Green-Marl specification, recursion is prohibited. [todo: Or is it current compiler 

implementation that prohibits it?] 

 

Local compute_dist(x1, y1, x2, y2:Int): Int   // Local function 

{ 

   Return (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2); 

} 

 

Procedure get_max_nbr_dist (                   // Entry function 

    G: Graph, S: Node_Set(G), X,Y:Node_Propery<Int>(G)) : Int 

{ 

   Int max_dist = 0; 

   Foreach(s: S.Items) {          // For each node s in set S 

     Foreach(n: s.Nbrs) {         // For each neighbors of node s 

                                  // compute distance and reduce by maximum 

         max_dist max= compute_dist(s.X, s.Y, n.S, n.Y); 

   } 

   Return max_dist; 

} 

Code 3 Local Procedure and Entry Procedure 

 

3.1.2 Arguments and Return Values  

A Green-Marl procedure has two different kinds of arguments: input arguments and output 

arguments. As the names suggest, input arguments are arguments that are given to the 

procedure, while output arguments produced by the procedure.  

 

Basically, the output arguments are to support multi-valued return (see Code 4 below). 

Therefore, users should assign values to the output arguments before the procedure returns. A 

compiler can give a warning, if an output argument may not be defined before procedure 

return. – in such case, the value is undefined after the procedure is returned. An output 

argument can be read inside the procedure, once assigned. The read value is undefined 

otherwise.   

 

Local get_max_min(a,b : Int; min: Int) : Int    // min is an output argument 

{ 

 If (a < b) {min = a; Return b;} 

 Else       {min = b; Return a;}    

} 

Code 4 Output arguments  
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 Input Output/Return 

Primitive By Value By Value 

Node/Edge By Value By Value 

Property By Reference Not available  

Graph By Reference Not available  

Collection By Reference Not available  

Map By Reference Not available 

Table 1 Argument passing convention in Green-Marl procedures.  

 

Table 1 summarizes the argument passing convention in Green-Marl. The argument passing 

convention is determined by the type of an argument. (See Section 4 for type system in 

Green-Marl).  If the type of an argument is primitive type or node-edge type, the argument is 

always passed by value; no matter whether the argument is an input or an output. On the 

other hand, graph, property, and collection type cannot be an output argument (or return 

value) but always be passed by reference. 

 

3.1.3 Aliases in Arguments 

It is not allowed in Green-Marl to have aliases in procedure arguments. In other words, all 

the input arguments that are passed by references (i.e. graph, property, collection) should be 

distinct with each other.  

 

Note that there is no way that a Green-Marl compiler can enforce this non-alias requirement 

at the call-site in the application code (in a different language) where a Green-Marl entry 

procedure is initially entered. Thus, it is up to the users who should make sure that there is no 

alias in the arguments when a Green-Marl entry function is invoked from application-side. 

Green-Marl compiler simply assumes each argument in the entry function is distinct. 

 

However, when a Green-Marl procedure makes a call to another Green-Marl procedure, the 

Green-Marl compiler should examine each call-site and check if there are any aliases in the 

calling arguments. If an alias is detected, the compile must give an error. If the compiler 



22 

 

believes that an alias could happen at the runtime but cannot be decided at the compile time, 

the compiler should give a warning to the user. It is undefined the behavior of a Green-Marl 

procedure execution when there are aliases in the input arguments.  

 

The behavior of a procedure-call which contains aliases in the output arguments (i.e. same 

lhs values) is also undefined. The compiler should check this condition and give an error if 

violated as well. 

 

// X and Y are considered to be distinct 

Local foo(G: Graph, X,Y: Node_Prop<Int>(G); a,b: INT)  

{ 

  // … 

} 

Local bar(a,b: INT)  

{ 

  // … 

} 

Procedure bar(G: Graph)  

{ 

   Node_Prop<Int>(G) X; 

   Int y; 

   foo (G, X, X; y, y); //  Error - X, X is an alias in input arguments 

                        //  Error - y, y is an alias in output arguments 

   bar (y, y); // okay – no alias is possible between primitive-types 

} 

Code 5 Green-Marl assumes no alias in procedure arguments 
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3.2 Variables  

3.2.1 Scoping rule 

Every variable in Green-Marl program has a lexical, static scope. In addition, a variable 

name cannot be shadowed by another variable inside a nested scope.   

 

   // Arguments names are only meaningful in the procedure.  

Procedure foo(G: Graph, x,y: Int, A:Node_Prop<Int>(G)) { 

   Int z = 1;  // variables are local  

   If (x > 0) { 

     Int k = y + 3; 

     Int z = 5;   // Error! Cannot shadow the definition of z 

   } 

   Foreach(n: G.Nbrs) { 

     Int w = n.A + 3; // w is private to each instance of n-loop.  

   } 

} 

Code 6 Scope of Green-Marl variables 

 

3.2.2 Initial values  

When a variable of a primitive type (Section 4.2) or Node/Edge type (Section 4.4) is declared, 

its initial value is undefined. Therefore such a variable should be initialized before it is used. 

The compiler may give a warning otherwise. 

 

Similarly, when a property (Section 4.5) is declared, the property value at each node (edge) is 

undefined.  

 

However, when a collection-type (Section 4.6) variable is declared, an empty collection is 

automatically created.  

 

Graph-type variable (Section 4.3) cannot be declared inside a Green-Marl procedure: it 

should be only passed through an input argument to the entry procedure.
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Proc foo(G: Graph, n: Node(G)) { 

   Int z;         // prim-type variable z is declared 

   Int y = z;     // value of z is undefined. A compiler may give a warning. 

                        

   Node_Prop<Int>(G) A; // property type variable A is declared 

   Z = n.A;             // value of A for each node in graph G is undefined 

 

   Node_Set(G) S;       // Collection type variable S is declared.  

   Int s = S.Size();    // s is 0. S is an empty-set 

 

   Graph G2;            // Error. A graph cannot be declared inside.  

} 

Code 7 Initial values 

 

3.2.3 Iterators 

Iterator is a special kind of variable that is inherently defined by iteration sentences (Section 

6.3.1) or reduction expressions (Section 6.1.4). The scope of an iterator is the body sentence 

(body expression) and filters attached to it (see Code 8).  

 

Iterators are read-only and thus cannot be written.  

Proc foo(G: Graph, A: Node_Prop<Int>(G)) { 

   Node(G) m; 

   // n is an iterator for the foreach statement 

   // the scope of n is the filter (n.A >0) and the body {n.A = n.A + 1; …} 

   Foreach(n: G.Nodes)(n.A > 0) {  

        n.A = n.A + 1;  

        m = n; // This is okay 

        n = m; // This is an error. An iterator is read-only. 

   } 

} 

Code 8 Iterator Scope Example 

 

3.2.4 Semantic of Variable Assignment 

In Green-Marl, assignment is defined as copying values of RHS into LHS; any expression 

can serve as RHS. LHS should be either a variable or a property access (Section 6.2.1).  LHS 

and RHS should be type compatible. (See Section 4.2.2 for type compatibility and coercion 

rules.) 

 

Graph type and Property type variables are read-only and cannot be assigned. See Section 5.5 

for syntactic sugar for copying and initializing property values.  
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Assignment of collection or map types means to make a copy of the contents of RHS 

collection into LHS one. The original contents in LHS collection are lost. (Section 4.6) 

 

Proc foo(G: Graph, A: Node_Prop<Int>(G), b: Int, S: Node_Set(G)) { 

   Node_Prop<Int>(G) B = A; // Error. Property itself is read-only.  

   Int c = b; // okay 

   Node_Set(G) P = S; // make a copy of S.  

} 

Code 9 Assignment Example 
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3.3 Sentences and Expressions 

Unlikely to C-based languages, Green-Marl strictly distinguishes sentences from expressions: 

sentences can have side-effects while expressions cannot. (Side-effect means mutating the 

content of memory that is accessible after the sentence/expression is executed.)  

 

The only meaningful entity where this distinction makes actual difference is procedure call:  

 If a procedure has a (potential) side-effect, it cannot be called inside an expression.  

 If a procedure has output arguments, it can be called inside an expression only if all 

the output arguments are ignored by using # syntax (Section 6.4).  

 As a special case, a call to a potentially side-effecting procedure can be placed at the 

RHS of an assignment only if the call is the sole element in the RHS expression.  

 

Local side_effect(G: Graph, A: Node_Set(G)): Int  // has side effect 

{ 

   A.Clear();    // making a side effect 

   Return 3;  

} 

Local out_arg(A: Int; B: Int): Int   // no side effect 

{ 

   B = 3;        // output argument 

   Return A + B; 

} 

Proc example(G: Graph, A: Node_Set(G) 

{ 

   Int x,y,z; 

   side_effect(G, A); // okay;  

   z = side_effect(G, A); // okay – there is no other expression 

   z = side_effect(G, A) + 3; // Error 

 

   out_arg(x; y);  // okay 

   z = out_arg(x; y); // okay 

   z = out_arg(x; y) + 1;  // error 

   z = out_arg(x; #) + 1;  // okay – output has been “ignored” 

} 

Code 10 Procedure Call in Expressions Example 

 

A reason for such restriction is to facilitate compiler’s optimization of expressions.  For 

example, in the following code a compiler may transform the computation of z as in the 

commented line, based on the fact that the procedure is expensive to compute but is free of 

side-effects.    
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Proc example(b: Int) 

{   

   Int z = some_expensive_function() * b; 

   //==> The compiler may transform the above expression as below   

   // Int z = (b==0)? 0 : some_expensive_function() * b; 

} 

Code 11 Example of possible optimization of a procedure call 
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4 Type System  

4.1 Overview 

Green-Marl has a very simple type system. All the types in Green-Marl are intrinsic; i.e., 

there is no notion of user defined type. There is no notion of inheritance, either. The compiler 

can therefore simply determine the type of each variable or expression, statically. 

 

4.2 Primitive Types 

4.2.1 Numeric Types  

There are four subtypes in numeric: Int / Long / Float / Double. 

 

Green-Marl Int is integer values of range [–2,147,483,647 ~ 2,147,483,646]. Please note that 

valid range is composed of all 4 byte binary numbers but 0xFFFFFFFF and 0x7FFFFFFF. 

 

Similarly, Green-Marl Long is integer values of range [-9,223,372,036,854,775,807 ~ 

9,223,372,036,854,775,806]. Again, the valid range is composed of all 8 byte binary numbers 

but 0xFFFFFFFFFFFFFFFF and 0x7FFFFFFFFFFFFFFF. 

 

Floating points (Float and Double) in Green-Marl are intentionally defined loosely for the 

purpose of wider portability. The only enforcement in Green-Marl is that Float uses at least 4 

bytes and that Double uses at least 8 bytes for data representation, which roughly 

corresponds to single precision and double precision format in IEEE 754 standard. A Green-

Marl compiler should map each type into a floating point type of the target programming 

language with matching size: e.g. float/double in C or Cuda.  

 

Section 6.1.1 covers operators defined for numeric-type values. 

 

Two special numeric values are +INF and –INF which are compatible to any numeric type.  

However, it gives an undefined result, doing any numeric operation other than comparison to 

+INF/-INF (Code 12). 
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Int z = +INF; 

Int x = 0; 

Bool b  = (x < z);  //==> Result is true 

Bool c  = (x < (z+1));  //==> Result is undefined because z+1 is undefined 

Int w = -1 * +INF; //==> Result is undefined. –INF != -1 * +INF 

// INF is useful, when one gets the minimum of certain values. 

// Suppose G: Graph, A: Node_Prop<Int>(G) 

Int y = +INF 

Foreach (n: G.Nodes) {  

  y min= n.A;  // compute minimum among n.A 

} 

Code 12 Example use of +INF 

 

4.2.2 Explicit Type Conversions and Coercions  

When a numeric operator is applied to two numeric expressions, both expressions should 

have an exactly same type. Similarly when a numeric-type RHS is assigned into a numeric-

type LHS, the two operands should have an exactly same type. 

 

The user, however, can explicitly change the type of a numeric expression; Green-Marl 

syntax of explicit for type conversion is similar to that of C. Also, in certain cases, the 

compiler inserts type conversion automatically in place of the user, i.e., coercion occurs. 

Table 2 summarizes coercion rules in Green-Marl. See Code 13 for example. 

 

RHS  

(one operand) 

LHS 

(the other operand) 

Coercion Compiler Action 

Int Long Int  Long Implicit Conversion 

Int Float Int  Float Implicit Conversion with warning 

Long Float Long  Float Implicit Conversion with warning 

Long Double Long  Double Implicit Conversion with warning 

Float Double Float Double Implicit Conversion 

Table 2 Coercion Rules in Green-Marl 
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Int i = 3; 

Float f = 0.1; 

Long l = 10; 

Double d = 0.2; 

 

Long l2 = i;  // coercion (Int -> Long) 

Int i2 = l;   // type error  

Int i3 = (Int) l;   // Okay, explicit type conversion 

Float f2 = i;  // coercion (Int -> Float); compiler gives a warning 

Float f3 = (Float) i;  // No warning. 

Code 13 Coercion and Explicit Type Conversion Example 

 

4.2.3 Boolean Type 

Boolean type variables can have only one of two values: True and False.  

 

4.2.4 String Type 

String type variables contain text and are immutable. String literals are a sequence of ASCII 

characters surrounded by double quotation marks. Control sequences are allowed and are 

handled similar to C strings. Double quotation marks and backlashes have to be escaped with 

a backslash. 

String s1 = “Hello World”;              // Hello World 

String s2 = “The world says \”Hello\””; // The world says “Hello” 

String s3 = “ \\\”\”\\”;                // \””\ 

Code 14 String Escaping Example 

 

Strings support the normal comparison operators (==, <, >, <=, >=), where s1 == s2 

is equal to s1.Equals(s2, True). The comparison operators use lexicographical 

ordering. See Code 15 for a few examples. 

Strings provide several built-in methods: 

Signature Return Value Description 

Length Int Returns the number of characters in the string 

Contains(String) Bool Returns True if the argument string is a 

substring (or equal) to the string, False 

otherwise. 

BeginsWith(String) Bool Returns True if the string starts with the 

argument string, False otherwise. 
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EndsWith(String) Bool Returns True if the string ends with the 

argument string, False otherwise. 

Equals(String, Bool) Bool Returns True, if the string has the same length 

as the argument string and if all characters are 

equal, False otherwise. The comparison is case 

sensitive if the Bool argument is True, 

otherwise it is case-insensitive. 

Table 3 Built-In String functions 

 

//declaration & initialization 

String s1 = "Hello World"; 

String s2 = "Green-Marl"; 

   

//assignment 

s1 = s2; 

  

//built-ins 

Int l = s1.Length(); 

Bool b1 = s1.BeginsWith("Hello"); 

Bool b2 = s2.Contains(“Green”); 

  

//comparison 

Bool b3 = s1 < s2; 

Bool b4 = s2 == s; 

Code 15 String Type Example 
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4.3 Graph Types 

There are two types of graphs in Green-Marl: DGraph, which stands for directed graph, and 

UGraph, or undirected graph.  Graph is a synonym to DGraph.  There is no separate type 

for multi-graph: any graph is assumed to be a multi-graph. The following figure illustrates 

the difference between directed graph, undirected graph and a multi-graph. 

 

 

Figure 3 Illustration of graph types in Green-Marl.  

 

Every Graph in Green-Marl is read-only. In other words, the graph is immutable. It is also 

not allowed to declare a graph-type variable inside a Green-Marl procedure. Instead, graphs 

should be handed as input arguments to the entry procedure.  

 

Procedure foo(G1, G2: Graph) { // Graph can be an input argument 

    Graph G3;  // Error- Graph cannot be defined 

    G2 = G1;   // Error- Graph cannot be modified (assigned) 

} 

Code 16 Example Use of Graph Type 

 

In current usage model of Green-Marl, creation and modification of the Graph itself must be 

done outside Green-Marl language – i.e. they should be done in the application side with the 

target language. Such a design decision is based on the following rationale: 

 Green-Marl is designed for the analysis of graph data, rather than graph manipulation.  

 In many applications, graph modification is less frequent than graph analysis. Also in 

many cases, analysis routines work on a specific snapshot of the graph so that it is 

safe to assume the graph is immutable during the analysis. (i.e. can work on a 

snapshot) 

 Green-Marl is designed for portable execution, while some graph processing systems 
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(such as Pregel [4]) provides very unique methods for loading graph data. Thus, it 

would be more convenient for users to work directly on the system API, in such cases.  

 

Nevertheless, it is our future plan to develop a sister language (or a language extension) to 

Green-Marl, which is more apt to creating and modifying graph instances but less optimized 

for graph analysis.  

 

4.3.1 Range Words and Built-in Functions  

Range word is a syntax that delineates the range of For-iteration and Foreach (Section 6.3.1) 

iteration. The following table summarizes range words available to graph types. 

 

Source Type Range Word Meaning 

UGraph, DGraph 

 

Nodes Every node of the graph 

Edges Every edge of the graph 

Table 4 Range words of Graph Types 

 

The below table summarizes built-in functions (Section 6.4) for graph types. A compiler 

implementation may add other built-in functions.  

 

Source Type Signature Meaning 

UGraph, DGraph 

 

NumNodes():Int Number of nodes in the graph 

NumEdges():Int Number of edges in the graph 

Table 5 Built-in Functions of Graph Types 
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4.4 Node and Edge Types 

Node and Edge are data types for fundamental components of graphs. Note that node type 

and edge type are not compatible to integer type.
4
 

 

In Green-Marl, node and edge type variables are always bound to a graph instance. In the 

following code, for example, node n belongs to graph G1 and m to G2. Therefore it is an 

error to compare those two nodes, because they belong to different graphs. 

// Graph G1, G2 

// n is a node of G1; m is a node of G2. 

Proc foo(G1, G2: Graph, n: Node(G1), m: Node(G2)) {  

    Bool b = (n==m); // error – n and m belongs to different graphs  

} 

Code 17 Example Use of Graph Type 

 

4.4.1 Range Words and Built-in Functions  

Range word is a syntax that delineates the range of For-iteration and For-each iteration 

(Section 6.3.1). Table 6 summarizes range words available to node type and edge type; the 

meaning of each range word is illustrated in Figure 4. There are few things to be noticed 

 In/OutNbrs are for directed graphs; InNbrs requires use of reverse-edges in a directed 

graph.  Nbrs is a synonym to OutNbrs when used for directed graphs 

 In/Out Nbrs gives a multi-set of neighborhood nodes because a graph is assumed to 

be a multi-graph.  

 Up/DownNbrs are only defined during BFS traversal (Section XXX).  UpNbrs are 

(In-)Nbrs that are closer to the BFS root node than  the current node, in hop distance. 

Conversely, DownNbrs are (Out-)Nbrs that are farther from the BFS root node  Note 

that there are neighborhood nodes that do not belong to either UpNbrs or DownNbrs: 

e.g. node m in Figure 4. 

                                                 

4
 A compiler can still represent nodes and edges as long or integer in implementation. 
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Source Type Range Word Misc 

Node(DGraph) 

 

Nbrs, OutNbrs Nbrs is a synonym to outNbrs 

Edges, OutEdges  Edges is a synonym to outEdges 

InNbrs Require reverse edges 

 InEdges 

Node(UGraph) Nbrs  

Edges  

Node(DGraph/UGraph) UpNbrs Only available during BFS traverse 

UpEdges 

DownNbrs 

DownEdges 

Table 6 Range words of Node Type 

 

 

 

 

Figure 4 The Illustration of Semantics of Range Words of Node Type 
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The below table summarizes built-in functions (Section XX) of node types. A compiler 

implementation may add other built-in functions.  

 

Source Type Signature Meaning 

Node(DGraph) 

 

NumNbrs(): Int 

NumOutNbrs(): Int 

Degree(): Int 

OutDegree(): Int 

Size of the out-neighbor multi-set. 

NumInNbrs(): Int 

InDegree(): Int 

Size of the in-neighbor multi-set. 

Node(UGraph) NumNbrs(): Int 

Degree(): Int 

Size of the out-neighbor multi-set. 

 

Table 7 Built-in Functions of Node Types 

 

NIL is a special value for Node/Edge type. NIL can be assigned to any Node/Edge type 

variable, regardless of graph binding. The result of accessing Node/Edge Property from the 

NIL node/edge is undefined. 

 

// Graph G1, G2 

// A: Node_Prop<Int>(G) 

Node(G1) n; 

Node(G2) m; 

n = NIL; // okay 

m = NIL; // okay 

n = m ; // Error 

Int x = n.A; // undefined 

Code 18 NIL value for node/edge type  
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4.5 Property Types 

Although Green-Marl does not support user-defined type, the user can till associate nodes 

and edges with any number of primitive- or collection-type data; such an association can be 

made even dynamically. In Green-Marl, such data associated with nodes (edges) are referred 

as Node (Edge) Property. At the moment, properties cannot contain Map types. 

 Property declaration syntax is as follows: 

Node_Prop<target_type>(graph_name)  property_name 

 Properties can be declared just like normal variable and has static scope (Section 

3.2.1); see Code 19. 

 Properties access syntax is as follows:  source_name.property_name 

 In above syntax, the source must be bound to the same graph that the property 

belongs to; see Code 20. 

 

Local foo(G: Graph, A: Node_Prop<Int>(G)) {  

  Node_Prop<Int>(G) B; // this property is alive only inside the procedure 

Foreach (n: G.Nodes) { 

      Node_Prop<Int>(G) C; // this property is private to each instance of n-loop 

    Foreach (k: G.Nodes) { 

       k.C = k.A * n.A + 1; // property access 

    } 

    n.B = Max(k: G.Nodes) (k.C > 0){k.A}   

} 

} 

Code 19 Static Scoping Rule of Property Declaration 

 

Local foo(G1,G2: Graph, A: Node_Prop<Int>(G1)) {  

   Node(G2) a; 

   a.A = 0; // error – a is not a node belong to G1. 

   Edge(G1) b; 

   b.A = 0; // error - b is an edge of G1, not a node.  

   Node(G1) c; 

   Bool z = c.A; // error – Target type of c.A is Int; cannot be assigned to Bool 

} 

Code 20 Type Rule of Property Declaration 
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Followings are additional notes for property types. 

 Being syntax sugars, Node_Prop and N_P is a synonym to Node_Property; 

Edge_Prop and E_P to Edge_Property. 

 When a property is used as a procedure argument, it is passed by reference. Aliases 

between references are not allowed. (See Section 3.1.2 and 3.1.3) 

 

The following applies to collections as types of properties: 

 When being created, each element of the property is set to an empty collection 

 For the elements of the property apply copy-semantics: When assigning values to an 

entry, a copy of the collection is stored instead of a reference. 

 When reading an entry from the property, a copy of the collection is returned. 

 

 

<todo: Node_Prop<Node>(G) > 

<todo: Neighborhood Marker> 
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4.6 Collection Types 

There are six collection types in Green-Marl. More specifically, three collections are defined 

for nodes and the other three for edges. Collections in Green-Marl are summarized in Table 

8.  Noticeably, the difference between each collection type comes from ordered-ness and 

uniqueness. For example, elements in a set are un-ordered and unique, while elements in a 

sequence are ordered and can be repeated.  

 

Collection Name  Ordered-ness Uniqueness 

Node_Set (N_S) 

Edge_Set (E_S) 

N Y 

Node_Order (N_O) 

Edge_Order (E_O) 

Y Y 

Node_Seq (N_Q) 

Edge_Seq (E_Q) 

Y N 

Multiset for Node/Edge N N 

Table 8 Collections in Green-Marl 

 

Following are notes for collection types. 

 Collections are bound to a graph, similar to Property Types. (Section 4.5)  

 When a collection is first declared, it becomes automatically an empty collection. In 

other words, there required no separate initialization. (Section 3.2.2) 

 When a collection is used as a procedure argument, it is passed by reference. Aliases 

between references are not allowed. (Section 3.1.2 and 3.1.3) 

 When a collection is used as an argument for a collection-built-in, both collections 

have to be bound to the same graph instance. 

 The semantic of an assignment in collection type is to create a copy. 

 Comparison operator between collections is not defined. <todo: why? Because it is 

expensive?> 
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The following code example shows declaration and assignment rules of collection types. 

 

// Assume a,b,c are distinct node. (They don’t have to be by the syntax) 

Local foo(G1,G2: Graph, a,b,c: Node(G1), d: Node(G2)) {  

  Node_Set(G1) S1;  // S1 is a node set of graph G1. S is an empty set here. 

N_S(G1) S2;  // N_S is a synonym to Node_Set 

  N_S(G2) S3;  // N_S is a synonym to Node_Set 

   

S1.Add(a);  // S1 becomes {a} 

  S1.Add(a);  // S1 still {a} (a is repeated) 

S1.Add(d);  // Error – d does not belong to G1 

   

S3 = S1;   // Error – S3 does not belong to G1 

S2 = S1;   // Copy S2 into S1 

S1.Add(b); // S1 becomes {a, b} 

  Bool cond = (S2.Has(b));  // cond is False; 

   

  // Order and Seqeunce 

  Node_Order(G1) O1; 

  Node_Seq(G1) Q1;   

 

O1.Push(a);  

O1.Push(b);   

O1.Push(c);  // O1 becomes {a, b, c} 

O1.Push(c);  // O1 still is {a, b, c} 

 

Q1.Push(a);  

Q1.Push(b);   

Q1.Push(c);   

Q1.Push(c);  // Q1 is {a, b, c, c} 

} 

Code 21 Declaration and Assignment of Collection Types 
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4.6.1 Built-in Operations Collection Types 

The Table 9 and Table 10 summarize built-in operations of Collection Types in Green-Marl.  

Operation Class Semantic 

Has(Node) : 

 Bool 

Check Returns True if the set contains the node 

Size() : Int Check Returns the number of elements in the current set. 

Add(Node)  Append Add a node to the set 

Add(N_S) Append Add all the nodes in the argument set to the current set. 

Remove(Node) Remove Remove the given node from the set, if the node is in the current set.  

Remove(N_S) Remove Remove all the nodes in the argument set from the current set.  

Clear() Remove Remove all the nodes in the current set 

Union(N_S) Append Adds all the nodes in the argument set to the current set.  

Intersect(N_S) Remove Removes all nodes from the current set that are not in the argument set. 

Complement(N_S) Append/ 

Remove 

Adds all nodes from the argument set to the current set and removes all nodes 

that were already in the current set. 

IsSubsetOf(N_S): 

Bool 

Check Returns True if every element of the current set is also element of the 

argument set. 

Table 9 Built-in Operations of Node_Set (Edge_Set) 

 

Operation Class Semantic 

Has(Node): Bool Check Returns True if the collection contains the node 

Size(): Int Check Returns the number of elements in the set 

Front(): Node Check Returns the front node of the order.  

<todo:  Returns NIL if empty> 

Back(): Node Check Returns the back node of the order.  

<todo:  Returns NIL if empty> 

PushBack (Node)  

Push(Node) 

Append Add the node at the back of the order. Push is a synonym for PushBack.  

PushBack(N_O) Append Add all the elements in the argument at the back of the order. (Code 22) 

PushFront 

(Node) 

Append Add the node at the front of the order.  

PushFront (N_O) Append Add all the elements in the argument at the front of the order. (Code 22) 
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PopFront(): 

Node 

Pop(): Node 

Remove Remove a node at the beginning of the order. Pop is a synonym for PopBack. 

PopBack(): Node Remove Remove a node at the end of the order 

Table 10 Built-in Operations of Node_Order (Edge_Order). The same operations are defined for 

Node_Seq (Edge_Seq). 

 

Notice that in the Table 9 and Table 10 there is a column named ‘class’, which denotes the 

class of the operation. For example Has() or Size() operation is classified as Check operation, 

while Push() or Add() operation as Append. These classifications determine which operations 

can be applied together when operations are applied under parallel consistency. See Section 

5.4 for further discussion.  

 

The following code example shows how ordering is preserved by built-in operations.  

// Assume a,b,c,d are distinct node. (They don’t have to, by the syntax) 

Local foo(G: Graph, a,b,c,d: Node(G)) {  

  // Order and Seqeunce 

  Node_Order(G) O1, O2, O3; 

 

O1.Push(a);  // O1 becomes {a}  

O1.Push(a);  // O1 is still {a}  

O1.Push(b);  // O1 becomes {a, b} 

O1.PushFront(c);  // O1 becomes {c, a, b} 

Node(G) x = O1.Pop();     // O1 becomes {a, b}, x is c 

Node(G) y = O1.PopBack(); // O1 becomes {a}, y is b 

O1.Push(b);               // O1 becomes {a,b} again 

 

  O2.Push(c); O2.Push(d);  // O2 becomes {c,d} 

  O1.Push(O2);             // O2 becomes {a,b, c,d} 

  

  O1.PopBack(); O1.PopBack();// O1 becomes {a,b} again 

  O1.PushFront(O2);          // O1 becomes {c,d, a,b} 

 

  O1.Pop(); O1.Pop(); O1.Push(c)// O1 becomes {a,b,c}, O2 is {c,d}  

  O1.PushFront(O2);             // O1 becomes {d, a,b,c} 

} 

Code 22 Ordered-ness of elements after operations on an Order 
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4.6.2 Iteration on Collection Types 

Green-Marl allows iterating over collection types using For and Foreach (Section 6.3). 

The only range word defined for all of the collection types is Items, which stands for to 

iterate all the elements in the collection.  

 

Let us consider For-iteration first, which adopts Sequential Consistency (Section 5.2.1). 

Iteration order over unordered collection is undefined and can be non-deterministic. For 

ordered collection, iteration order follows the natural order of the collection; or the reverse of 

such order (using ^ symbol, see Code 23). 

 

Local foo(G: Graph, S: N_S(G), O: N_O(G), Q: N_Q(G)) {  

// Assume 

//  S = {a, b, c} 

//  O = {a, b, c} 

//  Q = {a, b, c, b} 

For(s: S.Items) { 

   // S can be visited in any order. {a,b,c} or {b,c,a} or {c,b,a} 

   // However no element is repeated 

   ... 

} 

For(s: O.Items) { 

   // O is visited as in the defined order: {a, b, c} 

} 

For(s: Q^.Items) { 

   // ^ is a special symbol to iterate the sequence in reverse order. 

   // Thus, iteration order would be: {b, c, b, a} 

} 

} 

Code 23 Sequential iteration over collections 

 

Now consider Foreach-iteration, which adopts Parallel Consistency (Section 5.2.2). In this 

case, every element in the collection is iterated at the same time, conceptually. Therefore 

order information is lost; an Order becomes same to a Set and a Sequence to a Multi-Set. 

(See Code 24) 

 

In both types of iterations (i.e. For and Foreach) on any type of collection, it is an error to 

mutate the collection that is being iterated. A compiler can demote the error into a warning; 

and the behavior in such cases can be defined by the compiler (not by the language). 
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// G: Graph, a,b,c: Node(G) 

// S:Node_Set(G) = {a,b,c} 

// O:Node_Order(G)= {b,a,c} 

// Q:Node_Seq(G) = {c,c,b,a} 

 

// The following two iterations are same, since every element of  

// the collection is iterated, concurrently. 

// (i.e. loses ordering when doing parallel iteration)   

Foreach(s: S.Items) { ...} 

Foreach(o: O.Items) { ...} 

 

// Modification during iteration is an error, 

// even for sequential consistency 

For(s: Q.Items) { 

   ... 

   Q.PushFront(a); // Error – Modifying Q while being iterated.  

} 

} 

Code 24 Parallel iteration over collections and mutation during iteration 

 

<todo: Type conversion between collections> 

 

4.7 Collections of Collections 

Green-Marl provides a data type that can store elements of a collection type. This collection 

of collections type (short: CC) offers the same operations as a Sequence, but has some 

different properties. 

 adding a collection to a CC will store a copy of the collection 

 retrieving a collection from a CC will return a copy of the collection 

 when iterating over the elements of a CC, the iterator points to the element in the 

collection. So changing the content of the iterator also changes the content of the 

element. (compare Table 11) 

 

Collection<Node_Set> c; //declares a collection of Node_Sets 

Node_Set set; 

c.PushBack(set); //stores a copy of set in the collection 

Node_Order order; 

c.PushBack(order);  //type error, order is not a Node_Set 

Table 11 Declaration and usage of a Collection of Collection type 
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Collection<N_S> coll; 

N_S set; 

coll.PushFront(set); 

N_S set2 = coll.Front(); 

set2.Add(n); // the set in coll does NOT contain n, because set2 is a copy! 

For(s: coll.Items) { 

 s.Add(n); // the set in coll now contains n because s is a reference. 

} 

Table 12 Receiving copies or references to elements 
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4.8 Map types 

Green-Marl provides a map data type that allows map keys to values. A map cannot contain 

duplicate keys and each key in the map is bound to exactly one value. Green-Marl maps only 

allow primitive types as key- or value-types. Keys and values do not necessarily have to be 

of the same type. Unlike collections and properties, maps are not bound to a graph. 

Maps allow inserting and reading values with a certain key. If a key already exists in the map, 

a new insert will override the old value. 

Maps specify a default value; this value is returned when reading the entry of a key that has 

not been inserted before. The default value can also be the result of some built-in operations 

(see 4.8.1). 

When performing a reduction on an entry of a map with an value that has not been set before, 

it is assumed to be the default value. 

 

value type default value 

Int / Long 0 

Double / Float 0.0 

Bool False 

Node / Edge NIL 

Table 13 default values for different types of map-values 

 

Map<Int, Double> map1; //map declaration with Int as key-type and Double as value-type 

map1[5] = 1.0; //map key 5 to value 1.0 

Double d = map1[5]; //read the value mapped to key 5 

 

Map<Node(G), Int> map2; 

Node(G) n; 

map2[n] = 15; //n now mapped to 15 

Node(G2) n2; 

map2[n2] = 25; // Error: key-type and n2 are bound to different graphs 

Table 14 Declaration of Map type and reading and writing entries 
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4.8.1 Built-in operations 

Table X shows the different built-in operations on maps and their default behavior in case the 

map is empty. Key and Value refer to the type of the key/value of the map. 

 

Operation Semantics Default behavior 

Size() : Int Returns the number of keys in the map. Returns 0 

Remove(Key) Deletes the key from the map so that the 

default value will be returned for the key and 

HasKey will return false. 

No op 

HasKey(Key) : Bool Returns True if the map contains a mapping for 

the specified key. Otherwise False. 

Returns False 

HasMaxValue(Key) : Bool Returns True if the specified key is mapped to 

the largest value in the map. Otherwise False. 

Returns False 

HasMinValue(Key) : Bool Returns True if the specified key is mapped to 

the smallest value in the map. Otherwise False. 

Returns False 

GetMaxKey() : Key Returns the key that is mapped to the highest 

value in the map. If there is more than one key 

mapped to the highest value, it is not 

deterministic which one is returned. 

Undefined 

GetMinKey() : Key Returns the key that is mapped to the smallest 

value in the map. If there is more than one key 

mapped to the highest value, it is not 

deterministic which one is returned. 

Undefined 

GetMaxValue() : Value Returns the largest value in the map. The map’s default value is returned. 

GetMinValue() : Value Returns the smallest value in the map The map’s default value is returned. 

Table 15 Built-in operations on Map types 

 

4.8.2 Behavior in parallel semantics 

Writes: If two writes are conflicting, that means they run in parallel and write to the same 

key, it is not deterministic which write will be visible afterwards, but at least one of the 

writes will be visible. 

Read-Writes: If any of the built-in operations is called on a map while writing to it in 

parallel, the result of the operation is undefined. 

Reductions: Reductions on map-entries are deterministic. Therefore it can be assumed, 

that there is no race-condition in the following code. 
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Map<Node(G), Int> map; 

Foreach(n: G.Nodes) { 

 map[n]++; 

} 

Table 16 parallel iteration over a map type 

 

4.9 Implicit Graph Binding 

Usually nodes, edges as well as properties and collections have to be bound to a graph 

explicitly. But if there is only one graph instance defined in a context, it is possible to use 

implicit binding, since the compiler can figure out the correct binding by itself. Using explicit 

binding together with implicit binding within one procedure is possible. 

 

Procedure implicit(G: Graph) { 

 Node n; // implicit binding possible 

 Node(G) n2; // explicit binding still possible 

} 

Table 17 usage of implicit graph binding together with explicit binding 
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5 Parallel Execution and Consistency 

5.1 Parallel Region 

Green-Marl is designed to provide intuitive ways in exploiting data parallelism of graph 

algorithm.  The basic idea is similar to that of OpenMP [2]: the user describes parallel 

regions with simple language constructs such as Foreach, while the compiler and the 

runtime handles details of parallel execution such as thread creation or job scheduling. 

 

The parallel execution model adopted in Green-Marl is fork-join style (or more accurately 

split-merge style) parallelism.  That is, the execution becomes parallel at the beginning of a 

parallel region; at the end of the region, all those parallel executions are merged and the 

execution becomes sequential again. In other words, all the concurrent executions of the 

parallel region are synchronized at the end of parallel region.  

 

Int z = 0;   // Sequential Execution 

 

Foreach (n: G.Nodes) // beginning for parallel execution region 

{  // all the instances of the loop-iteration happen in parallel 

   z += n.A;     

}  // End of parallel execution region: 

   // all the parallel executions of the above region are merged 

   // before continue to the next sentence 

 

Int k = z + 1;  // Sequential Execution resumes 

Code 25 Parallel region example 

 

Conceptually, the execution of a parallel region is maximally parallelized. For instance, in the 

above code example, the parallel region is executed concurrently for every node n in the 

graph G. Therefore, no ordering is guaranteed between instances of this parallel execution 

region. However, this full parallelization is only a conceptual tool that does not enforce any 

regulation in implementation -- the implementation of compiler/runtime is free to choose 

how many threads are actually utilized for the parallel region.  

 

A parallel region, however, is bound to a memory consistency that is different from 

sequential execution. Section 5.2 provides more detailed discussions about memory 

consistencies in Green-Marl. 
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The following table summarizes the syntax for parallel execution region in Green-Marl.  

Syntax Semantic Details 

Foreach Iterate every element in the given range (e.g., nodes in 

a graph, elements in a set) in parallel 

Section XX 

InBFS Traverse the graph in breadth-first search order. Visit 

every node of the same BFS level (i.e. nodes having 

the same hop distance from the root node) in parallel. 

Section XX 

Table 18 Green-Marl syntax for a parallel execution region 

 

Green-Marl basically expects the user to mark parallel execution region with above language 

constructs; however there are also ways to suggest parallel execution in an implicit way (See 

Section 5.5).  

 

5.1.1 Nested Parallelism  

Green-Marl allows nesting of parallel regions in any depth. See Code 26 as an example. Note 

that in the case of nested parallel regions, we can refer a specific parallel region (i.e. a 

specific loop) using the iterator name of the loop. 

1: Foreach (n: G.Nodes) {   // outmost loop (n-loop) 

2:    Int x = 0; 

3:    Foreach (t: n.Nbrs) {  // (t-loop) 

4:      Foreach (r: t. Nbrs) {  // innermost loop (r-loop) 

5:        If (r.A > t.A) x += r.A; 

6:      } 

7:    }    

8:    n.B = x*2; 

9: } 

Code 26 Nested parallel execution region  

 

Each parallel region is fork-joined (or split-merged) independently. As an example, consider 

Code 26 again, where the outermost loop (n-loop) are concurrently executed. Among all 

those concurrent execution instances of the n-loop, let us first focus on a single specific one; 

we denote it as an n-instance. However, this specific n-instance is further split at the 

beginning of a nested parallel region (t-loop) at line 3. Similarly, each t-instance is further 

split into multiple concurrent r-instances at line 4. Merging of concurrent execution instances 
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happen in reverse order. That is, all the concurrent r-instances from the same t-instance are 

merged before the t-instance reaches to line 7. Similarly all t-instances from the same n-

instance are merged before line 8. 

 

Note that all the concurrent execution instances are independent.  Therefore, in the previous 

example, even when all the t-instances from a single n-instance have been merged at line 8, 

there can be other t-instances concurrently executing line 4 -- those t-instances are originated 

from other n-instances.  The following figure illustrates this concept: 

 

 

Figure 5 Visualization: independent concurrent executions of a nested parallel region. 
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5.2 Memory Consistency in Green-Marl 

5.2.1 Sequential Memory Consistency 

The basic memory consistency model of Green-Marl is sequential memory consistency. That 

is, the effect of a memory update is visible to any sentence that comes after in program order. 

For example, While (or do-while) loop (Section 6.3.3) adopts sequential memory 

consistency, just like in C. 

 

For loops (Section 6.3.1) adopt sequential memory consistency, as well, Note that, though, 

there is no requirement of any specific ordering when performing For-iteration on a set or a 

multi-set; the iteration order can be even non-deterministic. (Section 4.6.2) Nevertheless, no 

matter what order the set is iterated, sequential memory consistency is always be preserved. 

In other words, the execution of a for-loop is always serialize-able. See below code example. 

 

Int x = 1;    // Write to x is visible in the next sentence 

Int z = x + 1;  

 

// For-iteration on the set of nodes in G: 

// it is not defined what order those nodes are iterated.  

// However, there must be at least one sequential order.  

For (n: G.Nodes) {  

   x = x + n.A;       

} 

Code 27 Sequential consistency example 

 

DFS-order graph traversal (Section 6.3.2) also adopts sequential consistency, too. 

 

5.2.2 Parallel Memory Consistency 

On the other hand, parallel regions (Section 5.1) adopt a different memory consistency 

model. This model assumes that the parallel region is being executed concurrently and that 

there are natural data races between concurrent execution instances. Therefore this model 

does NOT guarantee anything about the visibility of writes which are made by concurrent 

executions. That is to say, a write made by one instance of a parallel region may or may not 

be visible to other instances of the parallel region.  
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The model guarantees the following things. 

 (Self-visibility): A write by an execution instance is always visible to the current 

instance later in program order, unless the write is overwritten by another concurrent 

instance. 

 (Eventual visibility): At the end of the parallel region, when all the concurrent 

executions are merged, every write made by concurrent execution instance of the 

region becomes visible.   

As an example, let’s thinks about the case of the following bipartite graph (Figure 6) and 

apply it to the following code example (Code 28): 

 

Figure 6 Example: bipartite graph 

 

// Color, Value is N_P<Int>(G) 

// Initialize values of all nodes as 0 

G.value = 0;   

 

// Parallel Execution 

Foreach (n: G.Nodes) {  

// Blue node changes its ‘value’ from 0 -> 1 

If (n.Color == BLUE)  

    n.value = 1;   

 

// Red node sums up ‘value’ of its neighboring blue nodes. 

// However value change of blue nodes may or may not be visible. 

  Else  

      n.value =  Sum (t: n.Nbrs) {t.value};  

} 

Code 28 Parallel consistency example I 

 

The result is non-deterministic: at the end of the parallel region (i.e. after n-loop), value of 

red nodes can be 0, 1, or 2. However, value of blue nodes is guaranteed to be 1.   
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Write-Write data race is the case when multiple concurrent writes is being written to the same 

variable (or property location). In such a case, at the end of the parallel region, one (and only 

one) of those writes becomes effective; however, it is non-deterministic which of those writes 

will be the effective one.  As an example, the following code results in a non-deterministic 

value of x, when applied to the Figure 6: x can be either blue or red.  

// Color is Node_Prop<Int>(G) 

Int x = 0; 

Foreach (n: G.Nodes) {  

   x = n.Color;  // multiple writes to a single location 

} 

// One of those writes become visible at the end of parallel loop. 

// x can be either Blue or Red.  

Code 29 Parallel consistency example II 

 

Read-Write data race is the case when a variable (or a property access) is concurrently read 

and write at the same time. In this case, a concurrent read may or may not see the result of a 

write from another concurrent instance.  

// Color is Node_Prop<Int>(G) 

1: Int x = 0; 

2: Foreach (n: G.Nodes) {  

3:   x = n.Color;  // concurrent writes to a single location (variable) 

 

    // concurrent reads from the same variable  

4:  If (x != n.Color) { 

       // The execution can be come into this branch, 

       // because a write from anther concurrent execution may have altered  

       // value of x between line 3 and line 4.  

       ... 

5:   } 

6: } 

Code 30 Parallel consistency example III 
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Moreover, under parallel memory consistency, there is no guarantee that multiple writes 

would be visible in the same order to every concurrent execution instance. (In other words, 

total store order is not guaranteed.)  As an example, suppose the following code is applied to 

the previous graph instance (Figure 6). It is possible that some node end up with value having 

LEFT_FIRST, while others having RIGHT_FIRST. 

 

// flag, value is nothing but node_prop<Int> 

// Node(G): node_1 and node_3 are the blue nodes In the figure 

// LEFT_FIRST, RIGHT_FIRST, SAME  integer constants 

 

G.value = 0;  // Initially, all nodes have value 0 

Foreach (n: G.Nodes) {  

  // Node 1 and 3 update their value to 1 

If ((n == node_1) || (n == node_3))  

    n.value = 1; 

 

// Other nodes monitor values of node number 1 and 3.  

  Else { 

  // Check if the value has been changed at node 1 and node 3. 

    Bool left_changed = (node_1.value == 1); 

    Bool right_changed = (node_3.value == 1);  

 

  // Check which one of them has been changed first. 

    If (left_changed && !right_changed)     n.flag = LEFT_FIRST; 

    Else If (!left_changed && right_changed)n.flag = RIGHT_FIRST; 

    Else                                    n.flag = SAME; 

  } 

} // at the end of foreach, value of some node can be LEFT_FRIST while others 

RIGHT_FIRST 

Code 31 Parallel consistency example IV 

 

Fundamentally, Green-Marl’s parallel memory consistency assumes that concurrent reads and 

writes inevitably incur data-races and thus becomes non-deterministic. The designers of 

Green-Marl believe that such non-determinism is a fundamental nature of parallel graph 

processing. Nevertheless, Green-Marl provides methods which can enforce certain 

determinism out of such non-deterministic concurrent execution. Section 5.3 discusses such 

mechanisms in detail. 

 

Note that all the code examples above (Code 28 - Code 31) have non-determinism induced 

by the data-races. A compiler should detect such non-determinism and report it to the user. 

See Section 5.6.1 for details. 
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5.2.3 Bulk-Synchronous Memory Consistency 

Green-Marl supports Bulk-Synchronous memory consistency [3] as well through deferred 

assignment statement (Section 5.3.2).  In Bulk-Synchronous memory consistency, it is 

guaranteed that a write to a memory location is not visible to every concurrent execution 

instance, even to the current one that has made the write, until the (specified) synchronization 

point.  At the synchronization point, on the other hand, all the updates made inside loop 

become visible at once. The synchronization point is the end of binding loop, which is 

usually the current loop; however, the user can explicitly specify synchronization point in the 

case of nested parallel regions. See Section 5.3.3. 

 

// A is a node_prop<Int>(G) 

Foreach (n: G.Nodes) {  

// Writing of n.A is deferred until the end of the binding loop, i.e. n-loop 

n.A <= Sum (t: n.Nbrs) { 

         // Thus, reading of t.A always gives the unmodified value.  

          t.A};  

}          

// at the end of binding-loop, all the writes to A become visible at once. 

Code 32 Bulk-Synchronous consistency example 
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5.3 Determinism under Parallel Memory Consistency 

As mentioned in Section 5.2.2, parallel memory consistency allows data races among 

concurrent writes and concurrent reads. However, Green-Marl provides certain mechanisms 

that enforce deterministic results out of such non-deterministic executions. This section 

discusses such mechanisms in detail.  

 

5.3.1 Reductions  

Reduction is the most important determinism-enforcing mechanism in Green-Marl. In a 

general sense, reduction is a mathematical mechanism that computes a single representative 

value out of a set of values in a deterministic way. For example, summation is a reduction 

which adds up all the values in a collection.  

 

In Green-Marl, reduction can take one of two different forms: Assignment form and 

Expression form. Let us consider Assignment form first.  

 

The following code is an example of reduction in Green-Marl. The += symbol at line 5 

stands for reduction by addition: at the end of the loop x will contain the sum of property A 

for all nodes in the Graph. Note that += symbol at line 5 is not same to reading and writing of 

the same variable y at line 6 --  such a reading and writing results in a non-deterministic 

value of y at the end of n-loop. 

1: // A is a Node_Prop<Int>(G) 

2: Int x = 0; 

3: Int y = 0; 

4: Foreach (n: G.Nodes) {  

5:  x += n.A;        // Reduction by addition 

6:  y = y + n.A;     // Not a reduction. The result is non-deterministic 

7: }          

Code 33 Reduction by Addition (Assignment Form) 

 

The expression form of a reduction is a syntactic sugar that is functionally equivalent to the 

same reduction in assignment form – it simply allows more convenient (or intuitive) code 

writing. See the following code, as an example of summation (i.e. reduction by addition) in 

expression form.  
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// A is a node_prop<Int> 

Int x; 

x =  Sum (n:G.Nodes) {n.A};  

// The above expression is equivalent to below 

x = 0; 

Foreach(n:G.Nodes)  

   x += n.A; 

Code 34 Reduction by Addition (Expression Form) 

 

However, the semantic of assignment form is, in fact, slightly different from corresponding 

expression form, because the expression form also implies automatic initialization of the 

target location. On the contrary, the user has to provide explicit initialization for assignment 

form. The following table summarizes how two forms of reduction can be switched from one 

to another. 

Expression Form Assignment Form 

target = reduce_operator (iterator: range)  

           { body_expression } 

 

target = automatic_initializer 

Foreach ( iterator : range) { 

  target reduce_assign  body_expression 

} 

Table 19 Reductions in expression form and assignment form 

 

The following table summarizes all the reductions defined in Green-Marl, both in assignment 

form and reduction form: 

Reduce_ 

Assign 

Reduce_ 

Operator 

Automatic_ 

Initializer 

Semantic Expression 

Type 

+= Sum 0 By addition Numeric 

*= Product 1 By multiplication Numeric 

max= Max -INF By maximum Numeric 

min= Min +INF By minimum Numeric 

++ Count 0 A syntactic sugar for += 1 Numeric 

&&= All True By logical ‘and’ Boolean 

||= Any False By logical ‘or’ Boolean 

Table 20 Reductions in Green-Marl 
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A target location of reduction can be either a scalar variable or a property. The following 

code shows how a reduction can be applied to a property. 

// A,B is a node_prop<Int> 

Foreach (n: G.Nodes)  

  Foreach (t: n.Nbrs)  

    t.A += n.B;   // The entire propery A becomes the target of reduction.  

         

Code 35 Reduction to Property 

 

An interesting feature of Green-Marl reduction is to augment ‘reduction by 

minimum/maximum’ with ‘argmin/argmax expressions’. In other words, the user can obtain 

not only the maximum value of the body expression but also sub-expressions which 

maximize the body expression, or argmax.  

    Line 7 of Code 36 shows an example of this feature. Here, the maximum of the body 

expression (n.A*2) is stored into x. However, this maximum value is stored along with two 

other expressions (n and n.A) into two other variables i and a, at the same time: it is 

guaranteed that the values stored into i and a come from the same execution instance that 

stored x. Also note that Line 9-11 does not achieve the same determinism -- y and j might be 

written from two distinct n-instances.  

 

1: // A,B is a node_prop<Int> 

2: Int x,y; x= 0; y=0;    // variable to store max 

3: Int a,b;               // variable to store argmax              

4: Node(G) i,j;           // variable to store argmax 

5: Foreach (n: G.Nodes) {  

 

6:  // compute maximum of n.A *2 as well as the arguments maximize it 

7:  x <i, a> max= n.A * 2 <n, n.A>; 

 

8:  // The result of following sentences (y,j,b) are non-deterministic 

9:  If (n.A*2 > y) { 

10:     y = n.A*2; j = n; b = n.B; 

11: }   

12:} // i,a are guaranteed to be the values that have saved with maximum x  

13:  // But there is no such guarantee for j and b with y 

         

Code 36 Max and Argmax 

 

 

 



60 

 

Variables that are being reduced should not be read or written otherwise. A compiler should 

detect such an access and give an error, as in the following code example. However, the 

compiler may provide an option to demote such errors into warnings; the semantic of such 

access (i.e. reading from or writing to a reduction-target location) is undefined by the 

language specification, i.e. a compiler may declare its own semantic for this
5
. 

// A,B is a node_prop <Int> 

Int x = 0; 

Int y; 

Foreach (n: G.Nodes)  

{ 

   x += n.A;  // x is a reduction-target by addition. 

 

   y = x + 1; // error. x cannot be read because it is being reduced  

 

   If (y > 100)  

     x = 100; // error. x cannot be written because it is being reduced 

 

   x *= 1; // error. x is already being reduced with a different operator 

}        

Code 37  Example of errors on reduction variables 

 

5.3.2 Deferred Assignments 

Green-Marl supports Bulk Synchronous consistency (Section 5.2.3) through deferred 

assignments. Syntax-wise, deferred assignment is quite similar to reduction in assignment 

from. (See Code 32 in Section 5.2.3) The only noticeable difference is the use of <= symbol 

in place of reduction assignment symbols such as +=.  

 

Unlikely to reduction, however, a variable (or a property) can be read in side a loop, even 

though it is currently being assigned with deference. In this case, a read of the variable 

always gives the unmodified value since the writes to the write is not effective yet but 

deferred to the end of binding loop. (Section 5.2.3) 

 

The variable, which is being defer-assigned, should not be written otherwise; see Code 38 

below for example. 

                                                 

5
 For example, a compiler may define the semantic of reading a reduction-target variable as to give 

the partial reduction result.  
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// A,B is a node_prop<Int> 

Foreach (n: G.Nodes) {  

 

// Writing of n.A is deferred until the end of the current loop 

n.A <= Sum (t: n.Nbrs)  

        // Reading of t.A therefore gives the unmodified value 

        {t.A};  

      

 

// error, property A is being defer-assigned during n-loop. 

// It cannot be written otherwise. 

n.A = n.B + 1;  

 

}          

Code 38 Bulk-Synchronous consistency example  
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5.3.3 Visibility in Nested Parallel Regions 

The visibility of writes in nested parallel regions (Section 5.1.1) is defined in a recursive 

manner. We explain this with the following code example (Code 39). Inside a nested loop, at 

line 5, reading of y is non-deterministic because of the concurrent writes to y at line 7.  

However once t-loop is finished, reading of y becomes deterministic at line 10. On the other 

hand, reading of x at line 11 is still non-deterministic, since there are still concurrent writes 

inside this outer loop at line 13.  

1: Int x = 0; 

2: Foreach (n: G.Nodes) {  

3:   Int y = 0; 

     // Nested Loop.  

     // Every t writes to the same y.  

4:   Foreach (t: n.Nbrs) {  

5:     Int z1 = y; // reading of y is non-deterministic (because of line 7)  

6:     Int z2 = x; // reading of x is non-deterministic (because of line 8,12) 

7:     y = 1;         

8:     x = 1;         

9:   }  

10:   Int z1 = y; // reading of y is deterministic  

11:   Int z2 = x; // reading of x is non-deterministic (because of line 13) 

12:   y = 2; 

13:   x = 2; 

14:} 

 

Code 39 Parallel consistency example I 

 

The binding loop of deferred assignment (Section 5.3.2) might be ambiguous in case of 

nested loops. Green-Marl resolves such ambiguity by using @-syntax:  at the end of deferred 

assignment statement follows @ symbol and the iterator name which denotes the binding 

loop. 

 

 The following two code examples (Code 40, Code 41) show how @-syntax can control the 

visibility of deferred assignment. In Code 40, the binding loop is the inner loop (s2-loop); 

thus writes to A become visible at the end of s2. In Code 41, on the other hand, the binding 

loop is the outer loop (s1-loop) – therefore all the writes inside s2-loop is not visible during 

the end of s1-loop.    
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// G: Graph 

// S1,S2: Node_Set(G) S1 = {a,b,c} S2={b,d} 

// A,B: N_P<Int>(G). Initially zero for every node. 

For (s1: S1.Items) {  

Foreach(s2: S2.Items){ // G: Graph  

   s2.A <= s1.A + 1 @ s2; // defer write to A during s2 loop. 

} // Modification of A becomes visible here   

} 

// The above code is executed as follows 

// Content of A at s1-loop=> s1  s2   =>  Content of A after s2-loop 

// A[a:0, b:0, c:0, d:0] => {a} {b,d} =>  [a:0, b:1, c:0, d:1] 

// A[a:0, b:0, c:0, d:0] => {b} {b,d} =>  [a:0, b:2, c:0, d:2] 

// A[a:0, b:0, c:0, d:0] => {c} {b,d} =>  [a:0, b:2, c:0, d:2] 

 

Code 40 @-syntax example I 

 

 

// G: Graph 

// S1,S2: Node_Set(G) S1 = {a,b,c} S2={b,d} 

// A,B: N_P<Int>(G). Initially zero for every node. 

For (s1: S1.Items) {  

Foreach(s2: S2.Items){ // G: Graph  

   s2.A <= s1.A + 1 @ s1; // defer write to A during s1 loop 

}  

} // Modification of A becomes visible here 

// The above code is executed as follows 

// Content of A at s1-loop=> s1  s2   =>  Content of A after s2-loop 

// A[a:0, b:0, c:0, d:0] => {a} {b,d} =>  [a:0, b:0, c:0, d:0] 

// A[a:0, b:0, c:0, d:0] => {b} {b,d} =>  [a:0, b:0, c:0, d:0] 

// A[a:0, b:0, c:0, d:0] => {c} {b,d} =>  [a:0, b:0, c:0, d:0] 

// A[a:0, b:1, c:0, d:1] 

 

Code 41 @-syntax example II 

 

Similarly, reductions in nested loops can ambiguous. The same @-syntax can be used to 

describe the binding loop of the reduction as well. See the following example.  

// G: Graph 

// S1,S2: Node_Set(G)  

// A,B: N_P<Int>(G) 

Foreach (s: G.Nodes) {  

Foreach(s1: S1.Items){ // Reduction to B  

   s1.B += s.A * 2 @s; // reduce to B during loop s. 

} 

Foreach(s2: S2.Items){ // Reduction to B  

   s2.B += s.A * 3 @s; // reduce to B during loop s 

}  

}  

Code 42 @-syntax with reduction example 

 



64 

 

A reduction target cannot be doubly bound in nested loops. (See Code 43) 

// G: Graph 

// S1,S2: Node_Set(G)  

// A,B: N_P<Int>(G) 

Foreach (s: G.Nodes) {  

  s.A += 1 @s; 

Foreach(s1: S1.Items){  

   s1.A += s.B * 2 @s1; // Error – A is already bound to s-loop. 

} 

}  

Code 43 Binding Error in reduction with @-syntax 

 

Note that @-syntax is in fact an act of exposition; it tells the compiler and the reader of the 

program that the variable (property) is being reduced inside a certain loop and that thus 

should not be accessed otherwise.
6
  

 

As a matter of fact, Green-Marl requires for every reduction assignment or deferred 

assignment to be followed by @ syntax. However, the user may omit @ syntax, in which 

case a compiler must try finding an appropriate binding loop in place of the user. The 

appropriate binding loop means a nested loop that does not induce any further data race or 

double-bound error, if the loop is chosen as the binding loop. Still, a compiler may fail to find 

such a loop. In such case, the compiler should raise an error and ask the user to specify the 

binding loop. See Code 44 for example. 

 

 

 

 

 

 

 

 

 

                                                 

6
 Note that OpenMP [2] does similar declaration with reduce-target list at the beginning of each 

parallel region.  
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// G: Graph 

// A,B: N_P<Int>(G) 

// case 1 

Foreach (s: G.Nodes) {  

// obviously, this reduction is bound to s-loop.  

// Compiler should find it. 

s.A += 1  

} 

// case 2 

Foreach(s: G.Nodes){  

 Foreach(t: s.Nbrs){ 

// Should be bound to s-loop. Otherwise induces data-race. 

// A naïve compiler implementation may not find it, however. 

     t.A += s.B;  

   } 

} 

// case 3 

Foreach(s: G.Nodes){  

 Foreach(t: s.Nbrs){ 

    // Can be bound to either t-loop or s-loop. 

     s.A += t.B;  

   } 

}  

 

// case 3 + case 2 

Foreach(s: G.Nodes){ 

   Foreach(t: s.Nbrs){ 

  // Now, this should be bound to s-loop because of another reduction 

  // inside the following t2-loop. A compiler may fail to find the  

  // correct binding loop. 

         s.A += t.B;  

   }  

 Foreach(t2: s.Nbrs){ 

     t2.A += s.B;  

   } 

} 

Code 44 Example cases of Automatic Detection of Binding Loops 
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5.4 Operations on Collection Types under Parallel Consistency 

Section 4.6 has discussed the semantics of operations defined on collection types under 

sequential consistency. This section clarifies those semantics under parallel consistency 

(Section 5.2.2). 

 

In case of ‘append’ class, the order between elements that are appended under parallel 

consistency is non-deterministic. However, (1) every appended element becomes visible at 

the end of the parallel region and (2) the ordering with respect to initial content of the 

collection is preserved. See the following code example.  

// Assume a,b,c,d,e are distinct node. 

Node_Order(G) O1,O2,O3; 

Node_Set(G) S,S1; 

// Assume S = {a,b,c,d}. S1 ={} O1 ={} 

Foreach(s: S.Items) {  

// Concurrent addition guarantees no ordering 

S1.Add(s); 

O1.Push(s); 

} 

// S1 is {a,b,c,d} => order does not matter 

// O1 can be in any order: {a,b,c,d},{b,d,a,c} … 

 

// Assume S = {a,b,c,d}. O2 ={e} 

Foreach(s: S.Items) {  

// However, ordering is preserved, with respect to the initial data 

If ((s==a) || (s==b)) O2.PushBack(s); 

Else O2.PushFront(s); 

} 

// O2 can be {(a,b},e,(c,d)}, 

// i.e. a and b comes before e (in any order); c and d after d. 

 

// Assume S = {a,b}. O1 ={a,b}, O2 = {c,d}, O3 = {} 

Foreach(s: S.Items) {  

// Addition of collection is not atomic 

If (s==a) O3.Push(O1); 

Else If (s==b) O3.Push(O2); 

} 

// O3 can be end up with {a,c,b,d}. (i.e. push(O1) can push(O3) can be interleaved. 

Code 45 Append under parallel consistency 

 

As for ‘remove’ class, the semantic is different for unordered collection and ordered 

collection.  

 For unordered collections (i.e. set), the semantic of concurrent removal is the eventual 

one; all the removed element is surely removed at the end of the loop. 
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 For ordered collections (i.e. order, sequence), the semantic of concurrent removal is 

undefined.  

The case of ordered collection may not be from what is normally expected; however, note 

that it essentially enforces (unordered but) sequential consistency if each parallel pop() is 

guaranteed to obtain a distinct element from the collection. Therefore it remains as undefined 

by the language specification. Nevertheless, a compiler may refine the undefined semantic of 

removal operation under parallel consistency as unordered sequential consistency.  

 

 // Assume a,b,c,d,e are distinct node. 
Node_Seq(G) Q1,Q2; 

Node_Set(G) S, S1; 

 

// Assume S = {a,b,c,d}. S1 ={a,b,c} 

Foreach(s1: S1.Items) {  

S.Remove(s1); // Concurrent removal is eventual.  

}   

// S = {d} here for sure  

 

// Assume S1 ={a,b,c,d}, Q1 = {a,b}, Q2 = {} 

Foreach(s1: S1.Items) {  

   Node(G) n = Q1.pop();  // Error - concurrent removal is undefined for ordered 

collection 

   If (n != NIL) Q2.push(n); 

} 

// If we do not regard concurrent pop() as an error under parallel consistency, 

// Q2 can possibly be {a,a,a,b}, i.e., same element can be popped multiple times. 

// A compiler may have an option to enforce serialization on is concurrent pop case,  

// so that Q2 can only be {a,b} or {b,a} 

Code 46 Remove under parallel consistency 

 

The semantic of copy (by-assignment) under parallel consistency is eventual and atomic. See 

the following code for explanation. 

 

Node_Seq(G) Q1,Q2; 

Node_Set(G) S, S1, S2; 

 

// Assume S = {e}, S1 = {a,b}, S2 = {c,d} 

Foreach(s: G.Nodes) {  

If (s.Color == Blue) S = S1; // Concurrent removal is eventual 

Else S = S2; 

}   

// S = {a,b} or {c,d} here for sure  

Code 47 Copy under parallel consistency 
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Green-Marl does not encourage users to mix up heterogeneous classes of operation on a 

single collection under parallel consistency – e.g., adding elements into a collection while 

removing elements from the same collection concurrently. In such cases, either the result is 

non-deterministic or undefined.  Table 21 summarizes the semantic and compiler action when 

two different classes of operations are performed on a collection. 

 

 Lookup Append Remove Assign 

Lookup Okay Warning 

(non-

deterministic) 

Warning 

(non-deterministic) 

Warning 

(non-

deterministic) 

Append  Okay Error (undefined) Error (undefined) 

Remove   Set: Okay, 

Order/ Seq: 

Error (undefined) 

Error 

(undefined) 

Assign    Warning 

(atomic, non-

deterministic) 

Table 21 Operations on Collections under Parallel Consistency 

  

Let us explain Table 21 a little bit more.  First,  the results of look-up operations are non-

deterministic when they are mixed up with other operations in a parallel region – e.g. calling 

size() of a collection while the collection is concurrently growing. Compiler should warn 

the user in such cases. 

 

Second, it is an error to mix up two different operation classes other than lookup: the 

semantic is not defined for such a case and it should be treated as an error. In essence, a 

collection in Green-Marl is expected either to grow or to shrink in a parallel execution region, 

but not both. However, a compiler may give an option to define the semantics of such mixed 

concurrent operations as having unordered sequential consistency. See the following code for 

example. 
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// Suppose G has five nodes {a,b,c,d,e} and Color[a,c,e]= Blue 

Node_Seq(G) Q1; 

Node_Order(G) O1; 

// Assume Q1 = {a,a,b,b,c,d,e}. O1 ={a,b,c} 

Foreach(q: Q1.Items) {  

// Concurrent addition guarantees no ordering 

If (q.color == Blue) O1.Add(q); 

Else If O1.Remove(q); 

} 

// What is a right semantic, if multiple values are added and removed to a 

collection at the exact same time? 

// Green-Marl language specifies this as undefined and thus erroneous. 

 

// However a G-M compiler can give an option to turn off above error.  

// In such case, the compiler assumes ‘unordered sequential consistency’ on O1.  

// In other words, every operation on O1 in q-loop becomes serializable. 

 

Code 48 Append under parallel consistency 

 

<todo: @ syntax + collection operation> 
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5.5 Implicit Parallel Context (Syntactic Sugars) 

In order to make it easy to exploit natural data-parallelism in graph algorithms, Green-Marl 

provides a few syntactic sugars that can even further simplify writing parallel regions. 

 

Reduction in assignment form (Section 5.3.1) is one example of such syntax sugars. Section 

5.3.1 explained that a reduction in expression form is completely identical to its 

corresponding assignment form combined with automatic initialization.  

 

The other one is collective assignment.  In Green-Marl, one can assign property values for a 

group of nodes (edges) in a simple way, using group assignment syntax. See the following 

code snippet for example. 

 

Node_Prop<Int> A,B; 

Set_Node(G) S; 

// … 

G.A = 0;  // For every node in G, set its A value as 0 

S.A = 2;  // For every node in Set S, set its B value as 0 

G.B = G.A + 1; // For every node in G, set its A value as its B value plus 1 

      

// The above three sentences are equivalent to below sentences 

For (n: G.Nodes) n.A = 0; 

For (n: S.Items) n.A = 2; 

For (n: G.Nodes) n.B = n.A + 2; 

 

Code 49  Example of collective assignments 

 

As can be seen in the previous code example, group assignment is identical to For-iteration 

combined with simple assignment. However, it is strongly recommended that the compiler 

should try automatically parallelizing such For-iterations that came from group assignments; 

in many cases, they are embarrassingly parallel and it is very easy to check if so.  

 

<todo: shall I simply let the collective assignment adopt parallel consistency?> 
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5.6 Notes for Green-Marl Compilers  

5.6.1 Static Compiler Analysis for Data-race Detection. 

Throughout Section 5, it has been discussed that a Green-Marl compiler should analyze the 

code and detect (potential) data-races in parallel regions and should give errors or warnings 

appropriately. However, Green-Marl is designed in a way that such analyses can be done 

easily because of high-level syntax, but more precisely because of their semantic information. 

See the following code as an example. 

Set_Node(G) S; 

Set_Seq(G) Q; 

N_P<Int> A; 

//... 

Foreach (s: S.Items) { 

// There is no read-write data race. 

// Property A is accessed only by the ‘Set’ iterator, which is unique 

  s.A = s.A + 1;  

}      

Foreach (q: Q.Items) { 

// There IS read-write data race. 

// Property A is accessed by the ‘Sequence’ iterator,  

// which does not guarantee uniqueness.  

  q.A = q.A + 1;  

} 

Code 50  Example of data race detection in Green-Marl 

 

Also note that Green-Marl guarantees that there is no alias between property names or 

collection names, which eliminates the possibility of data-races through aliases completely.  

 

Table 22 summarizes default compiler actions for each data race type. However, the compiler 

can provide an option to demote Reduce-Read or Reduce-Write error into warning.  

 Read Write Reduce Deferred-Write 

Read Okay Warning Error Okay 

Write  Warning Error Error 

Reduce   Okay, if same op 

Error, otherwise 

Error 

Deferred-Write    Warning 

Table 22 Default compiler actions for detected data race 
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5.6.2 Selective Parallel Execution of Parallel Regions 

By its design, Green-Marl drives the user to expose all the parallel regions in his/her 

algorithm so that the compiler or runtime can exploit parallelism inside those regions.  

 

However, it is not necessary for all the parallel regions to be executed actually in parallel at 

the runtime. To the contrary, it is recommended for the compiler or the runtime executing 

only some of those regions in parallel, selectively, in order that the overhead of 

parallelization would not exceed performance benefit from it.  Consider the following code 

example (Code 51). Although the original user description is a nested parallel region (line 1-

5), the compiler can still decide to parallelize the outer loop only.
7
  In such case, the compiler 

is able to replace the reduction (line 3) with normal read and write (line 8) -- parallel 

reduction typically is implemented using atomic instructions which take 2~3x times slower 

than normal read and write instructions 

1: Foreach (s: G.Nodes) {  // outer loop (s-loop) 

2:    Foreach (t: s.Nbrs) { // inner loop (t-loop) 

3:        s.A += t.B @ t; 

4:    } 

5: }      

// The compiler may choose to parallelize only the outer loop  

6: Foreach (s: G.Nodes) {  // outer loop (s-loop) -> parallel 

7:    For (t: s.Nbrs) {    // inner loop (t-loop) -> sequential 

8:        s.A = s.A + t.B  // reduction can be replaced with normal read & write 

9:    } 

10:} 

Code 51 Selection of Parallel Execution 

 

Likewise, the compiler or runtime may choose to execute sequential regions in parallel, as 

long as they are sure to deliver sequential consistency as in the original program. For 

example, let us consider Code 52. The first loop (line 2-4) can be safely transformed into a 

parallel loop (i.e. foreach) since Node_Set guarantees uniqueness of elements and property 

A is only accessed through s. On the other hand, the second loop (line 5—7) cannot be 

parallelized naively; there is be a read-write data race between writing to property A (via 

                                                 

7
 For example, if the target system is a multi-core CPU which features only several processors, 

parallelizing the outer loop would be enough to consume all the cpu and memory bandwidth of the 

system -- further parallelizing nested loops would be pure overhead.  
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n.A) and reading of property A (via t.A).  However, the compiler may still (optionally) 

generate a parallel execution code for the loop that delivers (unordered) sequential 

consistency by using reader-writer locks on nodes or transactional memory. 

// The compiler can safely change following for into foreach 

1: Node_Set S; 

2: For (s: S.Nodes) {  

3:   s.A = s.A +1 ; 

4: } 

 

// Blind parallel execution does not guarantee sequential consistency. 

// A compiler may parallelize it with unordered sequential consistency,  

// using locks or transactional memory.  

5: For (n: G.Nodes) {   

6:   n.A = Sum(t:s.Nbrs){t.A}; 

7: } 

Code 52 Parallel execution of Sequential Loops 

 

5.6.3 Implementation for collection types 

Green-Marl language puts no constraint on the implementation of Collection types (Section 

4.6) as long as its behavior under sequential consistency (Section 4.6) and parallel behavior 

(Section 5.4) is guaranteed.  

 

The compiler is encouraged to use any best implementation of collections available for the 

target system – e.g. Multi-core CPU or GPU or distributed environments. The compiler may 

also exploit the fact that the size of the set is bounded; for example the maximum size of 

node set of a graph is the number of the nodes in the graph, at most. Thus a compiler may use 

the bitmap representation for the set, for instance.  
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The compiler may use any different implementation for internal collection objects, other than 

1-1 mapping specification to the target language. For example consider following code 

example -- the implementation of S1 and S2 can be different.  

 

// Say Node_Set is mapped to a Queue by compiler specification.  

// S1 should be implemented as a Queue.  

Procedure foo(G: Graph, S1: Node_Set(G), A: N_P<Int>(G)) 

{ 

   Node_Set(G) S2; // However, S2 can be implemented as anything. 

   Foreach(s: S1.Items)(s.A > 0) { 

     S2.Add(s); 

   } 

   While (some_condition(G)) { 

      Int m; Node(G) am; 

      m = +INF; 

      Foreach(s: S2.Items) { 

          m <,am>  min= s.A <,s>; 

      } 

      S2.Remove(am);         // S2 is always removed by some min-value. 

   }                         // S2 might be implemented as a heap.    

} 

 

 

Code 53 Different implementations for Internal Collections  
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6 Expressions and Sentences: Details 

6.1 Expressions 

In Green-Marl, expressions are strictly differentiated from sentences:  expressions are always 

side-effect free. Therefore a compiler can always reorder computation of sub-expressions or 

apply short-circuits, safely. 

 

Green-Marl syntax has strictly different positions for sentences and expressions. Expressions 

are placed at (1) RHS of assignments (Section 6.2), (2) in place of input-arguments of 

procedure call sites (Section 6.4), (3) conditional parts of If and (Do-)While sentence 

(Section 6.3.3), (4) filter and navigators in for/foreach iteration (Section 6.3.1) and DFS/BFS 

traversal (Section 6.3.2). In the last two positions, the expression should be Boolean-typed.  

 

Every expression is typed. Operations are defined only between compatible types. See 

Section 4.2.2 for related discussion.  

 

6.1.1 Operations on Numeric Type 

There are two different kinds of operations defined for numeric types: Arithmetic and 

Comparison. Arithmetic binary operators are +, -, *, /, and % (only for Int and Long type). 

Comparison operators are <, >, ==, and !=. The semantic of those operators are same to C.  

There is also the unary operator – as in C.  Finally, there is a parenthesis-like operator | |, 

which gives the absolute value of a numeric-type expression inside.  

 

// z becomes 3.5, y becomes 3 

Float z = | -3.5 |;  

Int y = | -3 |; 

Code 54 Examples of | | operator. 

 

6.1.2 Operations on Boolean Type 

There are two different kinds of operations defined for numeric types: Logical and 

Comparison. Logical binary operators are && and ||. Comparison operators are == and !=. 

Also there is unary operator !. The semantic of those operators are same to C.  
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6.1.3 Conditional Operator 

Bool_expr ? expr1 : expr2 

 

Green-Marl also provides Ternary conditional operator as in C. The semantic is if the value 

of Boolean expression is true, the value of the ternary expression is expr1; expr2 otherwise. 

The type of expr1 and expr2 should be the same.  

 

6.1.4 Reduction Operations 

Reductions are discussed in Section 5.3.1, where reduction in Green-Marl can take any of 

assignment form or operation form. Reductions in operation form take the following syntax: 

  reduction_op  (iterator_name : source_name . range_word) ( (filter_expr)  )  

 { body_expression } 

 

Iterator (Section 3.2.3) is a read-only variable that points the current item of the iteration 

range.  Source variable and range word together defines the range of iteration. The source 

variable can be of type Graph (Section 4.3.1), Node, Edge (Secion 4.4.1), or any collection 

(Section 4.6.2), while each type can be followed by different range words. (See Section 4.3.1, 

4.4.1, and 4.6.2 for range words for each type.) Note that the type of an iterator is 

automatically determined by the type of source and range word.  

 

The semantic of reduction operation is to compute body expression for every iterator value in 

the range and apply reduction operation for all of those computed values. (Table 20 in 

Section 6.1.4 summarizes all the reduction operations in Green-Marl.) Reduction expression 

can be optionally accompanied with Boolean-typed Filter expression. With each iterator 

value, the filter expression is computed before computing the body expression; body 

expression is not considered in reduction if the result of the filter expression is false. See the 

following code snippet as an example. 
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// Reduction by addition. 

// summation: for all nodes of G, such that n.Color == Blue, n.A + n.B 

Int z2 = Sum(n:G.Nodes)(n.Color == Blue){n.A +n.B}; 

Code 55 Examples of Count Reduction 

 

Note that being free of side-effect, reduction operations can be always computed under 

parallel consistency (Section 5.3.1). 

 

If the range of reduction is an empty set, or every element is filtered out the result of 

reduction operation is its initialization value in Table 20 in Section 6.1.4. See the following 

code example. 

 

Node_Set(G) S; // S is an empty set 

Int z2 = Sum(n:S.Items){n.A +n.B}; // z2 becomes 0 

Int z3 = Max(n:S.Items){n.A +n.B}; // z2 becomes -INF 

 

Code 56 Examples of Empty Range 

 

Reduction operations can be nested. See the following code example: 

 

// Compute Sum of maximum of some expression. 

// Note that the ‘scope’ of n reaches inside the nested expression. 

Int z2 = Sum(n:G.Nodes){n.A +  

               Max(m:n.Nbrs){m.B+n.B}} 

 

Code 57 Nested Reduction 

 

Count is a syntactic sugar for Sum(..){1}. 

 

// The following two RHS are equivalent. 

Int z1 = Count(n:G.Nodes)(n.Color == Blue); 

Int z2 = Sum(n:G.Nodes)(n.Color == Blue){1}; 

Code 58 Examples of Count Reduction 
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6.1.5 Operator precedence 

The following table summarizes the operator precedence in Green-Marl. The precedence rule 

of Green-Marl is almost identical to that of C language.  

Operator Description Associativity 

( ) 

| | 

Reduction operations 

Parenthesis 

Absolute Value 

Reduction operations 

Left to right 

- 

! 

(type) 

Unary minus 

Logical negation 

Type Cast 

Right to left 

*   /    % Multiplication / division / modulus Left to Right 

+   - Addition/ Subtraction Left to Right 

>   >=   <   <= Numeric comparison Left to Right 

==    != Numeric/Logical comparison Left to Right 

&& Logical And Left to Right 

|| Logical Or Left to Right 

?: Ternary conditional Left to Right 

Table 23 Operator precedence in Green-Marl 
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6.2 Assignment States: 

6.2.1 LHS and RHS 

Green Marl assignment statements have the following form. Its semantic is to modify the 

content of LHS location as the value of RHS.  

LHS = RHS ; 

 

The LHS can be either a single scalar variable or a property location. A property location 

takes the following form: 

driver_name . property_name 

 

The driver name should be either a node-type variable (or iterator) or an edge-type variable 

(or iterator), while the property name should be a node or edge property, correspondingly.  

The node (edge) should be bound to the same graph as the property is. (See Section 4.5 for 

the related discussions). 

 

The RHS can be any expression composed of literal, expression, scalar variable access, 

property access, or procedure or built-in function calls.  Property access has the same syntax 

as property location in LHS, but reads the value of the property location.  

 

The procedure calls included in the RHS expression should be free of side-effect and output 

arguments.  There are two exceptions: (1) RHS procedure can have side-effects or output 

arguments if it is the sole element of RHS expression. (2)  Procedures with ignored output 

arguments can be included in any RHS expression. (See Section 3.3 for examples) 

 

The type of LHS should be exactly matched with RHS. However, the compiler applies 

coercions between certain numeric types (See Section 4.2.2 for details).  

 

The visibility of assignment statement under parallel consistency is discussed in Section 5.2.2. 

 

Collective assignment is one syntax sugar where a graph name is used in place of node or 
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edge name in property access or property location. See Section 5.5 for further discussion. 

 

 

6.2.2 Reduction Assignments and Deferred Assignments 

 

Green-Marl has two other syntax which takes similar form as assignment: reduction 

assignment and deferred assignment. Their syntax takes the following form, while their 

semantics are discussed in Section 5.3.  The constraints in LHS and RHS are same as normal 

assignment.  

 

LHS  reduce_assign_symbol  RHS   (@ variable_name ) ;  // reduction assignment 

LHS  <=  RHS   (@ variable_name ) ;     // deferred assignment 

 

The optional variable name follows the assignment RHS clarifies the visibility of these 

statements. See Section 5.3.3 for detailed discussions. 
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6.3 Control Sentences  

6.3.1 For and For-each iteration 

For and Foreach are two different iteration methods provided in Green-Marl. They have 

following syntactic forms: 

For (iterator_name : source_name (^) . range_word)  ( (filter_expr) ) 

    body_sentence 

 

Foreach (iterator_name : source_name . range_word)   ( (filter_expr)  ) 

    body_sentence 

 

Iterator (Section 3.2.3) is a read-only variable that points the current item of the iteration 

range.  Source variable and range word together defines the range of iteration. The source 

variable can be of type Graph (Section 4.3.1), Node, Edge (Secion 4.4.1), or any collection 

(Section 4.6.2), while each type can be followed by different range words. (See Section 4.3.1, 

4.4.1, and 4.6.2 for range words for each type.) Note that the type of an iterator is 

automatically determined by the type of source and range_word.  

 

The semantic of For and Foreach iteration is to execute body sentence for every element in 

the range of iteration. Both kinds of iterations can be accompanied with optional, Boolean-

typed Filter expression. At each iteration instance, the filter expression is computed before 

executing the body sentence, and the body sentence is skipped if the result of expression is 

false.  

 

The difference between For and Foreach iteration is that, For-iteration assumes sequential 

consistency (Section 5.2.1) while Foreach parallel consistency (Section 5.2.2).  

 

For iteration on Set-type source variable is unordered, i.e. it can follow any order. On the 

other hands for iteration on Order and Sequence type source variable follows its given order. 

The user can also enforce to follow the reverse of the given order, by putting ^ symbol after 

the source name. Foreach iteration on Order and Sequence type source variable loses order 
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information. See Section 4.6.2 for the semantics of iteration on collection types.  

 

The following code gives examples of For and Foreach iteration: 

Node_Set(G) S;   // A set of nodes of graph G 

Node_Order(G) O; // An order of nodes of graph G 

//… 

 

// Parallel iteration on the elements of set S. 

Foreach (s: S.Items) {  

// type of s node(G). s is read-only. 

... 

} 

 

// Reverse iteration on an Node Order O 

// Iterate only node whose color equals to BLUE 

For (o: O^.Items)(o.color == BLUE) { 

... 

} 

Code 59 Examples of For and Foreach Iteration 

 

6.3.2 DFS and BFS Traversal 

Green-Marl allows two fundamental graph traversal methods: Depth-first search (DFS) order 

traversal and Breadth-first search (BFS) order traversal [5].   

 

DFS traversal has the following syntax: 

InDFS (iterator_name : source_name (^) . Nodes [From|;] root_name)  ( (filter_expr) )  

( [navigator_expr] ) 

{   body_sentence  } 

( InPost ((filter_expr2))   {   post_visit_sentence  } ) 

 

The header syntax of DFS traversal is similar to that of For/Foreach iteration. However, here 

source must be a graph type variable and root must be a node in that graph. The semantic is 

to traverse the graph in depth-first order from the root node and to execute the body sentence 

at each node. Every (reachable) node is visited once and only once. The body sentence is 

executed whenever the node is fist visited but prior to visiting its neighbors, i.e. pre-order 

visitation. When there are multiple non-visited neighborhood nodes from current node, it is 

not defined which order those neighbors are visited. For example, if the graph in Figure 7 is 
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applied to Code 60, the result of DFS iteration at line 3 - 5 can be {a,b,c,e,f,d}.  

 

 

Figure 7 An Example Undirected Graph 

 

1: Node(G) a; 

2: Node_Order(G) O1, O2, O3; // An order of nodes of graph G 

//… 

 

  // DFS order (pre-order) traversal  

3: InDFS (s: G.Nodes From a) {  

4:   O1.Push(s); 

5: } 

   // O1 can be {a, b, c, e, f, d} when applied to Figure 7 
 

   // DFS order (post-order) traversal. ‘;’ is a short-hand for From 

6:  InDFS (s: G.Nodes ; a) {} // do nothing on pre-visit 

7:  InPost  {O2.Push(s);}        // do something on post-visit 

   // O1 can be {e, f, c, d, b, a} when applied to Figure 7 
8: } 

Code 60 Example of DFS Iteration 

 

It is also possible to visit the nodes in post DFS order, by using InPost clause, as shown in 

line 6 - 8 of Code 60.  

 

Two optional Boolean expressions can be attached to DFS traversal: filter expression and 

navigator expression. As in For iteration, filter expression is computed at the moment the 

node is first visited and the body sentence is not executed if the value of filter expression is 

false. Navigator expression is similarly computed at the visiting moment and body sentence 

is not executed either if the value is false; however, if the value of navigator expression is 
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false, its neighborhood nodes
8
 are not further considered in traversal. See the following code 

for example.  

 

1: Node(G) a; 

2: Node_Order(G) O1, O2; // An order of nodes of graph G 

//… 

 

  // DFS order traversal with filters 

3: InDFS (s: G.Nodes From a)(s.color == Blue) {  

4:   O1.Push(s); 

5: } 

   // O1 can be {a, b, e, f, d} when applied to Figure 7 
 

  // DFS order traversal with navigators  

6:  InDFS (s: G.Nodes From a) [s.color == Blue] { 

7:   O1.Push(s); 

8: } 

   // O1 is { a, b, d } when applied to Figure 7 
 

Code 61 Example of filters and navigators in DFS traversal 

 

BFS traversal has a similar syntax to DFS traversal, as shown in the following box 

InBFS (iterator_name : source_name (^) . Nodes [From|;] root_name)  ( (filter_expr) )  

( [navigator_expr] ) 

{   body_sentence  } 

( InReverse ((filter_expr2))   {   reverse_visit_sentence  } ) 

 

The semantic of BFS traversal is to traverse the graph in BFS order [5].  That is a node that 

has a shorter hop distance from the root node is visited before the other. Green-Marl also 

allows reverse BFS order traversal using InReverse sentence. See Code 62 for example.  

 

The semantics of filter and navigator in BFS traversal are same as those in DFS traversal. 

 

 

 

 

                                                 

8
 more accurately, its outgoing edges 
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1: Node(G) a; 

2: Node_Order(G) O1, O2; // An order of nodes of graph G 

 

  // DFS order (pre-order) traversal  

3: InBFS (s: G.Nodes From a) {  

4:   O1.Push(s); 

5: } 

   // O1 can be {a, b, c, e, d, f} when applied to Figure 7 
 

6:  InDFS (s: G.Nodes ; a) {} // do nothing on pre-visit 

7:  InPost  {O2.Push(s);}        // do something on post-visit 

   // O1 can be {f, d, e, b, c, a} when applied to Figure 7 
8: } 

Code 62 Example of BFS Iteration 

 

Another big difference between DFS traversal and BFS traversal is, however, their 

consistency model. DFS traversal assumes sequential consistency (Section 5.2.1).  On the 

other hand BFS traversal assumes parallel consistency (Section 5.2.2). Specifically, each 

node, whosever hop distance from the root node is same, is visited in parallel.  As an 

example, suppose a BFS traversal is applied to the graph in Figure 7 stating from node a. In 

this case, node {a} is visited first. Then nodes {b, c} are visited concurrently and then, lastly, 

nodes {d, e, f} are visited concurrently.  

 

 

6.3.3 Other control structures  

The syntax and semantics of other control structures in Green-Marl are quite similar to C 

language.  

 

If and If-Else statements have following syntax: 

If (bool_expr)  then_sentence 

 

If (bool_expr)  then_sentence 

 Else else_sentence 
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Repeated (ambiguous) If-Else is parsed as in C. See the following example 

// The following If-Else is ambiguous.  

If (cond1)  

If (cond2) sent2(); 

Else sent3(); 

 

// The above If-Else is same to below 

If (cond1) { 

   If (cond2) sent2(); 

} 

Else sent3(); 

 

// Below is different from above two 

If (cond1) { 

   If (cond2) sent2(); 

   Else sent3(); 

} 

 

Code 63 Handing of ambiguous If-Else 

 

While and Do-While statements have following syntax. Their semantic is same to C-

language’s. While and Do-While statements adopt sequential consistency.  

While (bool_expr)   

    body_sentence 

 

Do body_sentence 

While (bool_expr)  ; 
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6.4 Procedure Calls and Built-in Functions 

6.4.1 Procedure calls 

A Green-Marl program can make calls to other Green-Marl procedures defined in the same 

file (Section 3.1.1). 

 

Green-Marl procedure calls take the following form, where actual argument list comes within 

a parenthesis, after the procedure name.  

procedure_name ((RHS1, RHS2, …) (; LHS1, LHS2, …)) 

 

The actual argument list is divided into two parts – input arguments and output arguments, 

matching the signature of the procedure being invoked. RHS should be located in place of 

actual input arguments, while LHS in place of output arguments.   

 

However, an actual output argument can be ignored, by using # symbol in place. The 

semantic of this is to discard any value returned by corresponding formal argument, at this 

call-site.  

 

// The following If-Else is ambiguous.  

Local get_min_max(a,b: Int; min,max: Int)  

{ 

   If (a>b) {min = b; max = a;} 

   Else {min = a; max = b;} 

} 

Procedure foo(x,y,z: Int) 

{ 

   Int t1,t2; 

   get_min_max(x,y;  #,t1);  // t1 is the max of x and y 

   get_min_max(z,t1; t2,#);  // t2 is the min of z and t1 

} 

Code 64 Ignoring output arguments 

 

As for numeric, Boolean, node/edge types, the value-passing semantic and the type constraint 

between actual argument and formal arguments are exactly same as normal assignment – 

both for input arguments and output arguments. In other words, (1) RHS values are copied 

into LHS location, and (2) RHS and LHS types should be exactly matched except coercions 

for numeric types.  As for collection and property types, which can be only used as input 
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arguments, the value passing semantic is by reference. See Section 3.1.2 for related 

discussion. 

 

A procedure call can be a separate sentence or a (sub-) expression.  When a procedure call is 

used as a sentence it has to be followed by semicolon. A procedure call sentence may have 

side-effects or output arguments.  

 

The procedure calls are used as a sub-expression should be free of side-effect and output 

arguments.  There are two exceptions: (1) it is the sole element of the expression. (2)  All 

output arguments are ignored. (See Section 3.3 for examples) 

 

 

6.4.2 Built-in Functions and Operations 

There are some types which have built-in functions and operations: Graphs (Section 4.3.1), 

Nodes and Edges (Section 4.4.1) and Collections (Section 4.6.1). Functions or check-class 

operations can be used as a (sub-) expression since they have no side effects. Other 

operations should be always used as a stand-alone sentence.  

 

Green-Marl also defines the following ground-level built-in functions.  The implementation 

of each function is compiler-specific. Each compiler can add more built-in functions. Note 

that Rand() is a function, as far as the language specification is concerned.  

Signature Semantic 

Rand() : Int Returns a random integer number  

Log(Double) : Double Returns the natural logarithmic value 

Pow(Double base, 

 Double exp): Double 

Returns the power function 

Sqrt(Double): Double Returns the square root value 

Exp(Double): Double Returns the base-e exponential value  

Table 24 Ground-level Built-in Functions in Green-Marl 
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7 Interacting with Application Codes 

7.1 Overview 

As discussed in Section 1 (Figure 2), a Green-Marl program is expected to be a part of a large 

user application. That is, a Green-Marl program will be compiled (i.e. translated) into 

equivalent codes in target language whilst each Green-Marl entry procedure becomes a 

callable routine (e.g. C++ function or java method) in the target language. Those entry 

routines are expected to be invoked by the user application. 

 

Therefore there must be a 1-1 type correspondence between Green-Marl type and types in the 

target language for the arguments of the entry function. The compiler should specify such 

correspondence for each target language that it supports. If a certain Green-Marl type is 

implemented as a library class (e.g. Graph), the compiler should provide the library to the 

application as well. The following code provides an example mapping for C++ target. 

 

// Green Marl Program 

Procedure Foo(G: Graph, n: Node(G), Node_Prop<Int>(G) A; t: Float): Bool 

{  

  ... 

} 

// C++ function 

bool Foo(GM_Graph &G, int64_t n, int[] G__A, float& t) 

{ 

  ... 

} 

Code 65 Signatures of Green-Marl procedure and translated c++ function 

 

When invoking Green-Marl entry procedure from the application, the user should ensure 

below invariant; the execution behavior is undefined otherwise. 

 The Green-Marl entry procedure must be invoked under (virtually) sequential 

context. (Section 3.1.1) 

 There should be no aliases between graphs, collections and properties in the argument 

lists. (Section 3.1.3) 
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7.2 Embedding Foreign Syntax 

The syntax set of Green-Marl is specially designed for graph related data processing only. 

However, there can be cases when the user may want to use certain or library calls of the 

target language even during graph data processing.  For such cases, Green-Marl allows 

embedding of foreign syntax in Green-Marl program. This section explains such mechanism 

in Green-Marl. 

 

7.2.1 Foreign types 

Green-Marl allows including foreign types in Green-Marl program. A foreign-type is any 

name followed by a $ symbol, as shown inCode 66 . Foreign type variables can be handed as 

arguments or be declared inside a procedure (line 1, line 3).  Assignment between foreign 

typed objects is allowed (line 4); a Green-Marl compiler simply regards all the foreign types 

being compatible with each other. The compiler, however, may have an option to set all the 

foreign types not compatible with each other; in that case line 4 of Code 66  is an error. 

 

// The compiler can safely change following for into foreach 

1: Procedure Foo (G: Graph, T: $UDT1) 

2: { 

3:  $UDT2 X;   // The user can declare of foreign-type variable 

4:  X = T;     // compiler just believes every foreign type is equivalent 

5: } 

 

Code 66 Foreign Types in Green-Marl 

 

A Green-Marl compiler simply keeps the original name string (after $ mark) and use the 

string in place of type name in the generated code; the type rule of the target language will be 

enforced by the target language compiler.   

 

7.2.2 Foreign expressions  

Green-Marl allows embedding of foreign syntax in place of any expression. Note that, in 

Green-Marl, expressions are always free of side-effects. Therefore the user should ensure 

foreign expression has no side-effect, either; otherwise the behavior of those side-effect is 

undefined. 
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Foreign expression is denoted by any string inside [], in place of any Green-Marl expression. 

As an example, the string inside [] in line 4 of Code 70 is a foreign expression. 

 

A Green-Marl compiler keeps such string and put it as-is in the generated code except Green-

Marl variables used inside the foreign expression; such Green-Marl variables are denoted by 

names followed after $ symbol inside the foreign expression. In Code 67, $n.B and $T are 

the Green-Marl variables used in foreign expression. During target code generation, those 

Green-Marl variables are translated the same ways as normal Green-Marl variable accesses.
9
 

Also since Green-Marl knows which variables are being read, it can prevent their anti-

dependent sentences from being reordered prior to the foreign expression. 

1: Procedure Foo (G: Graph, A,B: N_P<Float>(G),  T: $UDT1) 

2: { 

3:   Foreach (n: G.Nodes) { 

4:     n.A = n.A + [log($n.B) + $T->getValue()] * 0.5; 

5:     n.B = n.B + 1; // compiler should not re-order line 5 and line 4 

6:   } 

7: } 

Code 67 Foreign Expressions in Green-Marl 

 

A Green-Marl compiler regards the result type of the foreign expression being compatible 

with any type. The type rule in the generated target code will be eventually enforced by the 

target language compiler.  

 

 

7.2.3 Foreign sentences  

Foreign sentences in Green-Marl are similar to foreign expressions except that foreign 

sentences can have side effects. In Green-Marl foreign sentences are any string inside [], in 

place of Green-Marl sentences.  

 

In Code 68, as an instance, line 6 – 9 inside [] are foreign sentences. The compiler keeps the 

string as-is in the generated code, except Green-Marl variables inside the string; Green-Marl 

                                                 

9
 For example, if properties are mapped into arrays and Node into integer, n.B would be translated 

into B[n]. 
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variables are denoted by $ in the string.  Foreign sentences can be optionally followed by the 

list of variables modified inside the foreign sentence.   Line 10 and 13 in Code 68 are 

examples of it.  

1: Int y,x,z; 

2: x=0; 

3: While (x <= 10) 

4: { 

    // sentences inside [] are foreign sentences.  

    // $x, $y, $z are Green-Marl variable accesses. 

    // [y,z] are modified variables. 

    // :: can be replaced with a keyword Mutating  

5:   If (x == 0) [ 

6:       printf(“This is the first execution:%d”, $x); 

7:       FILE *f = fopen(“data_file”, “r”); assert(f!=NULL); 

8:       $z = fscanf(f, “%d”, &$y); 

9:       fclose(f); 

10:  ] :: [y,z] 

11:  Else { y = y + 1; x = x + 1; } 

 

    // Compiler knows property A is mutated though iterator n.  

12:  Foreach(n:G.Nodes)  

13:      [mutate(&$n.A, $y);]::[n.A] 

12:} 

Code 68 Foreign Sentences in Green-Marl 

 

 

7.2.4 Foreign functions  

<todo: declare foreign functions and call them in expression or sentence, more conveniently 

then foreign expression. Potentially with a little more of type checking> 

 

7.2.5 Target Header Include  

<todo: User can add includes in the generated file. Whatever it can be> 

// compiler will generate appropriate include syntax at the beginning of the 

generated file. String inside <> will be simply copied.  

Include<Java.util.Rand.*>;  

 

Local Foo() {…} 

Local Bar() {…} 

Code 69  Inclusion of Target Header File  

 



93 

 

8 Green-Marl Code Examples 

This section shows a few popular graph algorithms written in Green-Marl.  Note that Code 1 

in Section 1.2 is another good example of graph algorithm written in Green-Marl. 

 

1: Proc conductance(G: Graph, member: N_P<Int>(G), num:Int) : Float 

2: { 

3:    Int Din, Dout, Cross; 

4:    Din =  Sum(u:G.Nodes)(u.member == num){u.Degree()}; 

5:    Dout = Sum(u:G.Nodes)(u.member != num){u.Degree()}; 

6:    Cross =  Sum(u:G.Nodes)(u.member == num){  

7:                Count(w:u.Nbrs)(w.member != num)};      

 

8:    Float m = ((Din<Dout) ? Din : Dout); 

9:    If (m==0) Return (Cross == 0) ? 0.0 : +INF; 

10:   Else Return Cross / m; 

11: }  

Code 70  Conductance in Green-Marl 

 

Code 70 is Green-Marl program to compute Conductance of a Sub-graph (more accurately, 

of a cut) [5]. Note that a sub-graph is represented as a membership property of a node. The 

program is very close to the definition of the conductance; it counts the number of edges 

inside the sub-graph, outside the sub-graph, and the crossing edges and computes the value. 

Note that a GM compiler can first translate three summations in line 4 to 6 into three foreach 

loops and then merge them together into one loop.  
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1: Proc pagerank(G: Graph, e,d: Double, pg_rank: N_P<Double>(G), max:Int) 

2: { 

3:   Double diff; 

4:   Double N = (Double) G.NumNodes(); 

5:   G.pg_rank = 1 / N; 

6:   Do {   

7:       diff = 0.0; 

8:       Foreach(t: G.Nodes) { 

9:          Double val = (1-d) / N + d * 

10:             Sum(w: t.InNbrs)(w.OutDegree()>0) {w.pg_rank / w.OutDegree()}; 

  

11:          diff += | val - t.pg_rank |; 

12:          t.pg_rank <= val @ t; 

13:      }  

14:      cnt ++; 

15:   } While ((diff > e) && (cnt < max)); 

16:}  

Code 71  PageRank in Green-Marl 

 

Code 71 is a Green-Marl program that computes page-rank of a graph [6]. Again Green-Marl 

program closely resembles the definition of page-rank algorithm Note that at line 12, pg_rank 

is being defer-assigned and there is no read-write data race between line 12 and line 10.  

 

1: Proc CC(G: UGraph, membership: N_P<Int>(G)):Int 

2: { 

3:   Int numC = 0; 

4:   G.membership = -1; 

 

     // Sequential Iteration of Nodes 

     // Visit nodes that have not included in any component yet. 

5:   For (s: G.Items) (s.membership == -1) {  

       // Do BFS and mark all reachable nodes 

6:     InBFS(t: G.Nodes From s) { 

7:         t.membership = numC; 

8:     } 

9:     numC++; 

10:  } 

11:  Return numC; 

12:}  

Code 72  Connected Components 

 

Code 72 is a Green-Marl program that obtains connected components [5] of an undirected 

graph. The idea is to perform BFS traversal from any unmarked node and mark every visited 

node; all the newly marked nodes belong to the same component. And this BFS is repeated 

from each unmarked nodes, it until every node is marked.  
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1: Proc SCC_kosaraju(G: Graph, membership: N_P<Int>(G)):Int 

2: { 

3:   Int numC = 0; 

4:   Node_Order(G) P; 

5:   G.membership = -1; 

6:   G.filter  

 

   // Obtain post DFS order 

7:   For(s: G.Nodes) (! P.Has(s)) {  

8:      InDFS(t: G.Nodes from s)  

9:      InPost { P.Push(t);} 

10:  } 

 

   // In reverse, post DFS order 

11:  For (s: P^.Items) (s.membership == -1) { 

12:     InBFS(t: G^.Nodes From s) [t.membership==-1] { 

13:          t.membership = numC; 

14:     } 

15:     numC++; 

16:   } 

17:  Return numC; 

18:}  

Code 73  Strongly Connected Components (Kosaraju’s Algorithm) 

 

Unlikely to the case of connected components in undirected graphs, obtaining strongly 

connected graphs in undirected graphs requires a little more computation; Code 73 computes 

strongly connected component, using Kosaraju’s Algorithm [5]. This algorithm first obtains 

post-DFS order for all the nodes of a graph (line 7-10). Then it iterates the nodes in reverse of 

that post-DFS order (line 11) and performs a BFS traversal on a ‘transposed’ graph of G (line 

12). Transposed graph means the graph where the direction of each edge has been reversed, 

and is denoted by G^. Also this BFS traversal only goes through the nodes that have not been 

marked yet (line 12). 
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9 Ideas for Future Versions 

 Multi-set 

[Idea]  Multi-set is a collection that is non-unique and non-ordered. The missing 4
th

 element 

[Issue] Not Much 

[Syntax Suggestion]  

Node_Multiset(G) M1; 

N_M(G) M2; 

Edge_Multiset(G) M3; 

E_M(G) M4; 

// same operations as set. 

 

 Multiple file compilation 

[Idea]  Able to write source codes in multiple files 

[Issue] Green-Marl specification demands inter-procedural analysis so that it can figure out 

data-races. However, if a procedure calls another procedure whose body is not available, such 

an inter procedural becomes hard. We can store some information about which of the 

arguments can be potentially mutated and how.  

 

 String primitive 

[Idea]  String as a primitive; string cannot be mutated. It can only be copied. 

[Issue] String is not well handled in CUDA implementation. Maybe CUDA target can simply 

reject codes that contain string types.  

     In C++ target, memory leakage should be well handled.  

     Do we need NIL for String?   

[Syntax Suggestion]  

String s = “Hello World”;  // assignment 

==, !=, <, <=, >=, >       // comparison operator 

::                         // string concatenation (results a new string) 

s.contains(“Hello”):Bool   // contains substring (returns Bool) 

… // a few more built-ins. Compiler implementation can add more 
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 Continue, Break 

[Idea]      Continue and Break Statement 

[Issue]  Continue => Stop executing current instance; fits well with parallel consistency.  

Break ==> Stop executing all execution instances of current loop; semantic becomes non-

deterministic with parallel consistency. (Other loop instances may or may not stop.) 

 

 Named Continue, Break 

[Idea]    Continue and Break Statement for nested loops.  

[Syntax Suggestion]  

For (t: G.Nodes) { 

   For (s: t.Nbrs) { 

       For(r: s.Nbrs){ 

            If (r.condiiton)  

                Continue @ t;  

            Sent_1(); 

       } 

       Sent_2(); 

   } 

   Sent_3(); 

}  

[Issue]   Under sequential consistency, the semantic is very clear. (Continue at t means to skip 

all the remaining instances of r and s and begin new iteration with another t.) But what is its 

semantic under parallel consistency? (i.e. when For->Foreach?) 

 

 Named while loop 

[Idea]    Giving name indicator to while loop so that it can be used with @ syntax 

[Syntax Suggestion]  

While (NAME1: z < 10) { 

    Y += 3 @ NAME1; 

    z = z + 1; 

}  

[Issue]   In case of Do-While, the declaration of name comes ‘after’ its use.  

Does this ‘NAME’ reside in the same name space as variable names? 
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 Acknowledged Conflicting Writes 

[Idea]    “I know that this write will conflict with some other. But it is harmless. So shut up 

and stop whining, you stupid compiler.” 

[Syntax Suggestion]  

Foreach (s: G.Nodes){ 

   Foreach (t: s.Nbrs) { 

       if (somecondition (G, s, t)) 

           t.val #= s.val; // User knows it is okay to allow this conflict. 

   } 

} 

// There would be #= and #<= 

 

 

 Visibility Control for Collective Types 

[Idea] Just like reduction has its bound, operations on collection may do the same as well. “I 

will grow this set during this loop.” 

[Syntax Suggestion]  

Node_Set(G) S; 

Foreach (s: G.Nodes){ 

   Foreach (t: s.Nbrs) { 

       if (somecondition (G, s, t)) 

           S.Add(t) @ s;  // add t to s. S is being grown up during s-loop. 

   } 

} 

// all the addition to set S can happen here, simultaneously. 

 

 

 Node->Edge  

[Idea]  Direct a node from an edge. And vice versa. “Give me the node at the end of this 

edge.” Or “Give me the edge that connects these two nodes.” 

[Syntax Suggestion]  

Node(G) n; 

Edge_Set(G) ES; 

Foreach (t: s.Nbrs) { 

Edge(G) e = t.Edge(); // an edge from s to t.  t should be an iterator from 

nbr family range word. 

ES.Add(e); 

} 

 

 



99 

 

 

 Neighborhood Marker 

 [Idea]  Instead of actually go to neighbor and see, mark the information locally 

[Syntax Suggestion]  

Neighbor_Set(G) NS; 

Foreach (t: G.Nodes) { 

   Foreach (s: t.Nbrs) { 

       If (s.Color == Blue)  

           t->NS.Add(s);  // Mark Blue Neighbors 

   } 

} 

Foreach (t: G.Nodes) { 

   Foreach (s: t->NS) { //Iterate Blue Nodes only. Saves execution time. 

        s.val = 0; 

   } 

} 

[Issue]  This is only for performance optimization. 

 

 Re-Ordered Iteration 

[Idea]  Instead of iterating a collection with the natural order, let the user iterate it any 

specified order.  

[Syntax Suggestion]  

Node_Order(G) O; 

Node_Set(G) S; 

 

 

For (o: O.Items)  

InOrder(o.A+o.B) // iterate elements of O as increasing order of o.A + o.B 

{ 

   // do something in that order 

   // if the value of o.A or o.B is being modified inside the loop, 

   // the result is undefined. Or an error?  

} 

 

For (o: S.Items)  

DeOrder(o.A+o.B) // iterate elements of O as decreasing order of o.A + o.B 

{ 

  // ... 

} 
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 Print Statement 

[Idea]  Print something. Compiler guarantees each print does not mixed up with other prints. 

Where-to-print is adjustable by compiler/runtime. 

[Syntax Suggestion]  

Foreach (n: G.Nodes)  

{ 

    Print “Hello From node ” :: n :: “.”; // prints are not mixed-up. 

} 

 

 Error Statement 

[Idea]  Stop execution and give control back to the user application. In a parallel region, other 

instances may continue to execute. The exact mechanism of error handling is compiler 

specific. (e.g. Java Execption. Or just a Error Flag, …) 

[Syntax Suggestion]  

Foreach (n: G.Nodes)  

{ 

    If (n.something_is_wrong) 

       Error “Something is Wrong”; 

} 
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 Collection of  Collections 

[Idea]  A homogeneous collection of  Set/Order/Sequence/MultiSet. 

            Always a order (Uniqueness is gaurenteed by ‘copying’. Orderedness is easy. Thus 

essentially becomes a queue.) 

            Adding an item into the collection is making a copy. 

            Reference can be obtains via special syntax. 

 [Issue] Now we are introducing aliases. But hopefully, compiler can figure out where those 

aliases are. 

 

Collection<Node_Set(G)> C;  // Allows homogeneous collection only 

 

Node_Set(G) S; 

 

C.Push(S); // Add a copy of S into C. So there is no alias between any  

           // therefore every element in the collection is distinct.       

 

// iterator c is an reference to the element of the collection 

Foreach(c: C.Items) {   

   // iterator d is again a reference 

   Foreach(d: C.Items)(d.Size() >= c.Size()) {   

         // here c and d can be an alias.  

         // compiler should give an error or warning.      

         Foo(c,d);  

 

         // this is a copy. So T cannot be an alias to any other. 

         Node_Set(G) T = c;  

         Foo(T, d); // therefore this is okay. 

   } 

} 

 

// Reference can be only obtained by ‘structural way’ 

ChooseMax(c:C.Items){c.Size()) 

{ // c is a reference to the collection. 

// c is the item of C, which maximizes c.Size() 

do_something_with(c) 

} 
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