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Iterative dataflow analyses (IDFAs) are important static analyses employed by tools like compilers for en-

abling program optimizations, comprehension, verification, and more. During compilation of a program,

optimizations/transformations can render existing dataflow solutions stale, jeopardizing the optimality and

correctness of subsequent compiler passes. Exhaustively recomputing these solutions can be costly. Since

most program changes impact only small portions of the flowgraph, several incrementalization approaches

have been proposed for various subclasses of IDFAs. However, these approaches face one or more of these

limitations: (i) loss of precision compared to exhaustive analysis, (ii) inability to handle arbitrary lattices and

dataflow functions, and (iii) lacking fully automated incrementalization of the IDFA. As a result, mainstream

compilers lack frameworks for generating precise incremental versions of arbitrary IDFAs, leaving analysis

writers to create ad hoc algorithms for incrementalization – an often cumbersome and error-prone task.

To tackle these challenges, we introduce IncIDFA, a novel algorithm that delivers precise and efficient

incremental variants of any monotone IDFA. IncIDFA utilizes a two-pass approach to maintain precision.

Unlike prior works, IncIDFA avoids resetting the dataflow solutions to least informative values when dealing

with strongly-connected regions and arbitrary program changes. We formally prove the precision guarantees

of IncIDFA for arbitrary dataflow problems and program changes. IncIDFA has been implemented in the

IMOP compiler framework for parallel OpenMP C programs. To showcase its generality, we have instantiated

IncIDFA to ten specific dataflow analyses, without requiring any additional code for incrementalization. We

present an evaluation of IncIDFA on a real-world set of optimization passes, across two different architectures.

As compared to exhaustive recomputation, IncIDFA resulted in a speedup of up to 11× (geomean 2.6×) in
incremental-update time, and improvement of up to 46% (geomean 15.1%) in the total compilation time.
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1 Introduction

Iterative dataflow analyses cover substantial number of static analyses that compute meaningful

information (for example, reaching definitions, live variables, points-to information, and so on) by

propagating the information across any flow graph of the program (such as control-flow graphs

and call-graphs) until a fixed-point is reached. A general lattice-theoretic framework for IDFA was

first given by Kildall [70], followed by a plethora of other improvements [26, 28, 37, 49, 50, 53, 59,

62, 63, 66–69, 89, 96, 97, 105, 130, 146]. Given the generality and ease of use of the IDFA framework,
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it is fairly common for compiler writers to implement custom instantiations of IDFA with arbitrary

lattices to meet their specific requirements.

These analyses results are used by many optimizations invoked during compilation, which in

turn lead to many programs changes. These changes may render existing dataflow solutions stale,

jeopardizing the optimality, or even correctness, of the downstream compiler passes. Exhaustively

recomputing the dataflow solutions in response to such program changes by rerunning the analyses

from scratch can be cost prohibitive. Similar challenges arise throughout a program’s lifecycle,

such as during development and debugging in an IDE or CI pipelines, or even during execution by

managed runtimes (such as during hot-code replacement in JIT compilers).

Since most program changes typically affect only a small region of the program or a small part

of the dataflow solution, prior research has proposed different incremental analysis algorithms

for specific IDFA problems [17, 24, 25, 45, 48, 72, 75, 76, 79, 82, 101, 122, 127, 144, 149, 150, 152]. An

incremental analysis takes the old dataflow solution, the set of program changes performed, and

the updated program, to obtain the new dataflow solution without rerunning the dataflow analysis

on the updated program from scratch. Clearly, designing custom incremental algorithms for each

new dataflow problem can be tedious and error-prone.

To address these challenges, for nearly four decades, researchers have explored generic incremen-

talization approaches for different subclasses of IDFA [7, 27, 32, 42, 65, 67, 83, 90, 98, 138, 139, 151].

Unfortunately, despite extensive research, current incrementalization approaches
1
suffer from one

or more of the following limitations:

• From-scratch precision. While incremental approaches like those by Cooper and Kennedy

[27], Ghoddsi [42], Nichols et al. [90], Van der Plas et al. [139] (and its improvement by Van der Plas

et al. [138]) offer faster convergence to a fixed-point, they do not guarantee the precision achieved

by complete invalidation and exhaustive recomputation of the dataflow solution from scratch. This

loss of precision can hinder the optimality of various client optimization passes. A critical analysis

of the precision guarantees of contemporary incrementalization algorithms has been provided by

Burke and Ryder [16].

• Arbitrary lattices and dataflow functions. Many prior works are limited by the types of lattices

or dataflow functions they can handle. Examples include works of Keables et al. [65] and Zadeck

[151] (a subset of set-union problems); Ghoddsi [42] and Khedker [67] (bit-vector analyses/gen-

kill/separable analyses); Pollock and Soffa [98], Marlowe and Ryder [83] (distributive dataflow

problems); Arzt and Bodden [7], and Do et al. [32] (IFDS/IDE [89, 105] problems). Further, many

restrictively assume that changes in the amount of information at a basic block (such as updated

GEN and KILL sets [87]) can be determined by inspecting only that block, without requiring the

dataflow results from the other blocks. This limits their applicability to various widely-used and

important dataflow problems, such as points-to analysis, constant-propagation analysis, and so on.

• Automated incrementalization of new dataflow problems.Most existing approaches that pre-

serve precision, such as those by Marlowe and Ryder [83], Pollock and Soffa [98], Zadeck [151],

rely on detailed case analysis of the type of program changes performed, and their implica-

tions for specific dataflow analyses under consideration (unlike Khedker [67]). For new or ar-

bitrary dataflow problems, such change-impact relationship depends on the semantics of the

abstract domain, and must be manually provided by the analysis writers, making automation

difficult, and incrementalization error-prone. The lack of formal correctness proofs in many ap-

proaches [7, 27, 32, 42, 65, 83, 90, 98, 138, 139, 151] casts further doubt on their applicability to new

dataflow problems.

1
In this section, we focus solely on incrementalization schemes for iterative methods for full dataflow analysis. Other

approaches, such as logic-programming-based, elimination-based, or demand-driven methods are discussed in Section 7.
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/* Commit Summary (b323f4f)
* [LoopRotate] Fix DomTree update logic for unreachable nodes. Fix PR33701.
* LoopRotate manually updates the DoomTree by iterating over all predecessors of a basic

block & computing the Nearest Common Dominator. When a predecessor happens to be
unreachable , `DT.findNearestCommonDominator ` returns nullptr.

* This patch teaches LoopRotate to handle this case and fixes PR33701. */
...
// Brute force incremental dominator tree update. Call findNearestCommonDominator on all
// CFG predecessors of each child of the original header.
do {

Changed = false;
for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) { ...

- pred_iterator PI = pred_begin(BB); BasicBlock ∗NearestDom = ∗PI;
- for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
- NearestDom = DT->findNearestCommonDominator(NearestDom, ∗PI);
+ BasicBlock *NearestDom = nullptr;
+ for (BasicBlock *Pred : predecessors(BB)) {
+ // Consider only reachable basic blocks.
+ if (!DT->getNode(Pred)) continue;
+ ...
+ NearestDom = DT->findNearestCommonDominator(NearestDom, Pred);
+ } ...

}
// If the dominator changed , this may have an effect on other predecessors ,
// continue until we reach a fixpoint.

} while (Changed);

(a) LoopRotation.cpp:469-515 (LLVM), showing a bug-fixing commit; multi-line comments are the commit-message.

// We do not update postdominators , so free them unconditionally.
free_dominance_info(CDI_POST_DOMINATORS);
// If we removed paths in the CFG , then we need to update dominators as well.
// I haven 't investigated the possibility of incrementally updating dominators.
if (cfg_altered) free_dominance_info(CDI_DOMINATORS);

(b) tree-ssa-dce.c:1693-1711 (GCC), where the comments show the need for a generic incremental IDFA.

Fig. 1. Example snippets from LLVM and GCC, illustrating the need for a generic incremental iterative

dataflow algorithm. The comments are written by the pass writers.

Given these limitations, it is not surprising that mainstream compilers, such as LLVM [74, 78],

GCC [40, 128], Soot [125, 137], Rose [100], JIT compilers (OpenJ9 [57], HotSpot [95], V8 [43]), and

so on, do not implement a framework that automatically generates incremental versions of arbitrary

IDFAs without sacrificing precision guarantees. This leaves analysis writers with two options:

design their own ad hoc incremental variants for various standard and custom analyses, which is

cumbersome and error-prone, or resort to exhaustive recomputation of dataflow solutions, which

is cost-prohibitive. Fig. 1 illustrates two such scenarios from real-world compilers, LLVM and GCC.

Snippet 1a demonstrates the error-prone nature of ad hoc incremental update implementations

– the commit summary, and the lines marked with “-” and “+”, indicate relevant bug-fixes in an

LLVM commit [77]. Snippet 1b reveals how developers resort to invalidating (and later, exhaustively

recomputing) the dataflow solutions due to the lack of an incremental update mechanism in GCC.

Proposed Solution. To address these challenges, we introduce IncIDFA, a novel algorithm that

provides a precise and efficient incremental version of any monotone IDFA. IncIDFA ensures from-

scratch precision using a methodical two-pass approach on each strongly-connected component

(SCC) of the program in topological order. The first pass, termed initialization-pass, efficiently

updates the dataflow solution to a state that guarantees no loss of precision. Unlike prior two-pass

approaches [42, 98, 151], IncIDFA avoids resetting the dataflow solutions to least informative values

when dealing with strongly-connected regions and arbitrary program changes. The second pass,

stabilization, derives the final fixed-point solution by applying the standard iterative method. To

prove that the final solution is the maximum fixed-point (MFP) solution, we also present a formal

description of IncIDFA, proving its soundness and precision guarantees for any monotone IDFA
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with arbitrary lattices and dataflow functions. IncIDFA is fully automated, requiring only the

standard definition of the exhaustive IDFA.

It is important to clarify that this manuscript does not aim to propose a compiler design that

identifies (i) when to trigger the incremental update of a specific dataflow solution, or (ii) which

program changes to handle during such triggers. Instead, our goal is to present a generic incremental

update algorithm that can be instantiated to various specific incremental IDFAs, which can then be

invoked by any compiler framework at appropriate compilation points with required arguments.

Contributions.

• We propose IncIDFA, a generic algorithm for fully automated incrementalization of any

monotone unidirectional IDFA with arbitrary abstract domain, handling arbitrary program changes.

IncIDFA guarantees that the obtained solution matches the maximum fixed-point (MFP) solution.

• We provide a formal description of IncIDFA, along with proofs for its soundness and precision

guarantees. The proofs ascertain the applicability of IncIDFA to any monotone unidirectional IDFA

with arbitrary dataflow functions and finite-height lattices.

• We introduce a novel heuristic, termed accessed-keys heuristic, to further reduce the frequency

of transfer-function applications. This heuristic proposes an option to avoid invoking transfer

functions, when the relevant portions of the incoming flow-map remain unchanged since after the

last processing of a node (a common case).

• We have implemented IncIDFA in the self-stabilizing [93] IMOP compiler framework [92]

for OpenMP C programs. We have also created ten concrete instantiations of IncIDFA, without
requiring any additional incrementalization-specific code for them, thus reaffirming its generality.

• We evaluated IncIDFA using a set of real-world optimization passes (BarrElim; see [93]) on
13 benchmark programs from three standard OpenMP C suites (NPB-OMP 3.0 [140], SPEC OMP

2001 [8], and Sequoia [120]). Across two architectures, our evaluation shows up to 11× speedup
(geomean 2.6×) in IDFA-update time, and up to to 46% improvement (geomean 15.1%) in the total

compilation time, when using IncIDFA as compared to exhaustive rerun of the dataflow analyses.

2 Background And Terminology

In this section, we informally describe a few key concepts used in the paper.

A flowgraph statically captures the runtime behaviour of a program, with nodes representing

units of computation (such as basic blocks in control-flow graphs, or functions in call-graphs),

and edges representing the flow of control. For simplicity, we assume that each node is unique,

contains a single statement or predicate, and is immutable. Note that immutability is not a limiting

assumption: mutations can be modeled by replacing the old node with a modified one.

Iterative Dataflow Analysis (IDFA) computes meaningful information (called flow-facts)
at each node of the flowgraph by propagating data across the flowgraph until a fixed-point is

reached. Each node 𝑛 has two flow-facts: IN𝑛 and OUT𝑛 . The dataflow equations for IDFA are

standard [70, 87]: IN𝑛 :=
.

𝑝∈pred(𝑛) OUT𝑝 , and OUT𝑛 := 𝜏𝑛(IN𝑛), where
.

is the meet operation

defined by the associated lattice, and 𝜏𝑛 is the transfer-function of 𝑛, reflecting its impact on IN𝑛 .
Informally, the least fixed-point solution of these equations, starting with the uninitialized value

(⊤) for all nodes, is called themaximum fixed-point (MFP) solution. Any solution that, when

applying the equations until fixed-point, converges to the MFP solution, is regarded as a safe-

initial-estimate. Without loss of generality, we focus solely on forward-dataflow analyses. All

results in this manuscript apply analogously to backward-dataflow analyses as well.

Program changes obtained upon transforming a flowgraph 𝑃 to 𝑃 ′ can be defined using four

sets: (i) nodes added, (ii) nodes removed, (iii) edges added, and (iv) edges removed. For the given

program changes, the set of seed nodes contains those that may be directly impacted (that is,
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y=2;
for(z=0; z<10; z++){

L1: ...
L2: y = ident(y);

}
L3: print y;
...

(a) Input code
(b) CFG of the input program

Node OUT map

N0 {y:2}

N1 {z:0, y:2}

N2 {z:⊥, y:⊥}
N3 {z:⊥, y:⊥}
N4 {z:⊥, y:⊥}
N5 {z:⊥, y:⊥}
N6 {z:⊥, y:⊥}

(c) MFP for Fig. 2b

(d) CFG after eliding N4

Node OUT map

N0 {y:2}

N1 {z:0, y:2}

N2 {z:⊥, y:⊥}
N3 {z:⊥, y:⊥}

N5 {z:⊥, y:⊥}
N6 {z:⊥, y:⊥}

(e) Imprecise fixed-point for Fig. 2d

Node OUT map

N0 {y:2}

N1 {z:0, y:2}

N2 {z:⊥, y:2}
N3 {z:⊥, y:2}

N5 {z:⊥, y:2}
N6 {z:⊥, y:2}

(f)MFP for Fig. 2d

Fig. 2. An example to illustrate the imprecision issues with restarting-iterations. Fig. 2a shows an input

program, Fig. 2b shows its control-flow graph (CFG), and Fig. 2d shows the CFG after eliding N4. Fig. 2c and

Fig. 2f show the constant-propagation MFP flow maps at various nodes, for Fig. 2b and Fig. 2d, respectively.

Fig. 2e shows the imprecise fixed-point flowmaps obtained using restarting iterations for Fig. 2d.

require recalculation) due to the changes. For forward IDFAs, this set includes (i) newly-added nodes,

and (ii) nodes whose predecessors-set, pred, has changed. We use the term IDFA-stabilization to

refer to updating the stale dataflow solution to conform to the modified program 𝑃 ′. Let 𝑣 be the
fixed-point solution for the original program 𝑃 . To compute the new fixed-point 𝑣 ′ for 𝑃 ′, there
are naturally two options: (i) complete invalidation and re-computation (CompIDFA) of fixed-point
solution 𝑣 ′ by applying the exhaustive IDFA on 𝑃 ′ from scratch, or (ii) incremental update, where

𝑣 ′ is computed from 𝑣 , by taking the program changes into consideration. Incremental updates

generally involve fewer computations, and are thus expected to be faster.

Restarting iterations is one of the simplest approaches to incremental updates [27, 42, 90, 138,

139], where the standard IDFA is restarted from the seed nodes to reach a fixed-point solution. This

technique produces sound but often imprecise solutions [16], as shown in Section 3.1. While Ryder

et al. [109] outlined sufficient conditions under which this technique obtains precise solutions, the

conditions are impractical since they require prior knowledge of the new solution [83].

3 Intuition for IncIDFA

In this section, we first explore the causes of imprecision in restarting iterations (Section 3.1). We

then gradually build the intuition for the proposed IncIDFA algorithm in Sections 3.2, 3.3, and 3.4,

before giving a formal description of IncIDFA in Section 4.

3.1 Ghost Mappings: Imprecision Issues with Restarting Iterations

Though the restarting-iterations approach (see Section 2) for incrementalizing an IDFA is typically

faster than CompIDFA (see Section 2), it may produce imprecise results in practice. We now discuss

these imprecision issues by demonstrating the problem of ghost mappings.

Example 3.1 (Ghost Mappings). Consider the example program shown in Fig. 2a, along with its

control-flow graph (CFG) in Fig. 2b. Let us assume that the code at L1 does not write to the variable

y. The compiler derives the MFP solution at each program node for intra-procedural flow-sensitive

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 102. Publication date: April 2025.
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constant-propagation analysis [87] as shown in Fig. 2c. Note that at L2 the intra-procedural analysis

assigns ⊥ to 𝑦. Later, if the compiler determines that the function ‘ident’ is an identity function,

then a compiler pass may identify the assignment at L2 as redundant and elide it, resulting in the

removal of node N4 from the CFG. This changes the immediate predecessor of node N5 to node N3,

making the set of seed-nodes due to this transformation {N5}.

As discussed in Section 2, the restarting-iterations approach resumes the standard IDFA algorithm

with the seed-nodes ({N5}), keeping the existing OUTmaps of all nodes unchanged. When processing

N5, its new IN is computed from the OUT of its predecessor (N3). However, since the OUT of N3 still

holds the stale value for y (⊥), the new IN(y) and OUT(y) for N5 do not change during this pass of

restarting-iterations, resulting in an imprecise fixed-point solution that is not the MFP solution

(shown in Fig. 2e and Fig. 2f, respectively). Consequently, the compiler cannot replace the variable

y with the literal constant 2 at L3. □

Notably, there is no node in Fig. 2d that assigns ⊥ to y, yet this mapping appears in the OUT
flowmap of all nodes within the cycle N2→ N3→ N5→ N2, as well as in node N6. We term such

mappings in the affected flowmaps as ghost mappings.
Let us understand why ghost mappings exist in the fixed-point solution obtained using the

restarting-iterations approach: While processing a node (say 𝑛) with this approach, the new IN
flowmap for 𝑛 is obtained by taking the meet of the OUT flowmaps of all its predecessors. If a

predecessor 𝑝 of node 𝑛 is reachable from any of the seed-nodes, the OUT flowmap of 𝑝 might

not correspond to a safe-initial-estimate (see Section 2) until 𝑝 itself has been processed at least

once. Hence, if node 𝑛 is processed before node 𝑝 , the new IN flowmap for 𝑛 may become an

unsafe-initial-estimate due to the stale OUT flowmap of node 𝑝 . When node 𝑛 and 𝑝 are part of a

cycle in the CFG, the order of processing of nodes does not resolve the issue, allowing the unsafe-

initial-estimate to propagate within the cycle, leading to ghost mappings. This is one of the main

causes of imprecision
2
in the fixed-point solution obtained using the restarting-iterations approach.

3.2 Ensuring Precision with Naïve Two-Pass Approach

Observation A. The presence of cycles in the control flow graph (CFG) can cause unsafe-initial-
estimates to propagate during incremental updates, leading to the occurrences of ghost mappings.

Node OUT map

N0 {y:2}

N1 {z:0, y:2}

N2 {z:⊤, y:⊤}
N3 {z:⊤, y:⊤}
N4 {}

N5 {z:⊤, y:⊤}
N6 {z:⊤, y:⊤}

Fig. 3. After the first-pass

of Proposal A on Fig. 2d.

Proposal A: Naïve InitRestart Approach. This naïve two-pass
approach is based on the observation that the IN and OUT flowmaps

of only those nodes may get updated in the final MFP solution that

are reachable from any of the seed-nodes. In the first pass, the OUT
flowmaps of all nodes reachable from the seed-nodes are reset to map

all domain-elements to the initial value (⊤). In the second pass, the

restarting-iterations approach is applied until fixed-point is reached.

Note that the OUT flowmaps from the first pass are trivially safe-initial-

estimates. Since there are no unsafe-initial-estimates, ghost mappings

cannot occur in the final solution. Hence, the obtained fixed-point so-

lution is also the maximum fixed-point (MFP) solution.

Example 3.2. Revisiting the compilation in Fig. 2, when the compiler uses Proposal A to update

the dataflow solution for Fig. 2d, it correctly computes the MFP in Fig. 2f. The nodes reachable

from seed-node N5 are {N2, N3, N6, N5}. In the first-pass, the OUT flowmaps for these nodes are

reset to map all domain-elements to ⊤, as shown in Fig. 3. With these safe-initial-estimates, the

2
We conjecture (but do not claim) that ghost-mappings are the sole source of imprecision. Note that our formal proofs in

Section 4 cover imprecision arising out of any source.
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y = 2;
z = 0;
do {

e: ...
x: y = y;
s: z++;

} while (a: z < 5);
b: print y;
...

(a) Input code

Node OUT map

e {z:⊥, y:2}
x {z:⊥, y:2}
s {z:⊥, y:2}
a {z:⊥, y:2}
b {z:⊥, y:2}

(b)MFP for Fig. 4a
(c) CFG of Fig. 4a after removing

node ‘x’

Node OUT map

e {z:⊤, y:⊤}
s {z:⊤, y:⊤}
a {z:⊤, y:⊤}
b {z:⊤, y:⊤}

(d) Result of the first-pass of Pro-

posal A, for Fig. 4c

Node OUT map

e {z:⊤, y:⊤}
s {z:⊤, y:⊤}
a {z:⊤, y:⊤}
b {z:⊥, y:2}

(e) Result of the initialization-

step of Proposal B, for Fig. 4c

Node OUT map

e {z:⊥, y:2}
s {z:⊥, y:2}
a {z:⊥, y:2}
b {z:⊥, y:2}

(f) MFP solution for the modified

program

Fig. 4. An example to demonstrate the benefits of applying two-step processing to one SCC at a time.

MFP solution shown in Fig. 2f is obtained in the second-pass, enabling the compiler to replace 𝑦

with the literal constant 2 in node N6. □

Although this proposal obtains the MFP solution by reusing a part of the existing dataflow

solution (for unreachable nodes from the seed-nodes), it may still be inefficient: Starting from the

seed-nodes (which can even occur at the beginning of the CFG), this proposal resembles CompIDFA.
In fact, due to the additional first-pass, this proposal may perform even worse than CompIDFA.

3.3 Utilizing SCC Decomposition Graphs for Efficiency

Observation B. Proposal A can lead to redundant processing of many nodes due to naïve resetting
of the OUT flowmaps of all nodes reachable from the seed-nodes, as well as due to the order in which
these nodes are processed. We illustrate the first part of this observation with an example.

Example 3.3. Consider the example program in Fig. 4a, and its MFP solution for intra-procedural

constant-propagation analysis in Fig. 4b. Assume that the compiler removes the redundant copy

operation at node ‘x’. Fig. 4c shows the resulting CFG snippet after the transformation. The set

of seed nodes is {s}. The dashed ovals in the figure represent two SCCs S1 and S2 from the CFG.

When employing Proposal A, all nodes reachable from ‘s’ are reset (shown in Fig. 4d). Note that

after reaching the fixed point within S1, the OUT flowmap for node ‘a’ remains same as its old OUT
flowmap (from before the first pass), as shown in Fig. 4f. The OUT flowmaps of node ‘b’ and beyond

required no change (compared to their OUT flowmaps before the first pass). Yet, with Proposal A,

nodes in S2 and beyond are redundantly processed as they were eagerly reset. □

Proposal B: InitRestart-SCC. To reduce the number of nodes processed, in this approach

we selectively process one SCC at a time. Recall that the issue of ghost mappings originates due to

the propagation of unsafe-initial-estimates within the cycles of a CFG. All cycles are contained

within individual SCCs of the SDG. Further, the SDG of a CFG is always a directed-acyclic graph.

Hence, by processing SCCs in topological sort order (an order popularized by Horwitz et al. [53]),

no unsafe-initial-estimates from an unprocessed SCC can pollute the solution.

In Proposal B, an SCC is processed only if it contains seed nodes or if any entry node’s IN flowmap

has changed. The processing happens in two steps – (i) initialization-step: first, the OUT flowmaps of

all nodes in the SCC are reset to map all the domain-elements to ⊤ (a trivially safe-initial-estimate),

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 102. Publication date: April 2025.
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p = 0;
do {

e: ...
x: p = p;
s: p = increment(p);

} while (a: p < 5);
b: print p;

(a) Input code

Node OUT map

e {p: ⊥}
x {p: ⊥}
s {p: ⊥}
a {p: ⊥}
b {p: ⊥}

(b)MFP for Fig. 5a
(c) CFG of Fig. 5a after removing

node ‘x’.

Fig. 5. An example to illustrate the optimization I/II of the initialization-step in Proposal C.

and (ii) stabilization-step: the standard IDFA processing is applied on all nodes within the SCC until

the fixed-point is reached within the SCC. Upon reaching the fixed-point within the SCC, if the

OUT flowmap of any of its exit nodes differs from its value before the initialization-step, then the

corresponding successor SCCs are marked for processing. This solution avoids processing any SCC

more than once and also minimizes the number of SCCs processed compared to Proposal A.

Example 3.4. For the CFG in Fig. 4c, Proposal B will first process the SCC S1 (which contains the

seed-node ‘s’) as follows: In the initialization-step, the OUT flowmaps of nodes ‘e’, ‘s’, and ‘a’ are

reset to map all the domain-elements to ⊤ (as shown in Fig. 4d). Then, in the stabilization-step,

standard IDFA processing is applied on these three nodes until fixed-point (see Fig. 4f). Since the

OUT flowmap of node ‘a’ does not change from its value before the initialization-step, SCC S2 (and

beyond) is not processed, thereby reducing the overheads. □

3.4 IncIDFA: Optimized Two-Pass Approach per SCC

Observation C. The size of an SCC can be quite large, leading to significant overheads in Proposal B,
since the amount of work done within an SCC is similar to that in the full-recomputation approach.
This is due to the naïve initialization-step, which resets OUT flowmaps of all the nodes in the SCC.
These overheads can be reduced if MFP solution within each SCC is obtained incrementally, without
resetting the OUT flowmaps of all the nodes.
Proposal C: IncIDFA. In this proposal, we discuss two optimizations to speed up the

initialization-step and another optimization for the stabilization-step.

3.4.1 Optimizing the Initialization-Step I/II. Instead of resetting all OUT flowmaps, we can use a

worklist-based initialization-step. The worklist starts with the seed nodes in the SCC and any entry

nodes of the SCC whose IN flowmaps may change due to updates in the predecessor SCCs. When

processing a node 𝑛 from the worklist, we can still obtain a safe-initial-estimate for 𝑛, if we ensure

that during the calculation of the new IN flowmap, the OUT flowmap for those predecessors of

𝑛 are ignored which (i) are present within the same SCC as 𝑛, and (ii) have not been processed

even once during this incremental update. This ensures that while the flowmaps of 𝑛 may be an

under-approximation, they will still be safe-initial-estimates. If the OUT flowmap of 𝑛 changes,

its unprocessed successors from the same SCC are added to the worklist. Note that any node is

processed at most once in the initialization-step. We demonstrate this optimization with an example.

Example 3.5. Consider the example program shown in Fig. 5a, and its constant-propagation

flowmaps in Fig. 5b. As before, assume that the compiler removes the redundant node ‘x’, resulting

in the CFG snippet shown in Fig. 5c. Unlike Proposal B, the initialization-step for SCC S1 with

this optimization does not reset the OUT flowmaps of nodes ‘e’, ‘s’, and ‘a’. Instead, a worklist is

initialized with the seed-node ‘s’. When calculating the new IN flowmap for ‘s’, the OUT flowmap
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z = 0;
do {

if (e: z < c1)
a: z = 0;

else
b: z = 10;

c: ...
do {

d: ...
x: z = z;
s: z++;

} while (p: z < c2);
q: ...

} while (r : z < c3);

(a) Input code

Phase Node OUT map

PhA e {z: ⊥}
PhA a {z: 0}

PhA b {z: 10}

PhA c {z: ⊥}
PhA d {z: ⊥}
- x {z: ⊥}

PhB s {z: ⊥}
- p {z: ⊥}
- q {z: ⊥}
- r {z: ⊥}

(b)MFP for Fig. 6a. ‘Phase’ denotes

when a node gets processed.

(c) CFG of Fig. 6a after removing

node ‘x’. Nodes with a ✓ have

been visited, and those in concen-

tric circles have been marked.

Fig. 6. An example to illustrate the benefits of the two phases, PhA and PhB, of the initialization-step in

Proposal C. Assume that c1, c2, and c3 are some constant literals.

of node ‘a’ is ignored as ‘a’ has not been processed yet. This trivially makes the IN flowmap of

‘s’ a safe-initial-estimate. The OUT flowmap of ‘s’ does not change upon processing – variable ‘p’

continues to map to ⊥, due to the function call. In this case, the worklist remains empty, and

the initialization-step terminates. Note that in contrast with Proposal B, nodes ‘e’ and ‘a’ are not

explicitly reset and redundantly processed. □

3.4.2 Optimizing the Initialization-Step II/II. When processing an entry node of an SCC in the

first pass, at least one safe OUT flowmap is guaranteed to be available via its predecessors from the

earlier SCCs. In contrast, for a seed-node (if not also an entry node), it is possible that none of the

OUT flowmaps of the predecessors are safe. Thus, the domain-elements of the new IN flowmaps

of such seed-nodes will be initially mapped to ⊤. This may significantly under-approximate the

flowmaps of nodes being processed in the initialization-step, thereby increasing the number of

times various nodes will have to be processed during the stabilization-step.

To address this challenge, we perform the initialization-step in two different phases, namely

PhA and PhB. In the first phase, PhA, we unconditionally process all the nodes between the entry

nodes and the seed-nodes exactly once, in their topological-sort order in the SCC. This guarantees

that at least one safe OUT flowmap will be available to the seed nodes in the second phase. In PhB,

we simply process the nodes starting with the seed-nodes as per optimization “I/II”. To reduce the

overheads while processing a node 𝑛 in PhA, we avoid invoking its transfer function if the OUT
flowmaps of all its predecessors are safe and unchanged, as illustrated next.

Example 3.6. Consider an example program in Fig. 6a and its MFP solution for constant-

propagation analysis in Fig. 6b. Assume that the compiler removes the redundant node ‘x’, resulting

in Fig. 6c. As per this optimization, all the nodes starting the entry node ‘e’, up until the seed node ‘s’,

are processed in PhA. Note that the OUT flowmaps of nodes ‘a’ and ‘b’ will not change. Regardless,

node ‘c’ gets added to the worklist. However, since both the predecessors of ‘c’ provide safe and

unchanged OUT flowmaps, its transfer function is not invoked. Note that the flowmaps of node ‘d’

are recalculated as one of its predecessors, node ‘p’, is unsafe. Now since ‘d’ has been visited, the

new IN flowmap of node ‘s’, in PhB, will not map its domain-elements with the init-value ⊤.
Further, with this optimization the OUT flowmap of node ‘s’ will not change upon processing.

The initialization-step will end with the processing of node ‘s’; subsequent nodes like ‘p‘, ‘q’ and ‘r’

will not need to be processed to be considered safe. On the other hand, even if the OUT flowmap of
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node ‘s’ had changed, it would have been more likely that due to its non-⊤ IN, the nodes starting
‘p’ and beyond within the SCC will need to be processed fewer times in the stabilization-step. □

Note that compared to this proposed optimization, a naïve approach of simply adding all the

entry nodes of the SCC to the worklist (along with the seed-nodes) will not suffice: when processing

a seed-node there will be no guarantee that the OUT flowmaps of at least one of its predecessor is

safe. This can also be observed for the CFG shown in Fig. 6c, where with the naïve approach the

new IN flowmap of node 𝑠 will be initially mapped to ⊤.

3.4.3 Optimizing the Stabilization-Step. We observe that for certain nodes, the modified

initialization-step (as per the first optimization) ignores the OUT flowmaps of one or more of

their predecessors; consequently the IN flowmaps of such nodes may be under-approximated. We

utilize this observation to speedup the stabilization-step: instead of starting the stabilization-step

by redundantly populating the worklist with all the nodes of the SCC, we populate the worklist

with only such under-approximated nodes. Note that at the beginning of the stabilization-step,

the remaining nodes within the current SCC are not added to the worklist, as reprocessing them

(in the absence of any changes to the OUT flowmaps of their predecessors) is redundant and will

not change their flowmaps. The rest of the stabilization-step continues as before. We refer to the

processing in this step as phase PhC in Section 4.

With our proposed fixes, we aim to reduce the work required to achieve the MFP solution during

incremental update within each SCC (and consequently across the whole CFG).

4 Formal Description and Correctness of IncIDFA

In Section 4.1, we formalize key concepts related to IDFA and its incrementalization, as relevant to

this formalism. We present a formal description of IncIDFA in Section 4.2. In Section 4.3, we provide
proofs for its termination, soundness, and precision guarantees. For the sake of completeness, we

also present a formal model of CompIDFA in Appendix A.2.

4.1 Background and Terminology, Formally

In this section, we formalize fundamental concepts related to IDFA and its incrementalization. The

formalism is given for forward-IDFAs; results for backward-IDFAs are analogous.

Flowgraph. Each program is represented as a flowgraph, 𝑃 = (𝑁 , 𝐸, 𝑛0), where 𝑁 is the set of

basic block nodes, 𝐸 ⊆ 𝑁 × 𝑁 is the set of edges denoting the control flow, and 𝑛0 ∈ 𝑁 is the entry

node of the program. Note that the set 𝐸 may also contain data-flow edges, such as the ones used

in def-use graphs, and SSA graphs. Such edges are used in sparse dataflow analyses, as well as

analyses of parallel programs. The set of all possible nodes is denoted by N . The successors and

predecessors of a node 𝑛 in the flowgraph 𝑃 are denoted by succ𝑃(𝑛) and pred𝑃(𝑛), respectively.

Strongly Connected Components. Let SDG𝑃 denote the SCC Decomposition Graph of the

flowgraph 𝑃 = (𝑁, 𝐸, 𝑛0); for simplicity, we assume that each node which is not part of any

cycle corresponds to a singleton SCC. We denote the number of SCC-nodes in SDG𝑃 by |SDG𝑃 |.
The SCC at 𝑘 th-index in the topological sort ordering (0-indexed) of the SDG𝑃 is denoted by

scc𝑃(𝑘). The set of program nodes in scc𝑃(𝑘) is denoted by sccNodes𝑃(𝑘), and its set of entry-

nodes is defined as follows: sccEntryNodes𝑃(𝑘) = {𝑛 ∈ sccNodes𝑃(𝑘)|∃𝑚 ∈ pred𝑃(𝑛),𝑚 ∉

sccNodes𝑃(𝑘)}. Informally, entry-nodes of an SCC refer to those program nodes which have at

least one predecessor from some other SCC; exit-nodes are defined analogously. For a given node,

say 𝑛, the index of its SCC in the topological sort order of SDG𝑃 is denoted by sccID𝑃(𝑛), that is,
∀𝑛 ∈ sccNodes𝑃(𝑘), sccID𝑃(𝑛) = 𝑘 . The set of successors and predecessors of 𝑛 that are present in

the same SCC as that of 𝑛, are represented by sameSccSucc𝑃(𝑛) and sameSccPred𝑃(𝑛), respectively.
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Dataflow Analysis and Solution.

Definition 4.1 (Dataflow analysis). A dataflow analysis is defined as a 3-tuple, A = (L, F ,M),
where

• L = (𝑉 ,⊓,⊤,⊥, ⊑ ) is a bounded lattice consisting of set 𝑉 of dataflow facts associated with

the analysis A, the binary meet operation ⊓, the top element ⊤, the bottom element ⊥ and

the partial order ⊑ induced by ⊓ on the elements of 𝑉 .

• F denotes the set of all monotonic functions on the lattice. A function 𝑓 : 𝑉 → 𝑉 ismonotonic
if ∀𝑎, 𝑏 ∈ 𝑉 , 𝑎 ⊑𝑏 ⇒ 𝑓 (𝑎)⊑ 𝑓 (𝑏).
• M : N → F maps each node of the language to some function in F . For any node 𝑛,M(𝑛)
is termed as the transfer function or flow function of 𝑛.

Definition 4.2 (Analysis instance). An analysis instance of a dataflow analysis is a 2-tuple,

A = (𝑃, 𝜗𝑒), where,

• 𝑃 = (𝑁, 𝐸, 𝑛0) is the flowgraph of program on which the analysis is being performed.

• 𝜗𝑒 is the value of dataflow fact available at the beginning of the entry node 𝑛0.

Definition 4.3 (Dataflow state). Consider a dataflow analysis A = (L, F ,M), and its analysis

instance A = (𝑃, 𝜗𝑒), where 𝑃 = (𝑁, 𝐸, 𝑛0). We define a dataflow state of A to be a 2-tuple,

𝑑 = (IN, OUT), where, IN : 𝑁 → 𝑉 , and OUT : 𝑁 → 𝑉 , map each node to its dataflow facts. Note:

storing only IN or OUT suffices in practice, for simplicity in this formalism, we maintain both.

Definition 4.4 (Fixed-point solution). Consider a dataflow analysisA = (L, F ,M), and its analysis
instance A = (𝑃, 𝜗𝑒), where 𝑃 = (𝑁, 𝐸, 𝑛0). A dataflow state, 𝑑fp = (INfp, OUTfp), is a fixed-point
solution of A, if the following hold ∀𝑛 ∈ 𝑁 :

INfp(𝑛) =


𝜗𝑒, if 𝑛 = 𝑛0.
𝑝∈pred𝑃(𝑛)

OUTfp(𝑝), otherwise
OUTfp(𝑛) = 𝜏𝑛(INfp(𝑛)),where 𝜏𝑛 =M(𝑛)

Note that an analysis instance may have multiple fixed-point solutions.

Definition 4.5 (Maximum fixed-point solution). Consider a dataflow analysis A = (L, F ,M), and
its analysis instance A = (𝑃, 𝜗𝑒), where 𝑃 = (𝑁, 𝐸, 𝑛0). We term a fixed-point solution of A, say

𝑑mfp = (INmfp, OUTmfp), as its maximum fixed-point (MFP) solution if for every other fixed-point

solution of A, say 𝑑 ′ = (IN′, OUT′) ≠ 𝑑mfp, the following holds: ∀𝑛 ∈ 𝑁, IN′(𝑛)⊑ INmfp(𝑛), and
OUT′(𝑛)⊑ OUTmfp(𝑛).
Note that each analysis instance, A, has a unique MFP solution, denoted by mfp(A).

Worklists. For a program 𝑃 = (𝑁, 𝐸, 𝑛0), a worklist is defined as an unordered subset of 𝑁 , as is

standard. In addition to standard operations such as union, intersection, and set-minus, we define

two special non-deterministic methods on a worklist: (i) firstNode, which returns any node from

the worklist, and (ii) firstNodeWithLeastSCCId, which returns any node 𝑛 that has the least sccId

among all nodes in the worklist. Both methods return an empty symbol, 𝜙 , if the worklist is empty.

Program Transformations and Incremental Analysis.

Definition 4.6 (Program change). Consider a program 𝑃 = (𝑁, 𝐸, 𝑛0), obtained by applying

transformations to a program 𝑃old = (𝑁old, 𝐸old, 𝑛0); for simplicity, we assume that the entry node

of a program cannot be changed during transformations. The program change between 𝑃 and 𝑃old
is denoted by a 4-tuple, Δ(𝑃old, 𝑃) = <𝛿na, 𝛿nr, 𝛿ea, 𝛿er>, where, to obtain 𝑃 from 𝑃old, 𝛿na = 𝑁 \ 𝑁old

is the minimal set of nodes added, 𝛿nr = 𝑁old \𝑁 is the minimal set of nodes removed, 𝛿ea = 𝐸 \𝐸old
is the minimal set of edges added, and 𝛿er = 𝐸old \ 𝐸 is the minimal set of edges removed.

Note that our proposed approach is generic enough to handle all kinds of program changes,

including structural modifications to the flowgraph.
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Definition 4.7 (Seed nodes). Consider two programs 𝑃 = (𝑁, 𝐸, 𝑛0) and 𝑃old = (𝑁old, 𝐸old, 𝑛0),
and the program-change between them, say Δ(𝑃old, 𝑃) = <𝛿na, 𝛿nr, 𝛿ea, 𝛿er>. The set of seed nodes
for program change is defined as follows: seedNodes(𝑃old, 𝑃) = 𝛿na ∪ {𝑛 ∈ 𝑁 |(∗, 𝑛) ∈ 𝛿er} ∪ {𝑛 ∈
𝑁 |(∗, 𝑛) ∈ 𝛿ea}, where ∗ may represent any node in 𝑁 ∪ 𝑁old.

Informally, any node 𝑛 which is either new, or whose predecessor-set, pred𝑃(𝑛), has changed,
is considered a seed node. The flow-maps at these nodes are directly impacted as a result of the

transformations, and may require recalculation.

Definition 4.8 (Incremental-analysis instance). Consider a dataflow analysis A = (L, F ,M)we
define an incremental-analysis instance as a 3-tuple, I = (A, seeds, 𝑑old), where:

• A = (𝑃, 𝜗𝑒) is an analysis instance of A, where 𝑃 = (𝑁, 𝐸, 𝑛0) has been derived by trans-

forming an old program 𝑃old = (𝑁old, 𝐸old, 𝑛0),
• seeds = seedNodes(𝑃old, 𝑃), and
• 𝑑old is the MFP solution of the analysis instance Aold = (𝑃old, 𝜗𝑒) for A.

4.2 Formal Model for IncIDFA

Given an incremental-analysis instance I = (A, seeds, 𝑑old), as defined in Definition 4.8, the aim

of the IncIDFA algorithm is to obtain the MFP solution for A. In this section, we formally define

IncIDFA which was intuitively described in Section 3.4; we do so by expressing it as a fixed-point

application of a function, named evalInc. Note that in order to assist the compiler developers in

implementing IncIDFA in any framework, we have provided a more-readable, imperative-style,

version of the algorithm in Appendix B. As evident in both the formalism as well as the algorithmic

description, an analysis writer needs to provide the definitions for only the standard IDFA (lattice,

transfer-functions, etc.), in order to use IncIDFA. We first explain the concepts of SCC-phase,

IncIDFA-state, and initial IncIDFA-state, before presenting the evaluation rules of evalInc.

Definition 4.9 (SCC-phase). IncIDFA processes each SCC in three distinct phases, namely, PhA,

PhB, and PhC, in order. These correspond to the three phases described in Sections 3.4.2 and 3.4.3.

We term these phases as SCC-phases.

Definition 4.10 (IncIDFA-state). During application of IncIDFA, the state of the analysis, termed

IncIDFA-state, is denoted by a 9-tuple, Si𝑖 = <𝑘,𝑊𝑘 , 𝑑, S𝑘 ,U𝑘 ,M𝑘 ,O𝑘 , ph,𝑊𝑔>
3
, where

• 𝑘 is the (0-based) index of the SCC being processed, in the topological order of the SDG,

• 𝑊𝑘 denotes an intra-SCC worklist, containing nodes from sccNodes𝑃(𝑘) to be processed,

• 𝑑 represents the current dataflow state,

• S𝑘 ⊆ sccNodes𝑃(𝑘) contains nodes that have been processed at least once during this

incremental update, and, thereby, contain safe-initial-estimates,

• U𝑘 ⊆ sccNodes𝑃(𝑘) contains nodes for which recalculation of IN dataflow fact had ignored

the OUT dataflow fact of at least one predecessor, and hence may be under-approximated,

• M𝑘 ⊆ sccNodes𝑃(𝑘) contains nodes whose OUT flow fact did not change upon recalculation,

• O𝑘 : sccExitNodes𝑃(𝑘) → 𝑉 , maps each exit-node of the current SCC to its OUT dataflow

fact prior to the processing of the SCC,

• ph ∈ {PhA, PhB, PhC} denotes the current SCC-phase for the SCC being processed, and

• 𝑊𝑔 denotes a global worklist of nodes not in the current SCC, which need to be processed.

We represent the set of all IncIDFA-states by S𝐼 .

3
An easy mnemonic for the ordering of the four sets/maps, Safe, Under-approximated,Marked, and Out-maps, is SUMO.
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Si = <𝑘,𝑊𝑘 , 𝑑, S𝑘 ,U𝑘 ,M𝑘 , O𝑘 , PhA,𝑊𝑔> 𝑊𝑘 ≠ ∅
𝑛 = firstNode(𝑊𝑘) 𝑛 ∉ seeds pred𝑃(𝑛) ⊆ M𝑘

S𝑘
′ = S𝑘 ∪ {𝑛} M𝑘

′ = M𝑘 ∪ {𝑛}
𝑊 ′

𝑘
= (𝑊𝑘 \ {𝑛}) ∪ (sameSccSucc𝑃(𝑛) \ S𝑘 ′ \ seeds)

evalInc(Si)⇒ <𝑘,𝑊 ′
𝑘
, 𝑑, S𝑘

′,U𝑘 ,M𝑘
′, O𝑘 , PhA,𝑊𝑔>

[PhA-Mark]

Si = <𝑘,𝑊𝑘 , 𝑑, S𝑘 ,U𝑘 ,M𝑘 , O𝑘 , PhA,𝑊𝑔> 𝑊𝑘 ≠ ∅
𝑛 = firstNode(𝑊𝑘) 𝑛 ∈ seeds ∨ pred𝑃(𝑛) ⊈ M𝑘

𝑑 = (IN, OUT) 𝑄𝑝 = (sameSccPred𝑃(𝑛) ∩ S𝑘) ∪ (pred𝑃(𝑛) \ sameSccPred𝑃(𝑛))

𝑑 ′ = (IN′, OUT′) = processNode(𝑑,𝑛,𝑄𝑝) S𝑘
′ = S𝑘 ∪ {𝑛}

U𝑘
′ =

{
U𝑘 ∪ {𝑛}, if𝑄𝑝 ≠ pred𝑃(𝑛)

U𝑘 , otherwise

M𝑘
′ =

{
M𝑘 ∪ {𝑛}, if OUT′(𝑛) = OUT(𝑛)

M𝑘 , otherwise

𝑊 ′
𝑘
= (𝑊𝑘 \ {𝑛}) ∪ (sameSccSucc𝑃(𝑛) \ S𝑘 ′ \ seeds)

evalInc(Si)⇒ <𝑘,𝑊 ′
𝑘
, 𝑑 ′, S𝑘 ′,U𝑘

′,M𝑘
′, O𝑘 , PhA,𝑊𝑔>

[PhA-Proc]

Si = <𝑘, ∅, 𝑑, S𝑘 ,U𝑘 ,M𝑘 , O𝑘 , PhA,𝑊𝑔> 𝑊 ′
𝑘
= ((seeds ∩ sccNodes𝑃(𝑘)) \ S𝑘)

evalInc(Si)⇒ <𝑘,𝑊 ′
𝑘
, 𝑑, S𝑘 ,U𝑘 , ∅, O𝑘 , PhB,𝑊𝑔>

[PhA-FP]

Fig. 7. Evaluation rules for the evalInc function for marking or processing the nodes in PhA.

𝑑 = (IN, OUT) IN′𝑛 =


.

𝑝∈𝑄
OUT(𝑝), if𝑄 ≠ ∅

⊤ otherwise

OUT′𝑛 = 𝜏𝑛(IN′𝑛), where 𝜏𝑛 = M(𝑛) 𝑑 ′ = (IN[𝑛 ← IN′𝑛], OUT[𝑛 ← OUT′𝑛])
processNode(𝑑,𝑛,𝑄) = 𝑑 ′

Fig. 8. Helper function, processNode, to recalculate dataflow facts using the given set of predecessors.

Definition 4.11 (Initial IncIDFA-state). Consider a program 𝑃old = (𝑁old, 𝐸old, 𝑛0) and its

modified version 𝑃 = (𝑁, 𝐸, 𝑛0). The initial IncIDFA-state for an incremental-analysis

instance I = (A, seeds, 𝑑old=(INold, OUTold)), is represented as initStateIncIDFA(I) =

<𝑘,𝑊𝑘 , 𝑑init, ∅, ∅, ∅,O𝑘 , PhA,𝑊𝑔>, where:

𝑘 = min

∀𝑠∈seeds
(sccID𝑃(𝑠)), 𝑊𝑘 = sccEntryNodes𝑃(𝑘), 𝑑init = (INinit, OUTinit),

∀𝑛 ∈ 𝑁 ∩ 𝑁old, INinit(𝑛) = INold(𝑛), and OUTinit(𝑛) = OUTold(𝑛),

∀𝑛 ∈ 𝑁 \ 𝑁old, INinit(𝑛) = OUTinit(𝑛) = ⊤,
∀𝑥 ∈ sccExitNodes𝑃(𝑘) ∩ 𝑁old,O𝑘(𝑥) = OUTold(𝑥), 𝑎𝑛𝑑 𝑊𝑔 = seeds \ sccNodes𝑃(𝑘)

This initial state ensures that IncIDFA is first applied on the least-id SCC that contains a seed-node.

Definition 4.12 (evalInc function). We formally describe the IncIDFA algorithm using a function

evalInc : S𝐼 → S𝐼 , which takes the current IncIDFA-state, and performs one step of the IncIDFA
algorithm to generate the next IncIDFA-state.
For an incremental-analysis instance,I, the application of IncIDFA algorithm can be seen as a fixed-

point application of evalInc, denoted by evalInc
∞
, on the initial IncIDFA-state initStateIncIDFA(I).

The evaluation rules for the evalInc function are shown in Figs. 7-10, as discussed next.

Evaluation Rules for evalInc in PhA (see Fig. 7). In phase PhA, the goal is to ensure that before

processing any seed node in PhB, at least one safe OUT flow fact is available from its predecessors.
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Si = <𝑘,𝑊𝑘 , 𝑑, S𝑘 ,U𝑘 , ∅, O𝑘 , PhB,𝑊𝑔> 𝑊𝑘 ≠ ∅ 𝑛 = firstNode(𝑊𝑘)

𝑑 = (IN, OUT) 𝑄𝑝 = (sameSccPred𝑃(𝑛) ∩ S𝑘) ∪ (pred𝑃(𝑛) \ sameSccPred𝑃(𝑛))

𝑑 ′ = (IN′, OUT′) = processNode(𝑑,𝑛,𝑄𝑝) S𝑘
′ = S𝑘 ∪ {𝑛}

U𝑘
′ =

{
U𝑘 ∪ {𝑛}, if𝑄𝑝 ≠ pred𝑃(𝑛)

U𝑘 , otherwise

𝑊 ′
𝑘
=

{
(𝑊𝑘 \ {𝑛}) ∪ (sameSccSucc𝑃(𝑛) \ S𝑘 ′), if OUT′(𝑛) ≠ OUT(𝑛) or IN(𝑛) = ⊤
𝑊𝑘 \ {𝑛}, otherwise

evalInc(Si)⇒ <𝑘,𝑊 ′
𝑘
, 𝑑 ′, S𝑘 ′,U𝑘

′, ∅, O𝑘 , PhB,𝑊𝑔>
[PhB-Proc]

Si = <𝑘, ∅, 𝑑, S𝑘 ,U𝑘 , ∅, O𝑘 , PhB,𝑊𝑔>

evalInc(Si)⇒ <𝑘,U𝑘 , 𝑑, ∅, ∅, ∅, O𝑘 , PhC,𝑊𝑔>
[PhB-FP]

Fig. 9. Evaluation rules for the evalInc function for processing the nodes in PhB.

[PhA-Mark] Given an IncIDFA-state in PhA, if the intra-SCC worklist,𝑊𝑘 , is non-empty, the

evalInc function non-deterministically picks a node, say 𝑛, from𝑊𝑘 . Rule [PhA-Mark] is applied

when node 𝑛 is not a seed node and all its predecessors are present inM𝑘 . In this case, recalculating

the dataflow facts of 𝑛 would not results in any changes. Hence, instead of applying the transfer

function, we simply mark 𝑛 as processed (and safe) by adding it to S𝑘
′
(see Section 3.4.2). Further,

since the OUT dataflow fact of 𝑛 has not changed, we add 𝑛 toM𝑘 . Finally, each successor of 𝑛 in

the current SCC is unconditionally added to the intra-SCC worklist, except if the successor (i) is a

seed node, or (ii) has already been processed once during this incremental update.

[PhA-Proc] If node𝑛 is a seed node, or has at least one predecessor that is not in𝑀𝑘 , its dataflow

facts may require recalculation. In line with the optimization “I/II” discussed in Section 3.4.1, this

recalculation considers OUT flow facts from only those predecessors that have been processed at

least once in this incremental update. This set, 𝑄𝑝 , includes all predecessors of 𝑛 that are either

in set S𝑘 , or are from the prior SCCs. The recalculation of dataflow facts is done using the helper

method processNode, which takes 𝑑 , 𝑛, and𝑄𝑝 , and returns the modified dataflow state, by invoking

the flow function 𝜏𝑛 , as shown in Fig. 8. As before, node 𝑛 is added to the set S𝑘
′
, since it has now

been processed. It is also added to the set U𝑘
′
if even one of its predecessors was ignored during the

processing of 𝑛. Further, if the recalculated OUT dataflow fact for 𝑛 did not change from its old value,

then 𝑛 is added to the set M𝑘
′
. The worklist is updated unconditionally as in rule [PhA-Mark].

[PhA-FP] If the intra-SCC worklist is empty in PhA, the processing in phase PhA is complete.

Note that when a seed node is not an entry node of its SCC, it does not get processed in PhA.

Therefore, evalInc switches to phase PhB, initializing the worklist with unprocessed seed nodes of

the current SCC. Further, since the set M𝑘 is not used in PhB, we simply pass an empty set.

Evaluation Rules for evalInc in PhB (see Fig. 9). The goal of phase PhB is to remove all

unsafe-initial-estimates from the SCC.

[PhB-Proc] In PhB, if the intra-SCC worklist,𝑊𝑘 , is not empty, evalInc non-deterministically

selects a node, say 𝑛, from 𝑊𝑘 . The rule [PhB-Proc] is similar to [PhA-Proc], with the main

difference being how the intra-SCC worklist is updated conditionally: Unlike [PhA-Proc], the

worklist is updated only if either the OUT dataflow fact of node 𝑛 changed, or if the IN dataflow fact

for 𝑛 was ⊤ (indicating 𝑛 is a newly added node). In this case, successors of 𝑛 that belong to the

current SCC, and have not yet been processed in this incremental update, are added to𝑊𝑘 .

[PhB-FP] If the intra-SCC worklist is empty in PhB, evalInc switches to phase PhC, initializing

the worklist with the set U𝑘 . Since sets S𝑘 and U𝑘 are not used in PhC, we pass empty sets.
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Si = <𝑘,𝑊𝑘 , 𝑑, ∅, ∅, ∅, O𝑘 , PhC,𝑊𝑔> 𝑊𝑘 ≠ ∅ 𝑛 = firstNode(𝑊𝑘)

𝑑 = (IN, OUT) 𝑑 ′ = (IN′, OUT′) = processNode(𝑑,𝑛, pred𝑃(𝑛))

𝑊 ′
𝑘
=

{
(𝑊𝑘 \ {𝑛}) ∪ sameSccSucc𝑃(𝑛), if OUT′(𝑛) ≠ OUT(𝑛)

𝑊𝑘 \ {𝑛}, otherwise

evalInc(Si)⇒ <𝑘,𝑊 ′
𝑘
, 𝑑 ′, ∅, ∅, ∅, O𝑘 , PhC,𝑊𝑔>

[PhC-Proc]

Si = <𝑘, ∅, 𝑑, ∅, ∅, ∅, O𝑘 , PhC,𝑊𝑔> 𝑑 = (IN, OUT)

𝑅 = {𝑟 |∃𝑥 ∈ sccExitNodes𝑃(𝑘), O𝑘(𝑥) ≠ OUT(𝑥) ∧ 𝑟 ∈ succ𝑃(𝑥) \ sameSccSucc𝑃(𝑥)}

𝑊 ′
𝑔 = (𝑊𝑔 ∪ 𝑅) 𝑊 ′

𝑔 ≠ ∅ 𝑓 = firstNodeWithLeastSCCId(𝑊 ′
𝑔) 𝑚 = sccID𝑃(𝑓 )

𝑊𝑚 = sccEntryNodes𝑃(𝑚) 𝑊 ′′
𝑔 =𝑊 ′

𝑔 \ sccNodes𝑃(𝑚) ∀𝑥 ∈ sccExitNodes𝑃(𝑚), O𝑚(𝑥) = OUT(𝑥)

evalInc(Si)⇒ <𝑚,𝑊𝑚, 𝑑, ∅, ∅, ∅, O𝑚, PhA,𝑊 ′′
𝑔 >

[PhC-FP]

Si = <𝑘, ∅, 𝑑, ∅, ∅, ∅, O𝑘 , PhC, ∅> 𝑑 = (IN, OUT) ∀𝑥 ∈ sccExitNodes𝑃(𝑘), O𝑘(𝑥) = OUT(𝑥)

evalInc(Si)⇒ Si

[Inc-Global-FP]

Fig. 10. Evaluation rules for the evalInc function for processing the nodes in PhC.

Evaluation Rules for evalInc in PhC (see Fig. 10). The goal of PhC is the MFP computation.

[PhC-Proc] In PhC, if the intra-SCCworklist,𝑊𝑘 , is non-empty, evalInc selects a node, say𝑛, non-

deterministically from𝑊𝑘 . Standard recalculation of dataflow facts of 𝑛, ignoring no predecessor, is

done using processNode. In case of changes to its OUT dataflow fact, the successors of 𝑛 from the

current SCC are added to𝑊𝑘 . Note that a node may get processed multiple times in this phase.

[PhC-FP] When𝑊𝑘 is empty in PhC, evalInc has reached a local fixed point for the current

SCC. Before processing the next SCC, the global worklist is updated as follows: for any exit-node 𝑥

whose OUT flow fact has changed from its stored value in O𝑘(𝑥), the successors of 𝑥 not belonging

to the current SCC are added to the global worklist. If the resulting global worklist is not empty, the

index𝑚 of the next SCC to be processed is obtained using the method firstNodeWithLeastSCCId.

Recall that this method returns any node with least SCC-id in the given list. Before processing the

SCC at index𝑚, its nodes are removed from the global worklist, and its entry-nodes are added to

the intra-SCC worklist.

[Inc-Global-FP] In PhC, evalInc reaches a global fixed-point when: (i) both the intra-SCC and

global worklists are empty, and (ii) there are no exit-nodes whose OUT flow fact changed from their

stored values in O𝑘 . In this case, evalInc no longer alters the current IncIDFA-state.

4.3 Correctness Proofs for IncIDFA

We now outline the proof methodology for ensuring correctness of IncIDFA, focusing on its

termination and precision guarantees. We show that the fixed-point application of evalInc on the

initial IncIDFA-state of the given incremental-analysis instance produces the maximum fixed-point

solution. Detailed definitions and proofs are present in Appendix A.1.

The correctness arguments for IncIDFA are based on two fundamental ideas, namely consistency
and safety, defined next.

Definition A.1 (Consistent node). Consider a dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖), for some analysis

instance A = (𝑃, 𝜗𝑒), of a dataflow analysis A = (L, F ,M). In the context of A, or some

incremental-analysis instance I = (A, seeds, 𝑑old), for any node 𝑛 ∈ 𝑁 , we term 𝑛 as a consistent
node with respect to 𝑑𝑖 , denoted as consistent(𝑛,𝑑𝑖), if and only if the following relations hold:
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IN𝑖(𝑛) =


𝜗𝑒, if 𝑛 = 𝑛0.
𝑝∈pred𝑃(𝑛)

OUT𝑖(𝑝), otherwise
OUT𝑖(𝑛) = 𝜏𝑛(IN𝑖(𝑛)),where 𝜏𝑛 =M(𝑛)

When all nodes in an SCC at index 𝑘 are consistent with respect to 𝑑𝑖 , we say that

consistentSCC(𝑘, 𝑑𝑖) holds.

Note that when a node is consistent with respect to a dataflow state, its dataflow facts remain

unchanged upon recalculation. Conversely, if the OUT dataflow fact changes, its successors may

become inconsistent with respect to the updated dataflow state.

Theorem A.3 (Fixed-point via consistency). A dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) is a fixed-point
solution for the analysis instance A = (𝑃, 𝜗𝑒), as well as for all the incremental-analysis instances of
the form I = (A, ∗, ∗), if and only if the following holds: ∀𝑛 ∈ 𝑁, consistent(𝑛,𝑑𝑖).

(The proof follows directly from Definitions 4.4 and A.1.)

Definition A.4 (Safe node). Consider a dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖), for some analysis

instance A = (𝑃, 𝜗𝑒), or for some incremental-analysis instance I = (A, seeds, 𝑑old). Let
𝑑mfp = (INmfp, OUTmfp) be the MFP solution of A. For any node 𝑛 ∈ 𝑁 , we term 𝑛 as a safe
node with respect to 𝑑𝑖 , denoted as safe(𝑛,𝑑𝑖), if and only if the following holds:

INmfp(𝑛)⊑ IN𝑖(𝑛), and OUTmfp(𝑛)⊑ OUT𝑖(𝑛)

When all nodes in an SCC at index 𝑘 are safe with respect to 𝑑𝑖 , we say that safeSCC(𝑘, 𝑑𝑖) holds.

Theorem A.7 (Maximum fixed-point as consistency and safety). A dataflow state 𝑑𝑖 =

(IN𝑖 , OUT𝑖) is the maximum fixed-point solution for the analysis instance A, as well as for all the
incremental-analysis instances of the form I = (A, ∗, ∗), if and only if the following holds: ∀𝑛 ∈
𝑁, consistent(𝑛,𝑑𝑖) ∧ safe(𝑛,𝑑𝑖). (The proof relies on Theorem A.3 and Definitions 4.4, A.4, and 4.5.)

Lemma A.19 (PhB leads to consistent or underapproximated nodes). Consider
an incremental-analysis instance I = (A, seeds, 𝑑old), as discussed above. Let Si𝑖 =

<𝑘, ∅, 𝑑𝑖 , S𝑘 ,U𝑘 , ∅,O𝑘 , PhB,𝑊𝑔> be the final state in PhB that is reached upon zero or more appli-
cations of evalInc. We note that in Si𝑖 , ∀𝑛 ∈ sccNodes𝑃(𝑘), consistent(𝑛,𝑑𝑖) ∨ 𝑛 ∈ U𝑘 .

Lemma A.22 (PhB leads to safe nodes). Consider an incremental-analysis instance I =

(A, seeds, 𝑑old), as discussed above. Let Si𝑖 = <𝑘, ∅, 𝑑𝑖 , S𝑘 ,U𝑘 , ∅,O𝑘 , PhB,𝑊𝑔> be the final state in PhB
that is reached upon zero or more applications of evalInc. We note that ∀𝑛 ∈ sccNodes𝑃(𝑘), safe(𝑛,𝑑𝑖).

Lemma A.23 (PhC leads to consistent and safe nodes). Consider an incremental-analysis
instance I = (A, seeds, 𝑑old), as discussed above. Let Si𝑐 = <𝑘, ∅, 𝑑𝑐 , ∅, ∅, ∅,O𝑘 , PhC,𝑊𝑔> be the
final state in PhC that is reached upon zero or more applications of evalInc. We note that ∀𝑛 ∈
sccNodes𝑃(𝑘), safe(𝑛,𝑑𝑐) ∧ consistent(𝑛,𝑑𝑐).

Theorem A.26. Consider a dataflow analysis A, and its analysis instance A = (𝑃, 𝜗𝑒), where
𝑃 = (𝑁, 𝐸, 𝑛0) has been derived upon applying a sequence of one or more transformations on some
program 𝑃old = (𝑁old, 𝐸old, 𝑛0). Let Aold = (𝑃old, 𝜗𝑒) be an analysis instance of A for 𝑃old, and
let 𝑑old be its MFP solution. Let seeds = seeds(𝑃old, 𝑃) represent the set of seed nodes for program
transformations from 𝑃old to 𝑃 . Given the incremental-analysis instance I = (A, seeds, 𝑑old), if Simfp
is the result of fixed-point application of the evalInc for I, and 𝑑mfp is the dataflow state in Simfp, then

𝑘< |SDG𝑃 |
∀
𝑘=0

, consistentSCC(𝑘,𝑑mfp) ∧ safeSCC(𝑘, 𝑑mfp)
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Corollary A.27. Consider a dataflow analysis A, and its analysis instance A = (𝑃, 𝜗𝑒), where
𝑃 = (𝑁, 𝐸, 𝑛0) has been derived upon applying a sequence of one or more transformations on some
program 𝑃old = (𝑁old, 𝐸old, 𝑛0). Let Aold = (𝑃old, 𝜗𝑒) be an analysis instance of A for 𝑃old, and
let 𝑑old be its MFP solution. Let seeds = seeds(𝑃old, 𝑃) represent the set of seed nodes for program
transformations from 𝑃old to 𝑃 . Given the incremental-analysis instance I = (A, seeds, 𝑑old), if Simfpis
the result of fixed-point application of the evalInc for I, and 𝑑mfp is the dataflow state in Simfp then
𝑑mfp = mfp(A).

5 Discussion

In this section, we first briefly discuss a heuristic, termed accessed-keys heuristic, used by IncIDFA
to reduce the number of transfer-function applications. Then, we present a discussion on various

other interesting aspects of our proposed techniques.

Accessed-Keys Heuristic. We note that a significant portion of time spent during IDFA-

stabilization involves applying transfer functions. We propose a heuristic to reduce the frequency of

transfer-function applications, based on two observations: (i) transfer functions often modify only

a small part of the IN flowmap to produce the OUT flowmap, and (ii) in the context of incremental

updates, changes to the IN flowmap may not always necessitate application of the transfer function.

Domain of the flowmaps. A dataflow state, say 𝑑 = (IN, OUT), contains two maps, namely IN and

OUT. Given a program node 𝑛, these maps return the IN and OUT dataflow facts of the node 𝑛,

respectively. Consider a dataflow analysis in which each dataflow fact itself is a map, termed as a

flowmap, such as the constant-propagation flowmaps shown for each node in Fig. 2. The domain

of the flowmaps, D, is the set of elements over which this flowmap is defined. Examples include:

program variables, abstract memory locations (on stack and heap), and so on. In such cases, the

goal of the dataflow analysis is to calculate some meaningful information corresponding to each

element of the domain D at every node of the program.

Accessed-Keys. Consider a node 𝑛. Let D be the domain of its flowmaps. For each application of

transfer-function of 𝑛, say 𝜏𝑛 , we define the set of accessed-keys, denoted as AK(𝑛), to contain

all those elements of D corresponding to which the values in flowmaps of 𝑛 may have been

accessed during the application of 𝜏𝑛 . The accessed-keys set for a node can be easily captured by

appropriately overriding the methods used to read and write from the flowmaps.

Let AK(𝑛) be the set of accessed-keys for 𝑛 during its last transfer-function application. If

no element in AK(𝑛) has changed between the old and new IN flowmaps, then: (i) for each

𝑥 ∉ AK(𝑛), the new OUT(𝑥) equals the new IN(𝑥), and (ii) for each 𝑥 ∈ AK(𝑛), the new OUT(𝑥)
equals the old OUT(𝑥). This heuristic eliminates unnecessry transfer-function applications. We

illustrate this heuristic using an example.

Example A.1. In Fig. 11a, the IN map for node 𝑛 is shown for an IDFA, where D = {𝑎, 𝑏, 𝑐, 𝑑}.
Assume that the transfer function modifies the mappings of the domain-elements 𝑎 and 𝑏 to obtain

the OUT flowmap as shown in Fig. 11b. Also assume that mappings for domain-elements 𝑐 and 𝑑

were not read or written. So, AK(𝑛) = {a,b}. During incremental update, say the new IN map for

𝑛 is as shown in Fig. 11c. Here, say the mappings for elements in AK(𝑛) remain same as that in

the old IN flowmap. Consequently, we can apply the accessed-keys heuristic to obtain the new OUT
flowmap (shown in Fig. 11d) without applying its transfer-function, as follows: (i) For elements

in AK(𝑛), the mappings are obtained without changes from the old OUT flowmap. (ii) For the

remaining elements, the mappings are copied from the new IN flowmap to the old OUT flowmap.

Order of Processing of Nodes. Iterative dataflow algorithms typically use a worklist-based

approach, where the order in which nodes are extracted from the worklist can significantly influence
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Fig. 11. Example demonstrating the accessed-key heuristics.

the number of times nodes are processed before reaching the maximum fixed-point solution.

Accordingly, various node ordering strategies have been studied in the literature [3, 26, 50, 53,

62, 66, 70]. As shown by Horwitz et al. [53] and Cooper et al. [26], the priority-SCC iteration (PSI)

approach, which uses a priority-queue for implementing the worklist, is the most efficient approach

in general. The PSI approach processes each SCC at a time, in the topological-sort order of the SDG.

Within each SCC, nodes are processed according to a reverse-postorder priority.

Given the efficiency of PSI, we use it for all the three schemes: CompIDFA, InitRestart, and
IncIDFA. Note that there are two subtle differences between the PSI approaches for CompIDFA and

IncIDFA: (i) in CompIDFA, the worklist is initialized with all nodes in an SCC, whereas in IncIDFA,
only seed nodes are added, and (ii) IncIDFA includes a special first pass (initialization-pass, or

PhA and PhB), where each node is processed at most once. Consequently, even when the program

changes affect all nodes in the flowgraph, the order of processing of nodes (and hence the total

number of times various nodes are processed) may differ between the PSI approaches used by

CompIDFA and IncIDFA.

Instantiation of IncIDFA. In order to assess the generality of IncIDFA, we have implemented

(i) a set of base classes in the IMOP compiler framework, each of which implements IncIDFA for
some sub-category of iterative dataflow problems, and (ii) a set of 10 instantiations of these base

classes to specific dataflow problems. Appendix C shows how our proposed IncIDFA works in the

context of parallel programs. Fig. 12 summarizes the set of classes implemented.

In case of DataFlowAnalysis, we categorize the problems on the basis of whether their flow-facts

are implemented as maps from the set of cells (that is, the set of abstract memory locations on

stack and heap) to the set of some meaningful information. We term the type of such flow-facts

as cell-maps. Note that in this hierarchy, our proposed accessed-keys heuristic is applicable only

to those dataflow problems where the flow-facts are of type cell-maps (that is, those which are

subclasses of CellularDataFlowAnalysis).

The description of various specializations of these subclasses is shown in Fig. 12. Note that

all these instantiations automatically support incremental update of their dataflow solutions in

response to any program-changes; the incrementalization logic is provided by the base classes.

Stabilization of the Helper Analyses. The incremental update of dataflow solutions for any

iterative dataflow analysis may rely on the stabilization of analysis results of various other analyses,

which we term as helper analyses. In our implementation of CompIDFA and IncIDFA in IMOP,
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Fig. 12. Implementation and instantiations of IncIDFA in the IMOP compiler framework. The classes

shown in bold are specific iterative dataflow problems.

one or more of the following analysis results must be stabilized before stabilizing the iterative

dataflow solutions: (i) control-flow graphs, (ii) call graphs, (iii) phase information, (iv) inter-task

and sibling-barrier edges, and (v) SCC Decomposition Graph. IMOP conforms to the self-stabilizing

compiler design, Homeostasis [93], which automatically ensures that the stabilizations are triggered

for required analysis results, at required compilation points, with required arguments. Consequently,

stabilization of these helper analyses is guaranteed by IMOP.

Modes of IDFA-Stabilization. To assess the efficacy of the proposed incrementalization scheme,

we compare IncIDFA with the following stabilization schemes: (i) CompIDFA, which corresponds

to reinitialization of the dataflow solutions, followed by its exhaustive recomputation using the

standard IDFA, and (ii) InitRestart, which corresponds to resetting the dataflow solution only

at those nodes that are reachable from the seed nodes, followed by application of the restarting

iterations approach (see Section 3.2). Note that InitRestart corresponds to one of the most

straight-forward approaches to realize incremental update of dataflow solutions in response to

program-changes, without losing on precision guarantees.

Further, for assessing the impact of accessed-keys heuristic, we study two variants for each of the

aforementioned schemes: those with accessed-keys heuristic enabled (CompIDFA-AC, InitRestart-
AC, IncIDFA-AC), and those without (CompIDFA-NAC, InitRestart-NAC, IncIDFA-NAC), leading to a
total of six modes of IDFA-stabilization.

It is important to note that the primary objective of our approach is is to provide a generic
incrementalization algorithm that can be applied to any arbitrary dataflow problem. Hence, we

do not compare IncIDFA with techniques that rely on domain-specific knowledge about specific

dataflow problems (such as [24, 45, 76, 79, 82, 101, 122, 127, 144, 149, 150]).

Generating Stabilization-Triggers and Program-Changes from a Real-World Client. In

order to ensure that our evaluations do not rely on synthetically generated program-changes

or stabilization-triggers, we have used BarrElim (see Nougrahiya and Nandivada [93]), which

is a real-world set of optimization passes that is used to remove redundant barriers in OpenMP

programs. The various components of BarrElim are (i) redundant barrier remover, (ii) OmpPar
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Table 1. Benchmark characteristics, and baseline evaluation numbers for their compilation with BarrElim. All times are

in seconds. Abbreviations: #LOC=lines of code, #Node/#Edge=number of nodes/edges in the CFG, #SCC=number of non-

singleton SCCs, #Barr=number of static barriers, #Trig=number of stabilization triggers with BarrElim, #N-Proc=number

of times nodes were processed during stabilization, STB=IDFA-stabilization time, and Tot=total compilation time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Bench.

#
L
O
C

#
N
o
d
e

#
E
d
g
e

#
S
C
C

#
B
a
r
r

#
T
r
i
g

#
N
-
P
r
o
c CompIDFA-AC IncIDFA-NAC

Nanda K2 Nanda K2

STB Tot STB Tot STB STB

NPB

1. BT 2615 4748 5016 11 47 21 115.0k 20.47 48.62 9.39 26.38 8.01 3.96

2. CG 642 1403 1485 15 31 70 83.8k 3.95 8.03 2.26 5.47 1.91 1.30

3. EP 352 775 813 9 4 2 1.9k 0.11 1.49 0.08 1.58 0.02 0.01

4. FT 899 2033 2151 10 14 45 96.3k 12.79 20.29 6.41 11.54 17.09 7.99

5. IS 333 711 762 5 4 2 1.6k 0.1 2.05 0.08 2.04 0.07 0.06

6. LU 2355 4687 4974 35 35 27 117.9k 14.63 27.71 7.53 16.59 12.10 6.30

7. MG 1278 2784 2918 6 19 205 645.2k 73.12 90.73 37.33 48.61 91.03 43.03

8. SP 2543 5364 5744 11 72 14 71.3k 7.88 24.93 4.03 14.25 6.62 3.45

SPEC

9. quake 1489 3333 3491 9 22 30 90.5k 8.85 15.23 4.28 9 2.03 0.96

10. art-m 1691 1710 1791 13 4 9 44.5k 7.09 13.72 3.75 8.62 11.00 5.38

Sequoia

11. amgmk 895 1867 1949 1 5 44 107.1k 10.37 17.15 5.58 10.31 11.92 6.49

12. clomp 1605 4162 4289 6 73 61 294.6k 24.91 92.57 13.24 44.52 26.30 13.32

13. stream 331 735 762 3 12 25 14.0k 0.62 2.6 0.5 2.5 0.40 0.32

expander, (iii) OmpPar merger, (iv) OmpPar-loop interchange, (v) OmpPar unswitching, (vi) variable

privatization, (vii) function inliner, (viii) scope remover, and (ix) unused-elements remover. For a

detailed discussion of these components, we refer the reader to the original paper.

BarrElim has been implemented in IMOP. Using its self-stabilizing design Homeostasis [93],

IMOP automatically keeps track of the program-changes in a centralized data structure efficiently, as

and when they happen. When an attempt is made to read from a dataflow solution, the incremental

analysis is triggered automatically, if there are pending program-changes to be handled.

6 Implementation and Evaluation

In order to evaluate the efficacy of our proposed approach, we have implemented our proposed

scheme (IncIDFA) and the prior works (CompIDFA, and InitRestart) in the IMOP compiler frame-

work [92], an open-source platform for parallel OpenMP C programs. IMOP spans over 170𝑘 lines

of Java code, and has been effectively utilized in several published works [2, 73, 86, 93, 141–143].

For empirical evaluation, we have used all the six IDFA-stabilization modes, namely CompIDFA-AC,
CompIDFA-NAC, InitRestart-AC, InitRestart-NAC, IncIDFA-AC, and IncIDFA-NAC, as discussed
in Section 5. In total, the implementation of all these generic classes spans around 7kLOC in IMOP.

To assess the generality of our proposed approach, we implemented ten specific dataflow prob-

lems (listed in Section 5). As expected, no incrementalization-specific code was required in the

implementation of any of these ten analyses. The complete artifact of this paper, including the

source code, can be downloaded from Zenodo [94].

Experimental Setup.We empirically evaluated our proposed techniques using thirteen benchmark

programs from three popular OpenMP benchmark suites (see Table 1). The benchmarks include:

(i) all eight programs from NPB-OMP 3.0 suite [140], (ii) quake and art-m, the two (out of three)
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(a) Nanda

(b) K2

Fig. 13. Speedup in IDFA-stabilization time using IncIDFA-AC when applying the client optimization,

BarrElim, with respect to CompIDFA-AC. Higher is better.

OpenMP-C programs from SPEC OMP 2001 [8] that can be handled by IMOP, and (iii) all three

OpenMP C programs – amgmk, clomp, and stream – from Sequoia benchmark suite [120]. These

represent some of the largest open-source benchmarks for OpenMP C. Note that the remaining

programs from SPEC OMP 2001 and Sequoia, which contain a mix of C/C++/MPI code, are not

supported by IMOP and were excluded. Table 1 provides five key characteristics for each benchmark:

lines of code (Column 2), number of program-nodes and edges in the flow graph (Columns 3

and 4, respectively), number of strongly connected components (SCCs) with more than one node

(Column 5), and number of static barriers (Column 6).

In order to study the performance behaviour of our proposed approach across different hardware

architectures, we used two platforms: (i) Nanda, a 64-thread 2.3 GHz Intel Xeon Gold 5218 system

with 64 GB RAM; and (ii) K2, a 64-thread 2.3 GHz AMD Abu Dhabi system with 512 GB RAM. All

reported compilation and execution times are geometric means over 30 runs (as recommended

by Georges et al. [41]). We present our evaluations along the following three directions: (i) perfor-

mance evaluation of IncIDFA-AC (in Section 6.1), (ii) performance impact of using the accessed-keys

heuristic (in Section 6.2), and (iii) empirical correctness of IncIDFA-AC (in Section 6.3).

6.1 Performance Evaluation

We evaluate the efficacy of our proposed IncIDFA-AC algorithm along the two dimensions of

IDFA-stabilization time and total compilation time, in the context of BarrElim, which includes a

collection of real-world optimization passes and dataflow analysis passes (see Section 5). Towards

that goal, we take CompIDFA-AC as our baseline, which corresponds to a naïve stabilization approach

that entails exhaustive recomputation of the dataflow solutions from scratch, on any given program

change. For fairness, the accessed-keys heuristic is enabled in CompIDFA-AC.
(A) IDFA-Stabilization Time.When compiling the benchmarks with BarrElim, the time spent in

IDFA-stabilization using CompIDFA-AC is shown in Columns 9 and 11 of Table 1, for Nanda and K2,

respectively. Fig. 13 shows the relative speedups in IDFA-stabilization time using IncIDFA-AC com-

pared to CompIDFA-AC; for reference, we also include InitRestart-AC. As expected, IncIDFA-AC
consistently outperforms both CompIDFA-AC and InitRestart-ACmodes, across both the platforms
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Fig. 14. Total number of applications of transfer-functions across all stabilization triggers when performing

BarrElim optimization, for various configurations normalized with respect to the number of applications

in case of CompIDFA-AC (set to 100). Lower is better.

– as compared to CompIDFA-AC, we observe the maximum speedup of 11.0× (geomean 2.34×) for
Nanda, and that of 8.0× (geomean 2.10×) for K2.
The gains in IDFA-stabilization time depend upon various factors specific to the stabilization-

mode, such as (i) the number of times program nodes are processed, (ii) the number of skipped

transfer function applications using the accessed-keys heuristics, (iii) cost of processing various

types of nodes, and so on. In Table 1, Column 8 shows the number of times nodes are processed

during the stabilization with CompIDFA-AC. The second factor (number of skipped transfer functions)

for all three stabilization modes has been quantified in Section 6.2. In Fig. 14, we show the number

of transfer function applications performed with IncIDFA-AC and InitRestart-AC, normalized to

CompIDFA-AC. The speedups obtained for various benchmarks in Fig. 13 closely match the numbers

shown in Fig. 14. We do not report the values for the third factor as it varies significantly across

various nodes and benchmarks, and hence is difficult to summarize. We illustrate these observations

through an inspection of the relative performance of each stabilization mode.

IncIDFA-AC vs. CompIDFA-AC. IncIDFA-AC results in significant improvements in IDFA-

stabilization time as compared to CompIDFA-AC, as shown in Fig. 13. This is largely due to a

significant reduction in the number of times nodes are processed using IncIDFA-AC compared

to CompIDFA-AC. The maximum speedups are observed for EP (11× in Nanda, and 8× in K2), and

quake (5.76× in Nanda, and 5.48× in K2), which is consequent upon the fact that the numbers of

transfer-function applications with IncIDFA-AC (per 100 applications in CompIDFA-AC) are low for

the case of EP (33.43 applications) and quake (6.32 applications). In contrast, we observe much

lesser speedup gains for clomp (1.09× in Nanda, and 1.12× in K2), owing to a relatively smaller

reduction in the number of transfer-function applications with IncIDFA-AC (34.99 applications per

100 applications with CompIDFA-AC).
IncIDFA-AC vs. InitRestart-AC. From Fig. 13, we note that IncIDFA-AC consistently outper-

forms InitRestart-AC across both the platforms (except for IS and art-m, where the performance

is identical). The maximum gain is observed for EP (3.0× in both Nanda and K2), due to approx-

imately 33.3% fewer transfer-function applications with IncIDFA-AC. Additionally, IncIDFA-AC
avoids the overhead of traversing the flowgraph and reinitializing the flow facts, as required in

InitRestart-AC. Fig. 14 shows that IncIDFA-AC consistently requires fewer transfer-function

applications than InitRestart-AC.
Summary. Overall, we found that in terms of IDFA-stabilization time, IncIDFA-AC outperforms all

the other stabilization modes. These gains improve the overall compilation time, as discussed next.

(B) Total Compilation Time. In Table 1, Columns 10 and 12 show the total compilation time

with CompIDFA-AC, when applying BarrElim on the benchmarks under study, for Nanda and

K2, respectively. This total compilation time spans from parsing the input file to applying the

BarrElim optimizations and writing the final program to disk. Fig. 15 shows the benefits of using

IncIDFA-AC compared to CompIDFA-AC, with InitRestart-AC included for reference. We consider
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(a) Nanda

(b) K2

Fig. 15. Percentage improvement in total compilation time using IncIDFA-AC when applying the client

optimization, BarrElim, with respect to CompIDFA-AC. Higher is better.

performance differences below 2% as negligible due to measurement errors. We see that with

IncIDFA-AC, the maximum and geomean improvements with respect to CompIDFA-AC are 45.56%
and 10.65% respectively in Nanda, and 37.77% and 6.41% respectively in K2. IncIDFA-AC consistently
outperforms both CompIDFA-AC and InitRestart-AC (except for IS in Nanda, and art-m, where
the difference is minor).

The gains in total compilation time depend on factors such as (i) the fraction of time spent

in IDFA-stabilization (see Table 1, Columns 9 and 10 for Nanda, and Columns 11 and 12 for K2);

(ii) overall speedup in the IDFA-stabilization time (shown in Fig. 13), and (iii) non-deterministic

changes to the available heap size for the VM, and the associated GC overheads. This third factor is

non-deterministic and infeasible to calculate empirically.

IncIDFA-AC vs. CompIDFA-AC. Fig. 15 shows that IncIDFA-AC consistently outperforms

CompIDFA-AC in terms of the total compilation time (except for clomp in Nanda, where the per-

formance degradation is negligible). The highest gains are for quake, where IDFA-stabilization
time makes up a significant portion of the total time (58.10% in Nanda, and 47.55% in K2), with

IncIDFA-AC resulting in significant gains in the IDFA-stabilization time (5.67× in Nanda, and 5.48×
in K2). Similarly, MG sees 27.78% improvement in total time on Nanda, and 21.57% in K2, given that

a significant amount of compilation time was spent in IDFA-stabilization (80.6% in Nanda, and

76.79% in K2), which, in turn, obtained a decent improvement with IncIDFA-AC (1.53× in Nanda,

and 1.39× in K2). In contrast, despite the highest improvements in the IDFA-stabilization time (11×
in Nanda, and 8× in K2), EP witnesses little (though significant) gains in the total compilation time

(4.69% in Nanda, and 0.63% in K2). This is unsurprising, given that only a small fraction of the total

time (7.38% in Nanda, and 5.06% in K2) is spent in IDFA-stabilization of EP.

IncIDFA-AC vs. InitRestart-AC. Except for minor degradation for IS and art-m, IncIDFA-AC
consistently outperforms InitRestart-AC. The maximum gains are noted for MG (27.68% in Nanda,

and 20.02% in K2), as a significantly large chunk of the total compilation time for MG is spent in its

IDFA-stabilization, which in turn had a decent gain with IncIDFA-AC (1.53× in Nanda; 1.36× in K2).

Summary. IncIDFA-AC offers significant gains in overall compilation time, as compared to

CompIDFA-AC and InitRestart-AC.
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Fig. 16. Percentage improvement in IDFA-stabilization-time when applying the accessed-keys heuristic

for all the three algorithms. The baseline in each case is the corresponding algorithm with accessed-keys

heuristic disabled (such as CompIDFA-NAC for CompIDFA-AC). Higher is better.

6.2 Impact of Accessed-Keys Heuristic

We evaluate the impact of accessed-keys heuristic by comparing the heuristic-enabled versions

of the three algorithms (CompIDFA-AC, InitRestart-AC, and IncIDFA-AC) with their heuristic-

disabled counterparts (CompIDFA-NAC, InitRestart-NAC, and IncIDFA-NAC, respectively). Due to
space constraints, we present the results for only one platform (Nanda) here; the results for K2

can be found in Appendix D. Fig. 16 shows the percentage improvement using the heuristic, for

each of the three algorithms. We see that IncIDFA-AC consistently outperforms IncIDFA-NAC;
improvements up to 60.66% (geomean 32.23%). Further, this graph demonstrates that accessed-keys

heuristic has a significantly higher impact on IncIDFA algorithm, as compared to on CompIDFA
and InitRestart – this is because the latter approaches reset the various flowmaps to their least

informative values (⊤), which decreases the likelihood of the heuristic being applicable.

The gains from the heuristic depends upon: (i) the number of transfer-function applications

skipped, and (ii) the time spent in applying the transfer-functions when processing the nodes. For

IncIDFA, we observed a maximum reduction of 84.57% in transfer-function applications, with a

geomean of 64.89% (see Appendix D, Fig. 24). Note that quantifying the second factor is difficult, as

it varies significantly across different kinds of nodes and dataflow analyses.

With the accessed-keys heuristic, we notice maximum gains in case of LU (60.66%), due to a total

of 80.62% skipped transfer-function applications. In contrast, IS sees a gain of only 14.28%, given

that only 48.89% of its transfer-function applications were skipped with the heuristic.

Summary. The accessed-keys heuristic significantly reduces the number of transfer-function

applications, leading to substantial improvements in the IDFA-stabilization time.

6.3 Empirical Correctness

For each stabilization mode, we used IMOP to generate output text files with final dataflow facts

annotated as comments on the nodes (statements/predicates). We verified that for all benchmarks,

the files match verbatim across stabilization modes. Further, to ensure correct stabilization during

BarrElim, we confirmed that the optimized code is identical across all stabilization modes.

Overall evaluation summary. Our evaluation demonstrates that (i) IncIDFA-AC improves IDFA-

stabilization time and overall compilation time compared to naïve stabilization schemes, (ii) the

accessed-keys heuristic is effective in further improving the compilation time, and (iii) our imple-

mentation ensures correct analysis and optimized code.

7 Related Work

In Section 1, we discussed key prior works related to the incrementalization of iterative approaches

to dataflow analyses. Now we review the literature on various alternative approaches.

Elimination methods, such as structural analysis and interval analysis, work by analyzing the

control-tree of the program [5, 7, 44, 135, 136]. By exploiting the hierarchical structure of the
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program, they are generally (i) faster than the iterative methods, and (ii) more amenable to efficient

incremental updates [87]. Various incrementalization schemes have been given for suchmethods [15,

20–22, 58, 110–112, 126]. However, elimination methods are only applicable to reducible flow-

graphs [51], limiting their use in various common scenarios, as noted by Cooper et al. [26].

Methods of attributes for dataflow analysis have been introduced by Babich and Jazayeri [10].

These methods use attribute grammars, where dataflow information is represented as attributes on

parse-tree nodes, and the transfer functions are specified as part of the production rules. Several

incremental update schemes in the context of attribute grammars have been proposed [4, 13, 14,

19, 31, 47, 56, 61, 64, 85, 102, 103, 106, 117, 145, 147, 148]. The key issue with attribute grammars is

their inability to handle programs with cyclic or arbitrary control-flows.

Logic-programming-based methods offer an orthogonal approach to dataflow analysis, differing

from the iterative techniques. These methods employ fixed-point application of logical rules and

inference mechanisms on program facts to model and solve dataflow problems. Uwe Aßmann [9] in-

troduced the idea of using Datalog for static analysis. Since then, many generic tools and extensions

to Datalog, such as Soufflé [60], Flix [81], FlowSpec [124], Flan [1], and others [6, 71, 80, 91, 119]

have been developed. In general, Datalog-based methods are amenable to fast incrementalization

schemes. Consequently, various incrementalization frameworks like IncA [134], Ladder[133], and

others [35, 38, 39, 39, 52, 99, 114–116, 121, 123, 131, 132, 155] have also been proposed. While the

declarative nature of Datalog simplifies expression of complex dataflow analyses, it limits the

analysis writer’s control over the low-level computational details, as noted by Ceri et al. [23]. For

instance, the order and method of execution of rules in the Datalog engines can typically not be

customised by the analysis writer. Given that our proposed techniques depend heavily on the order

in which various nodes are processed, it remains to be explored how they could be adapted to

Datalog-based methods.

Demand-driven analyses [11, 33, 54, 104, 113] focus on inspecting only the relevant parts of a

flowgraph to answer the given query. Following program edits, incremental updates are needed only

for these relevant parts when the query is issued. In many demand-driven frameworks, queries are

structured using the formalism of Context-Free Language (CFL) reachability [105], which models

various program-properties (such as points-to relations) as realizable paths in a graph, such that

the paths conform to the CFL. Various incrementalization approaches have been proposed for

such demand-driven and CFL-reachability-based analyses [36, 79, 122, 129]. We believe that it is an

interesting idea to extend our proposed ideas to demand driven analysis.

8 Conclusion

We presented IncIDFA, a novel algorithm that provides a generic solution for automatically gen-

erating precise incremental variants of any monotone iterative dataflow analysis. To validate the

correctness and applicability of IncIDFA for a wide range of iterative dataflow problems, we pro-

vide proofs for the soundness and precision guarantees of IncIDFA. Alongside the core algorithm,

we also presented a heuristic to reduce the number of transfer-function applications. To ensure

applicability of IncIDFA to any arbitrary abstract domain and program edits, we also provided its

formal model and correctness proofs. We implemented IncIDFA in the IMOP compiler for parallel

OpenMP C programs, and instantiated it for ten specific dataflow problems, without requiring

custom incremental-update code. Evaluations on a set of real-world optimization passes (BarrElim)
and standard benchmark programs showed encouraging performance, demonstrating the capa-

bilities of IncIDFA for efficiently and automatically handling incremental iterative algorithms for

arbitrary monotone dataflow problems.
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An artifact of this paper can be downloaded from Zenodo [94]. It contains the source code, bench-

mark programs, evaluation scripts, as well as the graph-generation scripts necessary to validate

the results presented in this paper. In terms of reproducibility of results, the artifact has no known

limitations to our knowledge.
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A Formal Description and Correctness of IncIDFA

In Section A.1, we provide detailed proofs of correctness for precision and soundness guarantees of

IncIDFA. Then, for sake of completeness, we also present the formal description of the traditional

iterative dataflow analysis, CompIDFA in Section A.2.

A.1 Correctness Proofs for IncIDFA

Consider a dataflow analysis A = (L, F ,M). Let A = (𝑃, 𝜗𝑒) be an analysis instance of A, where
𝑃 = (𝑁, 𝐸, 𝑛0) has been derived upon applying a sequence of one or more transformations on

some program 𝑃old = (𝑁old, 𝐸old, 𝑛0). Let seeds = seeds(𝑃old, 𝑃) represent the set of seed nodes for

program transformations from 𝑃old to 𝑃 . Let 𝑑old be the MFP solution of some analysis instance

Aold = (𝑃old,Mold, 𝜗𝑒) for A. Given the analysis instanceA, and the incremental-analysis instance

I = (A, seeds, 𝑑old), in this section we prove the equivalence of CompIDFA and IncIDFA by showing
that the fixed-point solutions obtained upon application of evalComp on the initial CompIDFA-state
of A, and evalInc on the initial IncIDFA-state of I, are the same.

Consistency and Safety.

In this section, we formally describe two fundamental ideas, namely consistency and safety, which
form the basis for our correctness arguments for IncIDFA.

Definition A.1 (Consistent node). Consider a dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) for some analysis

instance A = (𝑃, 𝜗𝑒), or for some incremental-analysis instance I = (A, seeds, 𝑑old). For any
node 𝑛 ∈ 𝑁 , we term 𝑛 as a consistent node with respect to 𝑑𝑖 , denoted as consistent(𝑛,𝑑𝑖), if and
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only if the following holds:

IN𝑖(𝑛) =


𝜗𝑒, if 𝑛 = 𝑛0.
𝑝∈pred𝑃(𝑛)

OUT𝑖(𝑝), otherwise

and

OUT𝑖(𝑛) = 𝜏𝑛(IN𝑖(𝑛)),where 𝜏𝑛 =M(𝑛).

Note that when a node is consistent with respect to a dataflow state, its IN and OUT dataflow

facts will not change upon recalculation. In contrast, if the OUT dataflow fact of a node changes

upon its recalculation, then the successors of the node may become inconsistent with respect to

the updated dataflow state.

Definition A.2 (Consistent SCC). Consider a dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) for some analysis

instance A = (𝑃, 𝜗𝑒), or for some incremental-analysis instance I = (A, seeds, 𝑑old). Given
scc𝑃(𝑘), the SCC with index 𝑘 in the topological sort order of SDG𝑃 , we term scc𝑃(𝑘) as a

consistent SCC with respect to 𝑑𝑖 , denoted as consistentSCC(𝑘,𝑑𝑖), if and only if the following

holds: ∀𝑛 ∈ sccNodes𝑃(𝑘), consistent(𝑛,𝑑𝑖).

Theorem A.3 (Fixed-point via consistency). A dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) is a fixed-point
solution for the analysis instance A = (𝑃, 𝜗𝑒), as well as for all the incremental-analysis instances of
the form I = (A, ∗, ∗), if and only if the following holds: ∀𝑛 ∈ 𝑁, consistent(𝑛,𝑑𝑖).

Proof. Follows directly from Definitions 4.4 and A.1. □

Definition A.4 (Safe node). Consider a dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) for some analysis

instance A = (𝑃, 𝜗𝑒), or for some incremental-analysis instance I = (A, seeds, 𝑑old). Let
𝑑mfp = (INmfp, OUTmfp) be the MFP solution of A. For any node 𝑛 ∈ 𝑁 , we term 𝑛 as a safe
node with respect to 𝑑𝑖 , denoted as safe(𝑛,𝑑𝑖), if and only if the following holds:

INmfp(𝑛)⊑ IN𝑖(𝑛), and OUTmfp(𝑛)⊑ OUT𝑖(𝑛)

Note that for a given node 𝑛, and a dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) of analysis instance A (or I),
if IN𝑖(n) = ⊤ and OUT𝑖(𝑛) = ⊤, then safe(𝑛,𝑑𝑖) trivially holds. Similarly, if 𝑑𝑖 is the MFP solution

of A (or I), then ∀𝑛 ∈ 𝑁, safe(𝑛,𝑑𝑖) trivially holds.

Definition A.5 (Safe SCC). Consider a dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) for some analysis in-

stance A = (𝑃, 𝜗𝑒), or for some incremental-analysis instance I = (A, seeds, 𝑑old). Let 𝑑mfp =

(INmfp, OUTmfp) be the MFP solution of A. Given scc𝑃(𝑘), the SCC with index 𝑘 in the topological

sort order of SDG𝑃 , we term scc𝑃(𝑘) as a safe SCC with respect to 𝑑𝑖 , denoted as safeSCC(𝑘, 𝑑𝑖),
if and only if the following holds: ∀𝑛 ∈ sccNodes𝑃(𝑘), safe(𝑛,𝑑𝑖).

Theorem A.6 (Maximum fixed-point as consistency and safety). A dataflow state 𝑑𝑖 =

(IN𝑖 , OUT𝑖) is the maximum fixed-point solution for the analysis instance A, as well as for all the
incremental-analysis instances of the form I = (A, ∗, ∗), if and only if the following holds: ∀𝑛 ∈
𝑁, consistent(𝑛,𝑑𝑖) ∧ safe(𝑛,𝑑𝑖).

Proof. There are two parts to this proof.

Part A: Consistency and safety imply MFP: Assume ∀𝑛 ∈ 𝑁, consistent(𝑛,𝑑𝑖) ∧ safe(𝑛,𝑑𝑖).
Since ∀𝑛 ∈ 𝑁, consistent(𝑛,𝑑𝑖), from Theorem A.3 we conclude that 𝑑𝑖 is a fixed-point solution

of A (or I). Let 𝑑mfp = (INmfp, OUTmfp) be the MFP solution for A (or I). Since 𝑑𝑖 is a fixed-point
solution, from Definition 4.5 of the MFP solution, we know that ∀𝑛 ∈ 𝑁 :

IN𝑖(𝑛)⊑ INmfp(𝑛) ∧ OUT𝑖(𝑛)⊑ OUTmfp(𝑛) (1)
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Since ∀𝑛 ∈ 𝑁, safe(𝑛,𝑑𝑖), from Definition A.4 of safe nodes we conclude that ∀𝑛 ∈ 𝑁 :

INmfp(𝑛)⊑ IN𝑖(𝑛) ∧ OUTmfp(𝑛)⊑ OUT𝑖(𝑛) (2)

From (1) and (2), we have, IN𝑖 = INmfp ∧ OUT𝑖 = OUTmfp, that is, 𝑑𝑖 = 𝑑mfp, the MFP solution.

Part B: MFP implies consistency and safety: Assume that 𝑑𝑖 is the MFP solution for A (or I).
Since an MFP solution is also a fixed-point solution, we conclude from Definition 4.4 that ∀𝑛 ∈ 𝑁 :

IN𝑖(𝑛) =


𝜗𝑒, if 𝑛 = 𝑛0.
𝑝∈pred𝑃(𝑛)

OUT𝑖(𝑝), otherwise

and

OUT𝑖(𝑛) = 𝜏𝑛(IN𝑖(𝑛)),where 𝜏𝑛 =M(𝑛)

Hence, by Definition A.1, ∀𝑛 ∈ 𝑁, consistent(𝑛,𝑑𝑖) holds. Similarly, since 𝑑𝑖 is the MFP solution of

A (or I), we conclude from Definition A.4 that ∀𝑛 ∈ 𝑁, safe(𝑛,𝑑𝑖) holds. Hence proved. □

Corollary A.7 (Maximum fixed-point as consistency and safety per SCC). Consider an
analysis instance A = (𝑃, 𝜗𝑒), or some incremental-analysis instance of the form I = (A, ∗, ∗).
Let |SDG𝑃 | denote the number of SCCs in SDG𝑃 . A dataflow state 𝑑𝑖 = (IN𝑖 , OUT𝑖) is the maximum
fixed-point solution for A (or I), if and only if the following holds:

|SDG𝑃 |−1
∀
𝑘=0

(consistentSCC(𝑘,𝑑𝑖) ∧ safeSCC(𝑘, 𝑑𝑖))

Proof. Follows directly from Theorem A.6 and Definitions A.2 and A.5. □

Lemma A.8 (Consistency and safety with processNode). Consider an invocation of the helper
function processNode, with arguments 𝑑𝑖 = (IN𝑖 , OUT𝑖), 𝑛, and 𝑄 to obtain the resulting dataflow
state 𝑑 𝑗 = (IN𝑗 , OUT𝑗). We note that
• if 𝑄 = pred𝑃(𝑛), then consistent(𝑛,𝑑 𝑗) holds, and
• if ∀𝑞 ∈ 𝑄, safe(𝑞, 𝑑𝑖) is true, then safe(𝑛,𝑑 𝑗) holds.

Proof. The first part of the lemma, about consistency of 𝑛 with respect to 𝑑 𝑗 when 𝑄 is the

complete set of predecessors of 𝑛, follows directly from Definition A.1, and Fig. 8. We now prove

the second part of the lemma.

Let 𝑑mfp = (INmfp, OUTmfp) be the MFP solution.

INmfp(𝑛) = ⊓
𝑞∈𝑄

OUTmfp(𝑞) (from Definition 4.5)

⊑ ⊓
𝑞∈𝑄

OUT𝑖(𝑞) (from Definition A.4)

= IN𝑗(𝑛) (from Fig. 8)

Hence, INmfp(𝑛)⊑ IN𝑗(𝑛). From Definition A.4 of safe nodes, we conclude that safe(𝑛,𝑑 𝑗) holds.
□

Theorem A.9 (Consistency and safety with CompIDFA). Consider a dataflow analysis A =

(L, F ,M), and its analysis instance A = (𝑃, 𝜗𝑒), where 𝑃 = (𝑁, 𝐸, 𝑛0). Let |SDG𝑃 | denote the
number of SCCs in SDG𝑃 . If Sc𝑖 = <|SDG𝑃 | − 1, ∅, 𝑑𝑖> is the resulting CompIDFA-state from the fixed-
point application of evalComp on initStateComp(A), then, ∀𝑛 ∈ 𝑁, consistent(𝑛,𝑑𝑖) ∧ safe(𝑛,𝑑𝑖).

Proof. From TheoremA.31,𝑑𝑖 is the MFP solution forA. Hence, from TheoremA.6, we conclude

that ∀𝑛 ∈ 𝑁, consistent(𝑛,𝑑𝑖) ∧ safe(𝑛,𝑑𝑖). □
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Corollary A.10 (Consistency and safety per SCC with CompIDFA). Consider a dataflow
analysis A = (L, F ,M), and its analysis instance A = (𝑃, 𝜗𝑒), where 𝑃 = (𝑁, 𝐸, 𝑛0). Let |SDG𝑃 |
denote the number of SCCs in SDG𝑃 . If Sc𝑖 = <|SDG𝑃 | − 1, ∅, 𝑑𝑖> is the resulting CompIDFA-state from
the fixed-point application of evalComp on initStateComp(A), then,

|SDG𝑃 |−1
∀
𝑘=0

(consistentSCC(𝑘,𝑑𝑖) ∧ safeSCC(𝑘, 𝑑𝑖))

Proof. Follows directly from Theorem A.31 and Corollary A.7. □

Consistency and safety upon program transformations.

Consider a dataflow analysis A = (L, F ,M), and its analysis instance A = (𝑃, 𝜗𝑒), where
𝑃 = (𝑁, 𝐸, 𝑛0) has been derived upon applying a sequence of one or more transformations on some

program 𝑃old = (𝑁old, 𝐸old, 𝑛0). Let Aold = (𝑃old,Mold, 𝜗𝑒) be the analysis instance of A for 𝑃old,

and 𝑑old = (INold, OUTold) be the MFP solution of Aold. Let seeds = seeds(𝑃old, 𝑃) represent the set

of seed nodes from 𝑃old to 𝑃 .

Lemma A.11 (Unaffected SCCs). Consider an SCC, say scc𝑃(𝑘), from the SDG of 𝑃 , such that
sccNodes𝑃(𝑘) does not contain any seed nodes. Let 𝑑𝑖 = (IN𝑖 , OUT𝑖) be a dataflow state for A, such
that, ∀𝑛 ∈ sccNodes𝑃(𝑘), IN𝑖(𝑛) = INold(𝑛) ∧ OUT𝑖(𝑛) = OUTold(𝑛). Let 𝑄 be the set of all those
nodes that are predecessors of the nodes in sccEntryNodes𝑃(𝑘), but do not belong to sccNodes𝑃(𝑘).
If each element of 𝑄 is consistent and safe with respect to 𝑑𝑖 , and if the OUT dataflow facts for all these
elements match their values in 𝑑old, then all nodes in sccNodes𝑃(𝑘) too are consistent and safe in 𝑑𝑖 .

Proof. (Sketch.) Consider that we reset and recompute the dataflow facts of all nodes in the SCC.

Since the incoming dataflow facts to the SCC are consistent and safe, the recomputed fixed-point

dataflow facts for the nodes in the SCC too will be consistent and safe. We now argue that the

fixed-point results of recomputation will match the results stored in 𝑑old.

Since sccNodes𝑃(𝑘) does not contain any seed nodes, we note that the set of predecessors for

all nodes in the SCC, including the entry-nodes, remain unchanged. Consequently, the dataflow

equations for none of the nodes change. Since the incoming dataflow facts (OUT of the nodes in set

𝑄 , and the set 𝑄 itself) do not change, we note that recalculation of the dataflow facts for all nodes

in the SCC will yield the same result as stored in 𝑑old.

We leave a formal proof for this lemma as an exercise for the reader. □

Informally, in the context of program transformations, this lemma states that if there are no seed

nodes in an SCC, if the incoming dataflow facts to the SCC have not changed from their fixed-point

values since before the transformations, and if the incoming dataflow facts are consistent and safe

with respect to some dataflow state after the transformation, then the dataflow facts for the nodes

in the SCC too are consistent and safe with respect to that dataflow state. This implies that such an

SCC need not be processed to obtain the MFP solution after the transformations.

Consistency and safety for SCCs unreachable from seed nodes.

Consider a dataflow analysis A, and its analysis instance A = (𝑃, 𝜗𝑒), where 𝑃 = (𝑁, 𝐸, 𝑛0)
has been derived upon applying a sequence of one or more transformations on some program

𝑃old = (𝑁old, 𝐸old, 𝑛0). Let seeds = seeds(𝑃old, 𝑃) represent the set of seed nodes for program

transformations from 𝑃old to 𝑃 . Let 𝑑old be the MFP solution of some analysis instance Aold =

(𝑃old,Mold, 𝜗𝑒) for A.

Lemma A.12 (Unreachable SCCs). For an incremental-analysis instance I = (A, seeds, 𝑑old),
assume Simfp = eval

∞
Inc
(initStateIncIDFA(I)), is the result of the fixed-point application of evalInc. Let

𝑑mfp be the dataflow state in Simfp. In the topological sort order of SDG𝑃 , let 𝑘 be the minimum index
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of any SCC that contains a seed node. We note that the SCCs that are unreachable from the seed nodes
are consistent and safe with respect to 𝑑mfp. Formally,

𝑘 = min

∀𝑠∈seeds
(sccID𝑃(𝑠)) ⇒

𝑙<𝑘

∀
𝑙=0

, consistentSCC(𝑙, 𝑑mfp) ∧ safeSCC(𝑙, 𝑑mfp) (3)

Proof. Let Siinit be the initial IncIDFA-state of instance I, and let 𝑑init be the dataflow state in

Siinit. For all SCCs that are unreachable from the seed node, it directly follows from Lemma A.11

(using strong induction on the index of SCCs), that the SCCs are consistent and safe with respect

to 𝑑init.

From Definition 4.11, we note that the first SCC to be processed by evalInc is that with index 𝑘 .

From Rule [PhC-FP], and definition of the method firstNodeWithLeastSCCId, we note that the

SCCs are processed in the increasing order of their indices. Hence, this ensures that the dataflow

facts in 𝑑mfp (the fixed-point state) for program nodes in SCCs that are unreachable from the seed

nodes, remain unchanged from their values in 𝑑init. Since these SCCs are consistent and safe with

respect to 𝑑init, their safety and consistency hold for 𝑑mfp as well. □

Reachability in evalInc.

In the rest of the formalism, N0 denotes the set of all natural numbers and zero. For any 𝑝 ∈ N0, we

use evalInc
𝑝(Si𝑖) to denote 𝑝 applications of the function evalInc on some IncIDFA-state Si𝑖 . Note

that evalInc
0(Si𝑖) = Si𝑖 . As before, the fixed-point application of evalInc is denoted by evalInc

∞(Si𝑖).

Definition A.13 (Reachable IncIDFA-state). Consider an incremental-analysis instance, I, as
discussed above. An IncIDFA-state, Si𝑖 ∈ S𝐼 is considered as a reachable IncIDFA-state,
denoted by reachable(Si𝑖 ,I), if and only if there exists an interpretation of firstNode and

firstNodeWithLeastSCCId, such that, ∃𝑝 ∈ N0, Si𝑖 = evalInc
𝑝(initStateIncIDFA(I)).

Informally, in the context of an incremental-analysis instance I, an IncIDFA-state is consid-
ered reachable if and only if it can be obtained upon applying the evalInc function on the initial

IncIDFA-state for I zero or more times.

Definition A.14 (SCC-init state). Consider an SCC at index 𝑘 in the topological sort order of the

SDG𝑃 . We term an IncIDFA-state as the initial state of the SCC, denoted by SCC-init(𝑘), if it is of
the form <𝑘, sccEntryNodes𝑃(𝑘), 𝑑𝑖 , ∅, ∅, ∅,O𝑘 , PhA, ∗>, where:

𝑑𝑖 = (IN𝑖 , OUT𝑖)

∀𝑥 ∈ sccExitNodes𝑃(𝑘), O𝑘(𝑥) = OUT𝑖(𝑥)

Informally, if the SCC-init state for SCC at index 𝑘 in the topological sort order of the SDG𝑃 is

reachable upon zero or more applications of evalInc on the initial IncIDFA-state of an incremental-

analysis instance I, then it implies that the SCC is processed by the IncIDFA algorithm. Note that

the initial IncIDFA-state is an SCC-init state.

Termination of processing of an SCC by evalInc.

We now argue the termination of processing of evalInc when it reaches a state which is SCC-init

state for some SCC.

Definition A.15 (SCC-fixed-point states). Consider an SCC at some index 𝑘 in the topological sort

order of the SDG𝑃 . We define three types of fixed-point IncIDFA-states for the SCC, as follows:

• PhA-fixed-point states, which are of the form <𝑘, ∅, ∗, ∗, ∗, ∗,O𝑘 , PhA, ∗>,
• PhB-fixed-point states, which are of the form <𝑘, ∅, ∗, ∗, ∗, ∅,O𝑘 , PhB, ∗>, and
• PhC-fixed-point states, which are of the form <𝑘, ∅, ∗, ∅, ∅, ∅,O𝑘 , PhC, ∗>.
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If a IncIDFA-state, say Si𝑖 is PhA-fixed-point, PhB-fixed-point, or PhC-fixed-point for some SCC

with index 𝑘 , then we denote these facts as isSCC-PhA-FP(Si𝑖 , 𝑘), isSCC-PhB-FP(Si𝑖 , 𝑘), or isSCC-
PhC-FP(Si𝑖 , 𝑘), respectively.

Informally, these IncIDFA-states denote the termination of the corresponding phases while

processing any SCC.

Lemma A.16 (Termination of PhA). Consider an incremental-analysis instance, I, as discussed
above. If the initial state of an SCC is reachable from the initial IncIDFA-state for I, then some
PhA-fixed-point state is reachable as well for the SCC. Formally,

reachable(SCC-init(𝑘),I)⇒ ∃Si𝑖 ∈ S𝐼 , isSCC-PhA-FP(Si𝑖 , 𝑘) ∧ reachable(Si𝑖 ,I)
Proof. At each step of application of evalInc, starting with the state SCC-init(𝑘), either of the

two rules [PhA-Mark] or [PhA-Proc] from Fig. 7 will be applicable, until a PhA-fixed-point state is

reached. Each application of either of these rules non-deterministically removes one node from the

worklist and processes it. The processed node is added to the set S𝑘 . In both these rules, we note

that if a node is present in the set S𝑘 , then it is not added back to the worklist. This implies that a

node can get added at most once to the worklist. Given the finite number of nodes in sccNodes𝑃(𝑘),
the worklist will be empty after at most |sccNodes𝑃(𝑘)| applications of the evalInc function, leading
to an IncIDFA-state which is a PhA-fixed-point state. Hence proved. □

Lemma A.17 (Termination of PhB). Consider an incremental-analysis instance, I, as discussed
above. If the initial state of an SCC is reachable from the initial IncIDFA-state for I, then some
PhB-fixed-point state is reachable as well for the SCC. Formally,

reachable(SCC-init(𝑘),I)⇒ ∃Si𝑖 ∈ S𝐼 , isSCC-PhB-FP(Si𝑖 , 𝑘) ∧ reachable(Si𝑖 ,I)
Proof. From Lemma A.16, we note that an IncIDFA-state which is a PhA-fixed-point state is

reachable for I. In the next application of evalInc, rule [PhA-FP] from Fig. 7 is applicable, resulting

in some IncIDFA-state of the form <𝑘, ∗, ∗, ∗, ∗, ∅, ∗, PhB, ∗>. Starting with that state, the argument

for reachability of a PhB-fixed-point state is similar as that used in Lemma A.16, relying on the

rule [PhB-Proc] from Fig. 9. □

Lemma A.18 (Termination of PhC). Consider an incremental-analysis instance, I, as discussed
above. If the initial state of an SCC is reachable from the initial IncIDFA-state for I, then some
PhC-fixed-point state is reachable as well for the SCC. Formally,

reachable(SCC-init(𝑘),I)⇒ ∃Si𝑖 ∈ S𝐼 , isSCC-PhC-FP(Si𝑖 , 𝑘) ∧ reachable(Si𝑖 ,I)
Proof. From Lemma A.17, we note that an IncIDFA-state which is a PhB-fixed-point state is

reachable for I. In the next application of evalInc, rule [PhB-FP] from Fig. 9 is applicable, resulting

in an IncIDFA-state of the form <𝑘,𝑊𝑘 , ∗, ∅, ∅, ∅, ∗, PhC, ∗>. If𝑊𝑘 is empty, then a PhC-fixed-point

state has been reached. Otherwise, rule [PhC-Proc] from Fig. 10 is applicable. Note that a node

may get added to the worklist at most as many times as is the height of the lattice [87, 88]. Hence

the worklist will get empty after a finite number of applications of the rule [PhC-Proc], resulting

in a PhC-fixed-point state. Hence proved. □

From Lemmas A.16, A.17, and A.18, we infer that if an SCC is processed by evalInc, then the

processing eventually terminates. We now prove that upon termination of processing of an SCC,

the SCC is rendered consistent and safe with the current dataflow state.

Consistency and safety of SCCs processed by evalInc.

Now, we gradually discuss the guarantees of consistency and safety for nodes in the SCCs that are

processed by evalInc.
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Lemma A.19 (PhB leads to consistent or underapproximated nodes). Consider an
incremental-analysis instance I = (A, seeds, 𝑑old), as discussed above. Assume that SCC-init(𝑘), the
initial state for SCC at index 𝑘 in the topological sort order of SDG𝑃 , is a reachable IncIDFA-state for
the incremental-analysis instance I. Let Si𝑖 = <𝑘, ∅, 𝑑𝑖 , S𝑘 ,U𝑘 , ∅,O𝑘 , PhB,𝑊𝑔> be the PhB-fixed-point
state that is reached upon zero or more applications of evalInc on SCC-init(𝑘). We note that in Si𝑖 ,
∀𝑛 ∈ sccNodes𝑃(𝑘), consistent(𝑛,𝑑𝑖) ∨ 𝑛 ∈ U𝑘 .

Proof. Consider a node, say 𝑛, in the set sccNodes𝑃(𝑘). Two cases arise on the basis of whether

node 𝑛 was present in the intra-SCC worklist,𝑊𝑘 , in any IncIDFA-state between SCC-init(𝑘) and

Si𝑖 :

Case A: Node 𝑛 was present in𝑊𝑘 in some IncIDFA-state. Three sub-cases arise on the basis of

the evaluation rule that was used for processing 𝑛 in PhA or PhB:

Case A.i: [PhA-Mark] In this case, all predecessors of node 𝑛 are present in the setM𝑘 .

As per Rules [PhA-Mark] and [PhA-Proc], a node gets added to the set M𝑘 only if its OUT
dataflow fact does not change upon its processing. Hence, the OUT of none of the predecessors
of node 𝑛 changed. Since 𝑛 is not a seed node, its set of predecessors (pred𝑃(𝑛)) too remains

unchanged. Hence, from Definition A.1, consistent(𝑛,𝑑𝑖) holds.

Case A.ii: [PhA-Proc] Assume that 𝑑 ′ is the dataflow state in the IncIDFA-state obtained
upon application of this rule. In this rule, method processNode gets invoked on 𝑛. If the set

𝑄𝑝 is same as pred𝑃(𝑛), then consistent(𝑛,𝑑 ′) holds, as per Lemma A.8. Otherwise, as per

this rule, node 𝑛 gets added to the set U𝑘
′
of the resulting IncIDFA-state.

Case A.iii: [PhB-Proc] This case is similar to Case A.iii above.
Case B: Node 𝑛 was never added to𝑊𝑘 . Clearly, node 𝑛 is not a seed node. In this case, for each

predecessor of node 𝑛 in the same SCC, say 𝑝 ∈ sameSccPred𝑃(𝑛), there are two possibilities:
(i) Node 𝑝 was not processed in any IncIDFA-state between SCC-init(𝑘) and Si𝑖 . (ii) Node

𝑝 was processed as per Rule [PhB-Proc], but its processing resulted in no change in its

OUT dataflow fact. In both these cases, since the OUT dataflow fact does not change for any

predecessor of 𝑛, and since 𝑛 is clearly not a seed node, from Definition A.1, consistent(𝑛,𝑑𝑖)
holds.

Hence proved. □

Lemma A.20 (SetM𝑘 is a subset of S𝑘 ). Consider an incremental-analysis instance I, as discussed
above. Assume that SCC-init(𝑘) is a reachable IncIDFA-state for I. Let Si𝑎 be the PhA-fixed-point
state that is reached upon zero or more applications of evalInc on SCC-init(𝑘). We note that for all
IncIDFA-state Si𝑖 = <𝑘, ∅, 𝑑𝑖 , S𝑘 ,U𝑘 ,M𝑘 ,O𝑘 , PhA,𝑊𝑔>, that lie between SCC-init(𝑘) and Si𝑎 (both
inclusive), the following holds: M𝑘 ⊆ S𝑘 .

Proof. Elements in setM𝑘 are added only in case of Rules [PhA-Mark] and [PhA-Proc]. In both

these cases, the element gets added to set S𝑘 as well. Hence,M𝑘 ⊆ S𝑘 . □

Lemma A.21 (Set S𝑘 is safe). Consider an incremental-analysis instance I, as discussed above.
Assume that SCC-init(𝑘) is a reachable IncIDFA-state for I. Further, assume that all SCCs with
index less than 𝑘 are consistent and safe. Let Si𝑏 be the PhB-fixed-point state that is reached
upon zero or more applications of evalInc on SCC-init(𝑘). We note that for all IncIDFA-state
Si𝑖 = <𝑘, ∅, 𝑑𝑖 , S𝑘 ,U𝑘 ,M𝑘 ,O𝑘 , ∗,𝑊𝑔>, that lie between SCC-init(𝑘) and Si𝑏 (both inclusive), the fol-
lowing holds: ∀𝑛 ∈ S𝑘 , safe(𝑛,𝑑𝑖).

Proof. Consider an integer 𝑝 ∈ N0, such that eval
𝑝

Inc
(SCC-init(𝑘)) = Si𝑏 . We prove that the

lemma holds by using induction on the value of 𝑝 .
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Base case: Assume 𝑝 = 0. In this case, the IncIDFA-state obtained is SCC-init(𝑘). In this state,

the set S𝑘 is empty. Hence the lemma trivially holds.

Inductive hypothesis: Consider an IncIDFA-state, say Si𝑞 , such that Si𝑞 =

<𝑘, ∅, 𝑑𝑞, S𝑞,U𝑞,M𝑞,O𝑘 , PhB,𝑊𝑔> = eval
𝑞

Inc
(SCC-init(𝑘)). For all nodes 𝑛 ∈ S𝑞, safe(𝑛,𝑑𝑞)

holds.

Inductive step: Consider an IncIDFA-state, say Si𝑞+1, such that Si𝑞+1 =

<𝑘, ∅, 𝑑𝑞+1, S𝑞+1,U𝑞+1,M𝑞+1,O𝑘 , PhB,𝑊𝑔> = eval
(𝑞+1)
Inc

(SCC-init(𝑘)). Now, we need to

prove that for all nodes 𝑛 ∈ S𝑞+1, safe(𝑛,𝑑𝑞+1) holds. Four cases arise, on the basis of the

evaluation rule that was used to take this step:

[PhA-Mark] Let 𝑛 be the node returned by the firstNode method upon application of this

rule. In this case, all predecessors of node 𝑛 belong to the setM𝑘 , which implies that they

are also present in the set S𝑞 (from Lemma A.20). Furthermore, the OUT dataflow facts did

not change for any of these predecessors. Since the dataflow fact of 𝑛 are not recalculated,

it is clear that they are safe with respect to the current dataflow state, 𝑑𝑞+1. Since 𝑛 is the

only new element in S𝑞+1, it proves that all elements of S𝑞+1 are safe with respect to 𝑑𝑞+1.
[PhA-Proc] Let 𝑛 be the node returned by the firstNode method upon application of this

rule. The set 𝑄𝑝 passed to the method processNode contains two parts: (i) predecessors of

𝑛 that belong to previous SCCs (which are given to be safe), and (ii) predecessors of 𝑛 that

belong to this SCC and are present in S𝑞 (that is, are safe). Since all elements of 𝑄𝑝 are safe

with respect to 𝑑𝑞 , from Lemma A.8, we note that node 𝑛 is safe with respect to 𝑑𝑞+1.
[PhA-FP] In this rule, no changes are made to S𝑞 to obtain S𝑞+1. Hence, all nodes in S𝑞+1
are safe with respect to 𝑑𝑞+1.

[PhB-Proc] The reasoning for this case is similar to that for Rule [PhA-Proc].

Hence proved.

□

LemmaA.22 (PhB leads to safe nodes). Consider an incremental-analysis instanceI, as discussed
above. Assume that SCC-init(𝑘) is a reachable IncIDFA-state for I. Further, assume that all SCCs
with index less than 𝑘 are consistent and safe. Let Si𝑏 = <𝑘, ∅, 𝑑𝑏, S𝑘 ,U𝑘 , ∅,O𝑘 , PhB,𝑊𝑔> be the PhB-
fixed-point state that is reached upon zero or more applications of evalInc on SCC-init(𝑘). We note
that ∀𝑛 ∈ sccNodes𝑃(𝑘), safe(𝑛,𝑑𝑏).

Proof. Consider a node, say 𝑛, in the set sccNodes𝑃(𝑘). Two cases arise on the basis of whether

node 𝑛 was present in the intra-SCC worklist,𝑊𝑘 , in any IncIDFA-state between SCC-init(𝑘) and

Si𝑏 :

Case A: Node 𝑛 was present in𝑊𝑘 in some state. The evaluation rules that could be used for

processing 𝑛 in PhA or PhB are Rules [PhA-Mark], [PhA-Proc], or [PhB-Proc]. In all these

rules, node 𝑛 gets added to the set S𝑘 . From Lemma A.21, we conclude, safe(𝑛,𝑑𝑏).
Case B: Node 𝑛 was never added to𝑊𝑘 . Clearly, node 𝑛 is not a seed node. In this case, for each

predecessor of node 𝑛 in the same SCC, say 𝑝 ∈ sameSccPred𝑃(𝑛), there are two possibilities:
(i) Node 𝑝 was not processed in any IncIDFA-state between SCC-init(𝑘) and Si𝑏 . (ii) Node

𝑝 was processed as per Rule [PhB-Proc], but its processing resulted in no change in its

OUT dataflow fact. In both these cases, since the OUT dataflow fact does not change for any

predecessor of 𝑛, and since 𝑛 is clearly not a seed node, from Definition A.4, safe(𝑛,𝑑𝑏) holds.

□

Lemma A.23 (PhC leads to consistent and safe nodes). Consider an incremental-analysis
instance I, as discussed above. Assume that SCC-init(𝑘) is a reachable IncIDFA-state for
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I. Further, assume that all SCCs with index less than 𝑘 are consistent and safe. Let Si𝑐 =

<𝑘, ∅, 𝑑𝑐 , ∅, ∅, ∅,O𝑘 , PhC,𝑊𝑔> be the PhC-fixed-point state that is reached upon zero or more applica-
tions on the PhB-fixed-point state, say Si𝑏 , for the SCC.We note that∀𝑛 ∈ sccNodes𝑃(𝑘), safe(𝑛,𝑑𝑐)∧
consistent(𝑛,𝑑𝑐).

Proof. Note that in the IncIDFA-state Si𝑏 , all the nodes are safe, as per Lemma A.22. For all

IncIDFA-states between Si𝑏 and Si𝑐 , the only rule applicable is Rule [PhC-Proc]. Consider any such

IncIDFA-state, say Si𝑖 . Let 𝑛 be the node that was returned by method firstNode. Note that since the

helper method processNode is invoked with only the safe predecessors of 𝑛 (which, in this case, are

all the predecessors of𝑛), from LemmaA.8, node𝑛 is safe in evalInc(Si𝑖). Hence, for all IncIDFA-state
between Si𝑏 and Si𝑐 (both inclusive), we conclude that ∀𝑛 ∈ sccNodes𝑃(𝑘), safe(𝑛,𝑑𝑐).
From Lemma A.19, in IncIDFA-state Si𝑏 , we note that all nodes in sccNodes𝑃(𝑘) are either

consistent, or are present in the set U𝑏 . From Rule [PhB-FP], note that the intra-SCC worklist,𝑊𝑘 ,

for PhC is populated with U𝑏 . Hence, in IncIDFA-state Si𝑏 , all nodes in sccNodes𝑃(𝑘) are present

in𝑊𝑘 , or are consistent. It is easy to see that this property holds for each IncIDFA-state between
Si𝑏 and Si𝑐 : At each step, only Rule [PhC-Proc] is applicable. With this rule, the node, say 𝑛, that is

taken from the worklist, is processed using processNode with the complete set of predecessors of 𝑛

(that is, pred𝑃(𝑛)). Hence, from Lemma A.8, we know that node 𝑛 is consistent in the resulting

IncIDFA-state. If the OUT dataflow facts of node 𝑛 changes, its successors may become inconsistent

with the resulting IncIDFA-state, and hence are added back to𝑊𝑘 . Hence, we conclude that since

𝑊𝑘 is empty in the IncIDFA-stateSi𝑐 , ∀𝑛 ∈ sccNodes𝑃(𝑘), consistent(𝑛,𝑑𝑐).
Hence proved. □

Corollary A.24 (evalInc leads to consistent and safe SCC). Consider an incremental-
analysis instance I, as discussed above. Assume that SCC-init(𝑘) is a reachable IncIDFA-state
for I. Further, assume that all SCCs with index less than 𝑘 are consistent and safe. Let Si𝑐 =

<𝑘, ∅, 𝑑𝑐 , ∅, ∅, ∅,O𝑘 , PhC,𝑊𝑔> be the PhC-fixed-point state that is reached upon zero or more ap-
plications on the PhB-fixed-point state, say Si𝑏 , for the SCC. We note that safeSCC(𝑘,𝑑𝑖) ∧
consistentSCC(𝑘, 𝑑𝑖) hold.

Proof. Follows directly from Lemma A.23 and Definitions A.5 and A.2. □

Consistency and safety of SCCs unprocessed by evalInc.

Lemma A.25. Consider an incremental-analysis instance I, as discussed above. Assume Simfp =
eval

∞
Inc
(initStateIncIDFA(I)), is the result of the fixed-point application of evalInc. Let 𝑑mfp be the

dataflow state in Simfp. In the topological sort order of SDG𝑃 , let 𝑘 be the minimum index of any SCC
that contains a seed node. Assume an SCC, with index 𝑘 , such that SCC-init(𝑘) is not reachable from
I. We note that safeSCC(𝑘, 𝑑mfp) and consistentSCC(𝑘,𝑑mfp) hold.

Proof. Since SCC with index 𝑘 has not been processed by evalInc, it is clear that it does not

contain any seed nodes. Furthermore, there must not have been any applications of Rule [PhC-FP],

where the OUT of any of the predecessors of any entry node of scc𝑃(𝑘) changed (else scc𝑃(𝑘)would
have been processed). Consequently, from Lemma A.11, we conclude that safeSCC(𝑘,𝑑mfp) and
consistentSCC(𝑘, 𝑑mfp) hold. □

Consistency and safety of all SCCs with evalInc.
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Theorem A.26. Consider a dataflow analysis A, and its analysis instance A = (𝑃, 𝜗𝑒), where
𝑃 = (𝑁, 𝐸, 𝑛0) has been derived upon applying a sequence of one or more transformations on some
program 𝑃old = (𝑁old, 𝐸old, 𝑛0). Let Aold = (𝑃old,Mold, 𝜗𝑒) be an analysis instance of A for 𝑃old, and
let 𝑑old be its MFP solution. Let seeds = seeds(𝑃old, 𝑃) represent the set of seed nodes for program
transformations from 𝑃old to 𝑃 . Given the incremental-analysis instance I = (A, seeds, 𝑑old), let
Simfp = eval

∞
Inc
(initStateIncIDFA(I)) be the result of fixed-point application of the evalInc for I. Let

𝑑mfp be the dataflow state in Simfp. The following holds:
𝑘< |SDG𝑃 |
∀
𝑘=0

, consistentSCC(𝑘,𝑑mfp) ∧ safeSCC(𝑘, 𝑑mfp)

Proof. In the topological sort order of SDG𝑃 , let𝑚 be the minimum index of any SCC that con-

tains a seed node. For all SCCs with index less than𝑚, the proof follows directly from Lemma A.12.

For other SCCs, we prove the theorem by strong induction on their indices.

Base case: For scc𝑃(𝑚). The initial IncIDFA-state, as per Definition 4.11, is clearly SCC-init(𝑚).
From Lemma A.18, we note that the PhC-fixed-point of scc𝑃(𝑚) is reachable. From Corol-

lary A.24, we conclude that consistentSCC(𝑚,𝑑mfp) and safeSCC(𝑚,𝑑mfp) hold.

Induction hypothesis: Assume that ∀𝑙,𝑚 < 𝑙 < (𝑘 − 1) consistentSCC(𝑙, 𝑑mfp) and

safeSCC(𝑙, 𝑑mfp) holds.

Inductive step: To prove that consistentSCC(𝑘,𝑑mfp) and safeSCC(𝑘, 𝑑mfp) holds. On the basis

of whether scc𝑃(𝑘) has been processed by evalInc, two cases arise:

Case A: scc𝑃(𝑘) has been processed by evalInc. In this case, the proof follows directly from

Corollary A.24.

Case B: scc𝑃(𝑘) has not been processed by evalInc. In this case, the proof follows directly

from Lemma A.25.

Hence proved.

□

Corollary A.27. Consider a dataflow analysis A, and its analysis instance A = (𝑃, 𝜗𝑒), where
𝑃 = (𝑁, 𝐸, 𝑛0) has been derived upon applying a sequence of one or more transformations on some
program 𝑃old = (𝑁old, 𝐸old, 𝑛0). Let Aold = (𝑃old,Mold, 𝜗𝑒) be an analysis instance of A for 𝑃old, and
let 𝑑old be its MFP solution. Let seeds = seeds(𝑃old, 𝑃) represent the set of seed nodes for program
transformations from 𝑃old to 𝑃 . Given the incremental-analysis instance I = (A, seeds, 𝑑old), let
Simfp = eval

∞
Inc
(initStateIncIDFA(I)) be the result of fixed-point application of the evalInc for I. Let

𝑑mfp be the dataflow state in Simfp. The following holds: 𝑑mfp = mfp(A).

Proof. Follows directly from Theorem A.26, and Corollary A.7. □

A.2 Formal Model for CompIDFA

In this section, we formalize the traditional exhaustive iterative dataflow analysis algorithm

CompIDFA.

Definition A.28 (CompIDFA-state). In the context of CompIDFA, at any point during the application
of the algorithm, we define the analysis state, termed CompIDFA-state, as a 3-tuple of the form

Sc𝑖 = <𝑘,𝑊𝑘 , 𝑑>, where:

• 𝑘 is the index of the current SCC being processed by the analysis, in the topological sort

order (0-indexed) of SDG𝑃 , the SDG of the program being analyzed.

• 𝑊𝑘 denotes an intra-SCC worklist, containing those nodes of the current SCC for which the

dataflow facts may require recalculation.

• 𝑑 represents the current dataflow state.
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Sc = <𝑘,𝑊𝑘 , 𝑑> 𝑊𝑘 ≠ <> 𝑛 = firstNode(𝑊𝑘)

𝑑 = (IN, OUT) 𝑑′ = (IN′, OUT′) = processNode(𝑑, 𝑛, pred𝑃(𝑛))

𝑊 ′
𝑘
=

{
(𝑊𝑘 \ {𝑛}) ∪ sameSccSucc𝑃(𝑛), if OUT′(𝑛) ≠ OUT(𝑛)

(𝑊𝑘 \ {𝑛}), otherwise

evalComp(Sc)⇒ <𝑘,𝑊 ′
𝑘
, 𝑑′>

[Comp-Proc]

Sc = <𝑘, <>, 𝑑> 𝑘 ≤ (|SDG𝑃 | − 2)
evalComp(Sc)⇒ <𝑘 + 1, sccNodes𝑃(𝑘 + 1), 𝑑>

[Comp-SCC-FP]

Sc = <𝑘, <>, 𝑑> 𝑘 = (|SDG𝑃 | − 1)
evalComp(Sc)⇒ Sc

[Comp-Global-FP]

Fig. 17. Evaluation rules for the evalComp function.

We denote the set of all CompIDFA-states by S𝐶 .

Definition A.29 (Initial CompIDFA-state). Consider a dataflow analysis A = (L, F ,M), and its

analysis instance A = (𝑃, 𝜗𝑒), where 𝑃 = (𝑁, 𝐸, 𝑛0). In the context of analysis instance A, we

define the initial CompIDFA-state as initStateComp(A) = <0, sccNodes𝑃(0), 𝑑init>, where

𝑑init = (INinit, OUTinit)

∀𝑛 ∈ 𝑁, INinit(𝑛) =

{
𝜗𝑒 , if 𝑛 = 𝑛0

⊤, otherwise

∀𝑛 ∈ 𝑁, OUTinit(𝑛) = ⊤

Definition A.30 (evalComp function). We formally represent the CompIDFA algorithm using a

function evalComp : S𝐶 → S𝐶 , which takes the current CompIDFA-state, and performs one step of

the CompIDFA algorithm to generate the next CompIDFA-state.
For a given analysis instance A, the application of CompIDFA algorithm can be seen as a fixed-

point application of the evalComp function, denoted by evalComp

∞
, on the initial CompIDFA-state,

initStateComp(A).

Fig. 17 defines the evaluation rules for the evalComp function, discussed next.

[Comp-Proc] When the intra-SCC worklist,𝑊𝑘 , is not empty in the current CompIDFA-state, a
node is removed (non-deterministically, using the operation firstNode) from the worklist, and

its dataflow facts are recalculated by invoking the helper method processNode. If recalculation

resulted in a change in the OUT dataflow fact for 𝑛, then those successors of 𝑛 that belong

to the same SCC as that of 𝑛 are added to the intra-SCC worklist,𝑊𝑘 . Note that the order

in which nodes are taken from an intra-SCC worklist does not change the final fixed-point

solution obtained for that SCC.

[Comp-SCC-FP] When the intra-SCC worklist,𝑊𝑘 , is empty in the current CompIDFA-state, then
the state represents a local fixed-point for the nodes in the current SCC. If the current SCC is

not the last SCC in the topological sort order of SDG𝑃 , then the index information for the

SCC being processed is incremented by one. Further, all nodes that belong to the immediately

succeeding SCC in the topological sort, are added to the intra-SCC worklist.

[Comp-Global-FP] If the intra-SCC worklist,𝑊𝑘 , is empty in the current CompIDFA-state, and if

the current SCC is the last SCC in the topological sort order of SDG𝑃 , then a global fixed-point
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has been reached for the application of evalComp.

Theorem A.31 (Correctness of evalComp). For a given analysis instance A = (𝑃, 𝜗𝑒), a fixed-
point application of the evalComp function on the initial CompIDFA-state for A, converges to a
CompIDFA-state that contains the maximum fixed-point solution for A. Formally,

evalComp

∞(initStateComp(A)) = <|SDG𝑃 | − 1, <>, 𝑑mfp> ⇔ 𝑑mfp = mfp(A)

Proof. The proofs for convergence and correctness of standard iterative dataflow analysis

algorithm, employed by the function evalComp, are standard [87, 88], and hence omitted. □

B Generic Incremental IDFA

In this section, we present IncIDFA, a generic, incremental, flow-sensitive, interprocedural dataflow

algorithm, which can be used to derive an incremental version of any arbitrary monotone iterative

dataflow analysis. IncIDFA can be instantiated to write any IDFA-based analysis (for example,

reaching-definitions analysis, liveness analysis, and so on), including those analyses that are non-

distributive (such as points-to analysis and constant-propagation analysis). IncIDFA does not

require the dataflow analysis writer to provide any details that are specific to incrementalization of

the analysis.

B.1 Design of IncIDFA

Given a program 𝑃 , for any monotone dataflow analysis𝑋 , the traditional generic iterative dataflow

analysis algorithm (CompIDFA) computes the dataflow solution (the IN and OUT maps) of 𝑋 for 𝑃 , by

taking as input (i) the latticeL of𝑋 , and (ii) the flow-function map F (that returns the flow function

F𝑛 for every program node 𝑛) for 𝑋 . Without loss of generality, in this manuscript, we assume

that each program is represented as a graph (for example, control-flow graph, or super-graph; see

Section 2).

Say 𝑃𝑖 be a program under compilation whose dataflow solution (IN𝑖 and OUT𝑖 maps) has been

computed for a monotone dataflow analysis 𝑋 . Consider a modified program 𝑃 𝑗 , obtained by

performing a series of compiler transformations on 𝑃𝑖 . For each such analysis 𝑋 , the goal of our

proposed algorithm is to compute the modified dataflow solution of 𝑋 for 𝑃 𝑗 by incrementally

updating the prior computed dataflow solution (IN𝑖 and OUT𝑖 ). Such incremental updates would

require, in addition to other arguments, the information about the overall differences from 𝑃𝑖 to 𝑃 𝑗 .

For simplicity, one can assume that these differences are given in terms of sets of (i) nodes added

(addedNodes), (ii) nodes removed (removedNodes), (iii) edges added (addedEdges), and (iv) edges

removed (removedEdges) – collectively called as the change-set.
We take these requirements into consideration and propose a generic incremental iterative

dataflow analysis algorithm, termed IncIDFA. For obtaining the dataflow solution of 𝑋 for 𝑃 𝑗 , in

addition to the arguments that are required by CompIDFA (namely, L, F and 𝑃 𝑗 ), IncIDFA needs
only the following additional arguments: the old dataflow solution (IN and OUT for 𝑃𝑖 ) and the

change-set (from 𝑃𝑖 to 𝑃 𝑗 ).

B.2 IncIDFA Algorithm

In this section, we describe our proposed worklist-based algorithm (IncIDFA) that works on the

SCC decomposition of the program’s super-graph (see Section 2); hereafter, we call this graph as the

SCC-graph. Without loss of generality, we discuss this algorithm for forward IDFAs; the algorithm

for backward IDFAs can be derived similarly. The key intuition of this algorithm is derived from

Proposal 3 (Optimized Init-Restart-SCC) discussed in Section 3.4.

The IncIDFA algorithm is shown in Fig. 18. It starts by invoking the function obtainSeedNodes
(see Section 2) to process the change-set (chSet) to obtain the set of seed program-nodes in the
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1 Function IncIDFA(L, F, 𝑃 , chSet, IN, OUT) /* Modifies IN and OUT */

2 // L: lattice for the analysis; F: flow function map for the analysis

3 // 𝑃 : modified program as per which the analysis results have to be updated

4 // chSet: change-set denoting the differences from 𝑃old to 𝑃

5 // IN and OUT: dataflow solution of the analysis for some program 𝑃old
6 OrderedSet globalWL = obtainSeedNodes(chSet, 𝑃);
7 while globalWL ≠ ∅ do processOneSCC(L, F, IN, OUT, globalWL) ;

8 Function processOneSCC(L, F, IN, OUT, globalWL) /* Modifies IN, OUT, and globalWL */

9 sccID = globalWL.peekFirst().getSCCId(); // SCC ID of the first node in globalWL

10 /* Step I: Extract all seed nodes belonging to this SCC. */

11 currSCCSeeds = globalWL.removeAllWithId(sccID);

12 /* Step II: Store the stale OUT information of exit nodes of this SCC. */

13 foreach 𝑛 ∈ getExits(sccID) do oldOUT(𝑛) = OUT(𝑛).clone();

14 /* Step III: (Initialization-step): under-approximation for the current SCC. */

15 safeNodes = ∅; underApprox = ∅;
16 if currSCCSeeds ⊈ getEntries(sccID) then

17 underApproximate(L, F, IN, OUT, safeNodes, underApprox, currSCCSeeds, getEntries(sccID), true);
18 underApproximate(L, F, IN, OUT, safeNodes, underApprox, currSCCSeeds, currSCCSeeds.clone(), false);
19 /* Step IV: (Stabilization-step): get MFP solution for the current SCC. */

20 stabilize(L, F, 𝑃 , IN, OUT, underApprox);
21 /* Step V: Add required successors from other SCCs to globalWL */

22 foreach 𝑛 ∈ getExits(sccID) do

23 if oldOUT(𝑛) ! = OUT(𝑛) then

24 globalWL = globalWL

⋃
(succ(n) \ getSCCNodes(sccID));

Fig. 18. Algorithm for incremental update of flow-facts, for a forward analysis on serial programs.

current program 𝑃 . The ordered-set globalWL is kept sorted by the SCC ids of the program-nodes,

to ensure that the affected SCCs are processed as per the topological sort order of the SCCs in the

SCC-graph. Besides the standard operations like peekFirst, the ordered-set globalWL supports

an additional method removeAllWithId, which given an SCC id as an argument, removes (and

returns) the set of all the elements with the given SCC id.

The method IncIDFA processes one SCC at a time by invoking the method processOneSCC,
which in turn processes each SCC in five steps, in order to implement the initialization-step and

stabilization-step discussed in Proposal 3:

Step I: For the SCC being processed, we first extract (in currSCCSeeds) all those program-nodes

from globalWL that belong to this SCC. These program-nodes are the directly impacted nodes as

a result of either (i) any program-changes performed within this SCC, or (ii) any changes in the

incoming flowmaps from one or more of the predecessor SCCs.

Step II: Note that during stabilization of dataflow solution within this SCC, the OUT flowmaps of

any of the program-nodes may temporarily be under-approximated before they stabilize back to

their fixed-point values. In many cases, we observe that the initial values (before the initialization-

step) of the flowmaps for certain program-nodes match the fixed-point values at the end of the

stabilization-step. When such program-nodes are also the exit nodes of the SCC, the standard

IDFA approach may unnecessarily mark their successor program-nodes (from successor SCCs) to

be processed, when the OUT flowmaps of the exit nodes change temporarily. This may result in

redundant processing of successor SCCs. To avoid this issue, when we process a program-node,

we do not add the inter-SCC successor program-nodes to the worklist. Instead, in Step II, we

take a snapshot of the OUT flowmaps of all the exit nodes (obtained through getExits, Line 13),
and compare it with the final fixed-point values (in Step V), to decide if any inter-SCC successor

program-nodes need to be added to globalWL.
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1 Function underApproximate(L, F, IN, OUT, safeNodes, underApprox, currSCCSeeds, intraSCCWL,
unconditionallyAdd) /* Modifies IN, OUT, safeNodes, underApprox, and intraSCCWL */

2 // safeNodes: set of nodes that have been processed during the initialization-step

3 // underApprox: set of nodes for which at least one predecessor was ignored during the initialization-step

4 // unconditionallyAdd: true, when the successors need to be added unconditionally to the worklist

5 unchangedOUTNodes = ∅;
6 while intraSCCWL is not empty do

7 𝑛 = intraSCCWL.removeFirst();
8 if 𝑛 ∈ safeNodes then continue;

9 boolean hasOUTChanged = false;
10 if pred(n) ⊆ unchangedOUTNodes then unchangedOUTNodes

⋃
= {n};

11 else

12 safePreds = {𝑝 : 𝑝 ∈ pred(n) && (𝑝.getSCCId() ≠ 𝑛.getSCCId() | | 𝑝 ∈ safeNodes) };
13 if safePreds ! = pred(𝑛) then underApprox ∪ = {𝑛} ;
14 hasOUTChanged = processNode(𝑛, L, F, IN, OUT, safePreds);
15 if hasOUTChanged == false then unchangedOUTNodes

⋃
= {n};

16 safeNodes

⋃
= {𝑛};

17 skipSuccs = safeNodes

⋃
currSCCSeeds ;

18 if unconditionallyAdd | | hasOUTChanged then intraSCCWL

⋃
= (intraSCCSucc(𝑛) \ skipSuccs);

19 Function stabilize(L, F, IN, OUT, intraSCCWL) /* Modifies IN, OUT, and intraSCCWL */

20 while intraSCCWL is not empty do

21 𝑛 = intraSCCWL.removeFirst();
22 boolean hasOUTChanged = processNode(𝑛, L, F, IN, OUT, pred(𝑛));
23 if hasOUTChanged then intraSCCWL

⋃
= intraSCCSucc(𝑛);

Fig. 19. Definitions for underApproximate and stabilize methods used while processing an SCC.

1 Function processNode(𝑛, L, F, IN, OUT, safePreds): boolean /* Modifies IN and OUT */
2 // Returns true if the OUT flowmap of 𝑛 has changed

3 // safePreds: set of predecessors whose OUT is a safe initial estimate

4 if safePreds == ∅ then IN(𝑛) = ⊤; else IN(𝑛) = .
𝑝∈safePreds OUT(𝑝 ) ;

5 OUT(𝑛) = F𝑛(IN(𝑛));
6 if OUT(𝑛) has changed then return true;

7 else return false;

Fig. 20. Algorithm to recalculate IN and OUT of a program node.

Step III: (Initialization-step)We define a program-node to be safe (as discussed in Proposal 3), if (i)
the program-node is not reachable from any seed node, or (ii) both its IN and OUT flowmaps are safe

(i.e., are safe-initial-estimates). We define the IN flowmap of a node as safe, if (i) the flowmap maps

all domain-elements to ⊤, or (ii) it has been computed using the OUT flowmaps of its predecessors

that are safe. Similarly, we define the OUT flowmaps of a node as safe, if (i) the flowmap maps all

domain-elements to ⊤, or (ii) it has been computed using the safe IN flowmap of its node. From

Section 3, recall that if all the program-nodes of an SCC are safe, then no ghost-mappings can

be present in the fixed-point solution. In this step, we implement the initialization-step (and its

optimizations discussed in Proposal 3) which ensures that all the program-nodes are safe.

Recall from Optimization I/II of Proposal 3, that while calculating the IN flowmap of a program-

node, we ignore the OUT flowmap of those predecessors that are not safe. Hence, we maintain a set

safeNodes, of the nodes that have been marked as safe during the initialization-step. If any of the

predecessors were ignored for a program-node during its processing, then the program-node is

added to the set underApprox, to be processed in the stabilization-step (see Step IV). Both these

sets are initially empty (see Line 15).

The initialization-step is performed in two parts, as per Optimization II/II of Proposal 3, by

invoking the method underApproximate twice with different initial worklists (entry-nodes vs seed
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nodes). Note that the first invocation of underApproximate is not required if every seed node is

also an entry node – in that case, the seed node will always have at least one safe predecessor. The

method underApproximate employs a worklist-based algorithm to process the program-nodes

in the given worklist. Note that since a seed node could also be an entry-node, it may get added

twice to the worklist; to avoid processing any node more than once in the initialization-step,

the set safeNodes is used to ignore the already-processed nodes. The method maintains a set

named unchangedOUTNodes, which contains those nodes whose OUT flowmap do not change

upon their processing during the initialization-step. If all predecessors of a node 𝑛 belong to the

unchangedOUTNodes set, then processing node 𝑛 will not change its OUT flowmap; in this case,

node 𝑛 is added to the unchangedOUTNodes set (Line 10). Otherwise, if there exists even a single

predecessor of 𝑛 which is not present in the unchangedOUTNodes set, then the node 𝑛 is processed

(Lines 11-15), as discussed next.

Before processing any program-node 𝑛, the set of its safe predecessors is calculated first. A

predecessor is added to safePreds (Line 12), if it belongs to a previous SCC (in the topological-

sort order of the SCCs in the SDG), or it has already been processed in the initialization-step (as

maintained in safeNodes). This subset of predecessors is used to calculate the new IN flowmap for

𝑛. If some predecessors of 𝑛 are not in safePreds (and hence the flow information computed for 𝑛

is incomplete), we add 𝑛 to the set underApprox (Line 13), so as to complete its processing in the

stabilization-step. Using the set safePreds, the new IN and OUT flowmaps of node 𝑛 are calculated

by invoking the method processNode.
The method processNode shown in Fig. 20 is similar to the one used in standard IDFA, with

minor changes. We compute IN(n), by only considering the set of safePreds. Then, we invoke the

appropriate analysis specific flow function (F𝑛) to compute OUT(n). If the OUT flowmap of the node

changes as a result of this invocation, then the method processNode returns true; otherwise it
returns false. If the method returns false, then node 𝑛 is added to the unchangedOUTNodes set

(Fig. 19, Line 15).

Once the processing of node 𝑛 is complete, it is marked as safe (Line 16). We add to intraSCCWL

all the successors of 𝑛 that are present in the current SCC, except the nodes that are already marked

as safe, and the seed-nodes. We add to intraSCCWL only if (i) the OUT flowmap of node 𝑛 changed

during invocation of processNode, or (ii) the flag unconditionallyAdd was set during invocation

of underApproximate.
As discussed in Optimization II/II, before the second invocation of underApproximate, we

want to mark all the reachable nodes between entry-nodes and up until the seed-nodes as part of

safeNodes. This is achieved by setting the flag unconditionallyAdd during the first invocation. As a

result of this approach, it is ensured that at least one of the predecessors of each seed-node is safe,

before the second invocation of underApproximate.
Step IV: (Stabilization-step) At the end of the initialization-step, all the program-nodes are safe.

However, there may be program-nodes that contain incomplete flowmaps as one or more of their

predecessors were ignored during the calculation of their IN flowmaps. Such nodes were saved in

the set underApprox. Hence, in the stabilization-step, shown in the method stabilize, the worklist
is initialized with the set underApprox (Line 20, Fig. 18), and the standard worklist-based algorithm

is applied until the worklist is empty. Note that none of the predecessors in this step are skipped

during the calculation of IN for a program-node. Further, none of the successor program-nodes

from within the same SCC are skipped from addition back to the worklist if/when the OUT flowmap

of the program-node changes. This is achieved by sending the argument pred(n) for safePreds,
and argument ∅ for skipSuccs (Line 22), when invoking the method processNode.
Step V: Once the flowmaps of all the program-nodes of the current SCC have reached their

(maximum) fixed-point values at the end of Step IV, we compare the states of OUT flowmaps of
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1 Function processNodeUsingAccessedKeys(𝑛, L, F, IN, OUT, safePreds): boolean /* Modifies IN and OUT */
2 // Returns true if the OUT flowmap of 𝑛 has changed

3 // safePreds: set of predecessors whose OUT is a safe initial estimate

4 if safePreds == ∅ then IN(𝑛) = ⊤; else IN(𝑛) = .
𝑝∈safePreds OUT(𝑝 ) ;

5 accessedKeys = AK(𝑛); // AK map is used to track the keys accessed in application of F𝑛 .
6 if IN(𝑛) == NULL | | ∃𝑐 ∈ accessedKeys, such that the mapping for c changed in the new IN(n) then

7 OUT(𝑛) = F𝑛(IN(𝑛));
8 else

9 OUT(𝑛) = IN(𝑛).clone();
10 foreach 𝑐 ∈ accessedKeys do
11 if oldOUT(𝑛) contains 𝑐 then OUT(𝑛)(𝑐) = oldOUT(𝑛)(𝑐);

12 if OUT(𝑛) has changed then return true;

13 else return false;

Fig. 21. Algorithm to recalculate IN and OUT of a program node, while using the accessed-keys heuristic.

exit-nodes with the values stored in the snapshot saved in Step II. If the values for any exit-node

changes, then all its successors from successor SCCs are added to the set globalWL (Line 24).

B.3 Accessed-Key Heuristic

To use the accessed-key heuristic, in Fig. 19, instead of calling the function processNode, we call a
modified version of it called processNodeUsingAccessedKeys (shown in Fig. 21). In this heuristic

we invoke the transfer function, only (i) if the node is being processed for the first time, or (ii)

if upon calculation of the new IN flowmap, there exists a domain-element whose mapping has

changed from its value in the old IN flowmap (Line 7). Otherwise, the heuristic reconstructs the

new OUT flowmap using the old OUT flowmap and the new IN flowmaps as discussed above.

For this heuristic to be applicable the program-nodes have to be immutable, even under program

change, so that the set of accessed-keys do not change. In case of updates to the contents of a program

node, the condition of immutability can be ensured by treating the change as two operations –

deletion of the old program-node from the super-graph, and addition of a new program-node with

the modified contents.

C Using IncIDFA for Dataflow Analysis of Parallel Programs

As discussed in Section 1, iterative dataflow analysis of explicitly parallel programs often requires

adding extra edges to the flowgraph to model inter-thread communication that occurs through

shared memory accesses. These edges are typically introduced between various synchronization

primitives (such as post/wait operations, barrier directives, and so on) depending on the language

semantics [12, 18, 30, 34, 46, 55, 84, 107, 108, 118].

C.1 Background

To demonstrate the applicability of the proposed algorithm for incremental iterative dataflow

analysis of explicitly parallel programs, we use OpenMP [29], an industry-standard API for shared-

memory parallel programming. We now provide a brief introduction to some key synchronization

constructs of OpenMP (in Section C.1.1), followed by a discussion of phase analysis (in Section C.1.2),

which is used to add synchronization edges (in Section C.1.3), and finally an overview of how

standard iterative dataflow analysis can be performed on OpenMP programs using such synchro-

nization edges (in Section C.1.4). It is important to note that the proposed algorithm, as discussed

in Sections 3-4, is agnostic to how inter-thread communication is modeled in the flowgraphs.

C.1.1 OpenMP Constructs. Following are the key OpenMP constructs of our concern :

#pragma omp parallel S, denotes a parallel region that generates a team of threads, where
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each thread executes a copy of the code S in parallel.

#pragma omp barrier, specifies a program point where each thread of the team must reach

before any thread is allowed to move forward. We use ompBarrier to abbreviate this directive. In

the flowgraph representation of an OpenMP program, we represent each ompBarrier node with
two separate nodes – a preBarrier node and a postBarrier node, with a control-flow edge from

the former to the latter.

#pragma omp flush, is used to flush a thread’s temporary view of the shared memory to make

it consistent with the shared memory. We use ompFlush as a shorthand for this directive.

OpenMP adds implicit flushes at various synchronization points in the program, such as during

lock acquisition and release, at barrier directives, at the entry and exit of critical constructs, and so

on. Similarly, implicit barriers are added by default at the end of parallel loops, parallel regions,

and so on. We assume that all such implicit flushes/barriers have been made explicit.

C.1.2 Phase Analysis. In a parallel region in OpenMP, all threads start their execution from the

implicit barrier at the start of the region, until they encounter a barrier on their execution paths.

Once each thread has encountered a barrier (same or different), all the threads will start executing

the code after the barrier, until they encounter the next set of barriers. All such barriers that

synchronize with each other form a synchronization set. Statically, a barrier may belong to more

than one synchronization set. All statements that exist between two consecutive synchronization

sets form a static phase. Each statement may belong to more than one phase. Two statements in

two different phases that do not share any common phase may not run in parallel with each other.

Precise identification of such phases can greatly improve the precision of various static analyses

of parallel programs, as they limit the pair of statements that may communicate with each other

through shared memory. For the purpose of our discussion, any phase analysis should suffice; we

use the phase analysis derived from the concurrency analysis provided by [153, 154].

C.1.3 Synchronization Edges. In dataflow analysis of explicitly-parallel programs, special edges (for

example, synchronization or interference edges) are added to the flow graphs to model inter-thread

communication through shared-memory accesses [12, 18, 30, 34, 46, 55, 84, 107, 108, 118].

In order to model inter-thread communication in OpenMP programs, two kinds of synchro-

nization edges are added in a flowgraph: (i) inter-task edges between ompFlush operations that

may share a phase, and (ii) sibling-barrier edges, from preBarrier nodes to postBarrier nodes
corresponding to barriers that share a synchronization set.

Inter-task edges. In OpenMP parallel regions, different threads (or tasks) may communicate with

each other with the help of shared memory. As per OpenMP standards, a valid communication

can take place between threads 𝑇1 and 𝑇2 through a shared variable, say 𝑣 , only if the following

order is strictly maintained : (1) 𝑇1 writes to 𝑣 , (2) 𝑇1 flushes 𝑣 , (3) 𝑇2 flushes 𝑣 , and (4) 𝑇2 reads

from 𝑣 . Furthermore, 𝑇2 must not have written to 𝑣 since its last flush of the variable. We model

such perceived communications with the help of inter-task edges, as shown in Fig. 22a. An

inter-task edge is an edge that originates at an ompflush, say 𝑓1 and terminates at (same or different)

ompFlush, say 𝑓2, such that (i) 𝑓1 and 𝑓2 share at least one common static phase, and (ii) there must

exist some shared variable which is written on an ompFlush-free path before 𝑓1, and read on an

ompFlush-free path after 𝑓2.

Sibling-barrier edges. As per OpenMP semantics, at the end of each barrier, all temporary views

of different threads are made consistent with each other and with the shared memory. Consider

a maximal set 𝑆 of barriers that synchronize with each other at the end of a phase 𝑝; this set is

termed as the synchronization set of 𝑝 . For each pair of barrier (𝑏1, 𝑏2) ∈ 𝑆 × 𝑆 , in order to model

the consistency of temporary views at the end of phase 𝑝 , we add a special kind of synchronization-
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(a) Inter-task edge (b) Sibling-barrier edge

Fig. 22. Examples of two types of synchronization-edges in OpenMP, denoted by dashed lines. These

edges model inter-thread communications. Solid lines denote one or more paths between two nodes in the

flowgraph.

edge, termed as sibling-barrier edge, from the preBarrier of 𝑏1 to postBarrier of 𝑏2, as shown in

Fig. 22b.

The inter-task edges and sibling-barrier edges can be used to port any standard iterative dataflow

analysis to explicitly parallel programs, as discussed next.

We obtain a super-graph by adding these inter-task edges to CFGs and call graphs.

C.1.4 Parallel Iterative Dataflow Analysis. We now discuss an extension to the standard iterative

dataflow analysis of serial programs, to make it suitable for parallel programs; we use OpenMP

as the target parallel language. In OpenMP (and other such shared-memory parallelism models),

there are two key portions of data environment for each thread – private and shared. Under the
relaxed-consistency model of OpenMP, each thread is allowed to maintain its own temporary view

of the shared memory, which can be made consistent with the global view of shared memory with

the help of ompFlush directives. The communication between multiple threads resulting from these

directives can be represented as inter-task edges, and sibling-barrier edges, as shown in Fig. 22.

We distinguish the private and shared portions of data-environment, such that the domain of each

flow map consists of two mutually exclusive and exhaustive subsets. Consequently the standard

flow maps can be seen as, IN(𝑛) := INpriv (𝑛) ∪ INshared (𝑛), and OUT(𝑛) := OUTpriv (𝑛) ∪ OUTshared (𝑛),
where the subscript to a map indicates the type (memory locations) of its domain. Now, we discuss

the key extension to serial IDFA to obtain IDFA𝑝 .

Extension 1. In order to model the effects of an inter-task edge (𝑓1, 𝑓2) between two ompFlush
directives 𝑓1 and 𝑓2, for each shared variable 𝑥 that can be communicated over the edge (𝑓1, 𝑓2), we
add the following dataflow equation to the serial IDFA; this equation uses the meet operator (

.
) of

the underlying serial IDFA.

(INshared (𝑓2)) (𝑥) := (INshared (𝑓2)) (𝑥)
.(OUTshared (𝑓1)) (𝑥) (Ext-1)

Correctness argument. We note that a sound IDFA for serial programs, extended with Ext-1

remains sound in the context of OpenMP. OpenMP API specification [29, Section 1.4.4] specifies the

sequence of events that must be followed for communication to happen between any two threads.

Extension Ext-1 conservatively models all such possible communications that may happen over

any of the inter-task edges. Thus, since the underlying serial IDFA is sound, the extension remains

sound, as no valid flow of shared data may happen at runtime except over the edges which we
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Fig. 23. Percentage improvement in IDFA stabilization-time using IncIDFA when applying the client

optimization, BarrElim, with respect to IncIDFA-NAC, which is a version of IncIDFA with accessed-keys

heuristic disabled. Higher is better.

model.

Complexity and Precision. For any given IDFA, the worst-case complexity of its corresponding
IDFA𝑝 (upon adding the above proposed two kinds of sycnchronization-edges) remains unchanged.

The precision of IDFA𝑝 depends on that of the underlying phase analysis, as imprecision in phase-

analysis may result in modeling extra inter-task edges than needed.

C.2 Analysing Parallel Programs with IncIDFA

In this section, we discuss the applicability of IncIDFA for analyses of explicitly parallel programs.

Recall that in order to model flow of data between threads through accesses to shared memory

location, the flowgraph representation used for iterative dataflow analysis of parallel programs

comprises of special edges, also termed as synchronization or interference edges [12, 18, 30, 34,

46, 55, 84, 107, 108, 118]. As discussed in Section C, we focus our discussion on two kinds of

synchronization edges used by IMOP – (i) inter-task edges, and (ii) sibling-barrier edges. Together,

these two kinds of edges represent most types of synchronization edges that have been discussed

in the literature.

We notice that IncIDFA is applicable as is for the case of iterative dataflow analyses on such

flowgraph representations. The special edges, as well as the special nodes (such as ompFlush,
preOmpBarrier, and postOmpBarrier), are treated just like any other edge or node in the flowgraph.
Note that the definition of meet operation remains to be the same in IncIDFA, as in the case of

CompIDFA – only the dataflow information corresponding to shared memory locations (if any) are

considered during the meet operation for the OUT flowmaps of the sources of incoming sibling-

barrier edges at any preOmpBarrier.

D Miscellaneous Data

Performance impact of accessed-keys heuristic on K2. In Section 6.2, we have provided

evaluation numbers for Nanda, to assess the impact of accessed-keys heuristic by comparing

IncIDFA with IncIDFA-NAC. Now, we present the numbers for our evaluations on K2. Fig. 23 shows

the percentage improvement using the heuristic, for K2. The baseline numbers, for IncIDFA-NAC,
are present in Column 14 of Table 1. We see that IncIDFA consistently outperforms IncIDFA-NAC;
improvements up to 54.12% (geomean 26.92%). Since the reasoning and observations with K2 remain

same as that for Nanda, we skip the discussion for this graph.

In Fig. 24, we show the total number of transfer-function applications that were skipped as a result

of the accessed-keys heuristic, normalized with respect to the number of applications in the baseline

IncIDFA-NAC. We notice that there is a significant reduction in transfer-function applications with

this heuristic, with maximum for art-m at 84.41%, and geomean of 59.91%. Consequently, this leads

to improved compilation time, as discussed in Section 6.2.

Fig. 25 shows the normalized count of the number of applications of transfer-functions in IncIDFA-
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Fig. 24. Normalized count of the number of transfer-function applications when applying the accessed-keys

heuristic over all three algorithms, as compared to per 100 applications in the respective algorithm with

accessed-keys heuristic disabled. Lower is better.

Fig. 25. Normalized count of the number of applications of transfer-functions in IncIDFA-NAC and

InitRestart-NAC, per 100 applications of the transfer-functions in CompIDFA-NAC. Lower is better.

Optimization Pass in IMOP Description

1. Redundant barrier remover removes barriers in absence of inter-thread dependences

2. OmpPar expander expands the scope of parallel-regions upwards and downwards

3. OmpPar merger merges two consecutive parallel-regions, if safe

4. OmpPar-loop interchange interchanges a parallel-region with its enclosing loop, if safe

5. OmpPar unswitching interchanges a parallel-region with its enclosing if-stmt, if safe

6. Variable privatization privatizes OpenMP shared variables, if safe

7. Function inliner selectively inlines monomorphic calls containing barriers

8. Scope remover removes redundant encapsulations of blocks in the given node

9. Unused-elements remover removes unused functions, types, and symbol declarations

Fig. 26. List of key passes in IMOP that belong to the BarrElim set of optimization passes. This figure has

been reproduced (and summarized) from the paper by Nougrahiya and Nandivada [93].

NAC and InitRestart-NAC, per 100 applications of the transfer-functions in CompIDFA-NAC. Note
that accessed-keys heuristic has been disabled for all three algorithms in this graph. Consequently,

note that the number of applications of transfer-functions is same as the number of times nodes are

processed during stabilization. This graph shows that IncIDFA results in a significant reduction in

the total number of times nodes are processed, even in the absence of accessed-keys heuristic.

The BarrElim set of optimizations. In Fig. 26, we list key optimization passes that form the

set BarrElim. The details of this pass are given in the paper by Nougrahiya and Nandivada [93].

Hence we skip the details here. As noted by the authors, BarrElim is a powerful set of optimization

passes for OpenMP programs, achieving performance improvements of up to 5% on top of the

already-optimized code generated by gcc with the -O3 switch. Therefore, in our evaluations we use

the BarrElim set of optimization passes to generate the stabilization-triggers (using Homeostasis),
which are then handled by our proposed incremental-update algorithm in order to stabilize the

dataflow solutions in response to the program-changes (as provided by Homeostasis).
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